
ptg6882136

ptg6882136

JavaTM Performance

ptg6882136

Publications in The Java™ Series are supported, endorsed, and

written by the creators of Java at Sun Microsystems, Inc. This series

is the official source for expert instruction in Java and provides the

complete set of tools you’ll need to build effective, robust, and portable

applications and applets. The Java™ Series is an indispensable resource

for anyone looking for definitive information on Java technology.

Visit Sun Microsystems Press at sun.com/books to view additional titles

for developers, programmers, and system administrators working with

Java and other Sun technologies.

Visit informit.com/thejavaseries for a complete list of available publications.

The Java™ Series

ptg6882136

JavaTM Performance

Charlie Hunt
Binu John

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg6882136

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC Inter-
national, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

This document is provided for information purposes only and the contents hereof are subject to change with-
out notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions,
whether expressed orally or implied in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no
contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our
prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hunt, Charlie, 1962-
 Java performance / Charlie Hunt, Binu John.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-714252-1
 ISBN-10: 0-13-714252-8 (pbk. : alk. paper)
 1. Java (Computer program language) 2. Computer programming. I. John, Binu, 1967- II. Title.
 QA76.73.J38H845 2012
 005.13’3—dc23 2011031889

Copyright © 2012 Oracle America, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. To obtain permission to use material from this work, please submit a written request to Pearson Educa-
tion, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-13-714252-1
ISBN-10: 0-13-714252-8

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, September 2011

ptg6882136

 v

To the three B’s, Barb, Boyd, and Beau – C.H.
To Rita, Rachael, and Kevin – B.J.

ptg6882136

This page intentionally left blank

ptg6882136

Contents

Foreword by James Gosling xi

Foreword by Steve Wilson xiii

Preface xv

Acknowledgments xix

About the Authors xxi

Chapter 1 Strategies, Approaches, and Methodologies 1
Forces at Play 2

Two Approaches, Top Down and Bottom Up 5

Choosing the Right Platform and Evaluating a System 8

Bibliography 11

Chapter 2 Operating System Performance Monitoring 13
Definitions 14

CPU Utilization 14

CPU Scheduler Run Queue 28

Memory Utilization 32

Network I/O Utilization 41

Disk I/O Utilization 46

 vii

ptg6882136

Additional Command Line Tools 49

Monitoring CPU Utilization on SPARC T-Series Systems 50

Bibliography 53

Chapter 3 JVM Overview 55
HotSpot VM High Level Architecture 56

HotSpot VM Runtime 58

HotSpot VM Garbage Collectors 80

HotSpot VM JIT Compilers 92

HotSpot VM Adaptive Tuning 100

References 106

Chapter 4 JVM Performance Monitoring 107
Definitions 108

Garbage Collection 108

JIT Compiler 146

Class Loading 147

Java Application Monitoring 150

Bibliography 153

Chapter 5 Java Application Profiling 155
Terminology 157

Oracle Solaris Studio Performance Analyzer 159

NetBeans Profiler 189

References 209

Chapter 6 Java Application Profiling Tips and Tricks 211
Performance Opportunities 211

System or Kernel CPU Usage 212

Lock Contention 222

Volatile Usage 234

Data Structure Resizing 235

Increasing Parallelism 243

High CPU Utilization 246

Other Useful Analyzer Tips 247

Bibliography 249

viii Contents

ptg6882136

 Contents ix

Chapter 7 Tuning the JVM, Step by Step 251
Methodology 252

Application Systemic Requirements 255

Rank Systemic Requirements 257

Choose JVM Deployment Model 258

Choose JVM Runtime 259

GC Tuning Fundamentals 262

Determine Memory Footprint 268

Tune Latency/Responsiveness 278

Tune Application Throughput 307

Edge Cases 316

Additional Performance Command Line Options 316

Bibliography 321

Chapter 8 Benchmarking Java Applications 323
Challenges with Benchmarks 324

Design of Experiments 347

Use of Statistical Methods 348

Reference 355

Bibliography 355

Chapter 9 Benchmarking Multitiered Applications 357
Benchmarking Challenges 357

Enterprise Benchmark Considerations 360

Application Server Monitoring 382

Profiling Enterprise Applications 399

Bibliography 401

Chapter 10 Web Application Performance 403
Benchmarking Web Applications 404

Web Container Components 405

Web Container Monitoring and Performance Tunings 408

Best Practices 427

Bibliography 450

Chapter 11 Web Services Performance 453
XML Performance 454

ptg6882136

x Contents

Validation 460

Resolving External Entities 462

Partial Processing of XML Documents 465

Selecting the Right API 468

JAX-WS Reference Implementation Stack 471

Web Services Benchmarking 473

Factors That Affect Web Service Performance 477

Performance Best Practices 486

Bibliography 503

Chapter 12 Java Persistence and Enterprise Java Beans Performance 505
EJB Programming Model 506

The Java Persistence API and Its Reference Implementation 507

Monitoring and Tuning the EJB Container 511

Transaction Isolation Level 521

Best Practices in Enterprise Java Beans 522

Best Practices in Java Persistence 540

Bibliography 551

Appendix A HotSpot VM Command Line Options of Interest 553
Appendix B Profiling Tips and Tricks Example Source Code 573

Lock Contention First Implementation 573

Lock Contention Second Implementation 583

Lock Contention Third Implementation 593

Lock Contention Fourth Implementation 603

Lock Contention Fifth Implementation 613

First Resizing Variant 624

Second Resizing Variant 636

Increasing Parallelism Single-Threaded Implementation 647

Increasing Parallelism Multithreaded Implementation 657

Index 669

ptg6882136

Foreword

Tuning a Java application can be challenging in today’s large-scale mission-critical
world. There are issues to be aware of in everything from the structure of your algo-
rithms, to their memory allocation patterns, to the way they do disk and file I/O.
Almost always, the hardest part is figuring out where the issues are. Even (perhaps
especially) seasoned practitioners find that their intuitions are wrong. Performance-
killing gremlins hide in the most unlikely places.

As Wikipedia says, “Science (from Latin: scientia meaning ‘knowledge’) is a sys-
tematic enterprise that builds and organizes knowledge in the form of testable expla-
nations and predictions about the world.” Performance tuning must be approached
as an experimental science: To do it properly, you have to construct experiments,
perform them, and from the result construct hypotheses.

Fortunately, the Java universe is awash in performance monitoring tools. From
standalone applications to profilers built into development environments to tools
provided by the operating system. They all need to be applied in a cohesive way to
tease out the truth from a sea of noise.

This book is the definitive masterclass in performance tuning Java applications.
It readably covers a wide variety of tools to monitor and measure performance on a
variety of hardware architectures and operating systems. And it covers how to con-
struct experiments, interpret their results, and act on them. If you love all the gory
details, this is the book for you.

—James Gosling

 xi

ptg6882136

This page intentionally left blank

ptg6882136

Foreword

 xiii

Today, Java is used at the heart of the world’s largest and most critical computing
systems. However, when I joined the Java team in 1997 the platform was young and
just gaining popularity. People loved the simplicity of the language, the portabil-
ity of bytecodes, and the safety of garbage collection (versus traditional malloc/free
memory management of other systems). However, there was a trade-off for these
great features. Java was slow, and this limited the kinds of environments where you
could use it.

Over the next few years, we set about trying to fix this. We believed that just
because Java applications were portable and safe they didn’t have to be slow. There
were two major areas where we focused our attention. The first was to simply make
the Java platform faster. Great strides were made in the core VM with advanced
Just In Time compilation techniques, parallel garbage collection, and advanced lock
management. At the same time the class libraries were tweaked and tuned to make
them more efficient. All this led to substantial improvements in the ability to use
Java for larger, more critical systems.

The second area of focus for us was to teach people how to write fast software in
Java. It turned out that although the syntax of the language looked similar to C, the
techniques you needed to write efficient programs were quite different. To that end,
Jeff Kessleman and I wrote one of the first books on Java performance, which was
published back in 2000. Since then, many books have covered this topic, and experi-
enced developers have learned to avoid some of the most common pitfalls that used
to befall Java developers.

ptg6882136

xiv Foreword

After the platform began to get faster, and developers learned some of the tricks
of writing faster applications, Java transformed into the enterprise-grade software
powerhouse it is today. It began to be used for the largest, most important systems
anywhere. However, as this started to happen, people began to realize one part was
still missing. This missing piece was observability. When these systems get larger
and larger, how do you know if you’re getting all the performance you can get?

In the early days of Java we had primitive profiling tools. While these were useful,
they had a huge impact on the runtime performance of the code. Now, modern JVMs
come with built-in observability tools that allow you to understand key elements of
your system’s performance with almost no performance penalty. This means these
tools can be left enabled all the time, and you can check on aspects of your application
while it’s running. This again changes the way people can approach performance.

The authors of JavaTM Performance bring all these concepts together and update
them to account for all the work that’s happened in the last decade since Jeff and I
published our book. This book you are now reading is the most ambitious book on
the topic of Java performance that has ever been written. Inside are a great many
techniques for improving the performance of your Java applications. You’ll also come
to understand the state of the art in JVM technology from the inside out. Curious
about how the latest GC algorithms work? It’s in here! You’ll also learn how to use
the latest and greatest observability tools, including those built into the JDK and
other important tools bundled into popular operating systems.

It’s exciting to see how all these recent advancements continue to push the plat-
form forward, and I can’t wait to see what comes next.

—Steve Wilson
VP Engineering, Oracle Corporation
Founding member of the Java Performance team
Coauthor of JavaTM Platform Performance: Strategies and Tactics

ptg6882136

Preface

 xv

Welcome to the definitive reference on Java performance tuning!
This book offers Java performance tuning advice for both Java SE and Java EE

applications. More specifically, it offers advice in each of the following areas: perfor-
mance monitoring, profiling, tuning the Java HotSpot VM (referred to as HotSpot
VM hereafter), writing effective benchmarks, and Java EE application performance
tuning. Although several Java performance books have been written over the years,
few have packed the breadth of information found in this book. For example, the
topics covered in this book include items such as an introduction into the inner work-
ings of a modern Java Virtual Machine, garbage collection tuning, tuning Java EE
applications, and writing effective benchmarks.

This book can be read from cover to cover to gain an in-depth understanding of
many Java performance topics. It can also be used as a task reference where you can
pick up the text, go to a specific chapter on a given topic of interest, and find answers.

Readers who are fairly new, or consider themselves a novice in the area of Java
performance tuning, will likely benefit the most by reading the first four chapters
and then proceeding to the topics or chapters that best address the particular Java
performance tuning task they are undertaking. More experienced readers, those who
have a fundamental understanding of performance tuning approaches and a basic
understanding of the internals of the HotSpot VM along with an understanding of
the tools to use for monitoring operating system performance and monitoring JVM
performance, will find jumping to the chapters that focus on the performance tuning
task at hand to be most useful. However, even those with advanced Java performance
skills may find the information in the first four chapters useful.

ptg6882136

Reading this book cover to cover is not intended to provide an exact formula to
follow, or to provide the full and complete knowledge to turn you into an experienced
Java performance tuning expert. Some Java performance issues will require special-
ized expertise to resolve. Much of performance tuning is an art. The more you work
on Java performance issues, the better versed you become. Java performance tuning
also continues to evolve. For example, the most common Java performance issues
observed five years ago were different from the ones observed today. Modern JVMs
continue to evolve by integrating more sophisticated optimizations, runtimes, and
garbage collectors. So too do underlying hardware platforms and operating systems
evolve. This book provides up-to-date information as of the time of its writing. Read-
ing and understanding the material presented in this book should greatly enhance
your Java performance skills. It may also allow you to build a foundation of funda-
mentals needed to become fluent in the art of Java performance tuning. And once
you have a solid foundation of the fundamentals you will be able to evolve your per-
formance tuning skills as hardware platforms, operating systems, and JVMs evolve.

Here’s what you can expect to find in each chapter.
Chapter 1, “Strategies, Approaches, and Methodologies,” presents various different

approaches, strategies, and methodologies often used in Java performance tuning
efforts. It also proposes a proactive approach to meeting performance and scalability
goals for a software application under development through an enhancement to the
traditional software development process.

Chapter 2, “Operating System Performance Monitoring,” discusses performance
monitoring at the operating system level. It presents which operating system statistics
are of interest to monitor along with the tools to use to monitor those statistics. The
operating systems of Windows, Linux, and Oracle Solaris are covered in this chapter.
The performance statistics to monitor on other Unix-based systems, such as Mac OS
X, use similar commands, if not the same commands as Linux or Oracle Solaris.

Chapter 3, “JVM Overview,” provides a high level overview of the HotSpot VM.
It provides some of the fundamental concepts of the architecture and workings of a
modern Java Virtual Machine. It establishes a foundation for many of the chapters
that follow in the book. Not all the information presented in this chapter is required
to resolve every Java performance tuning task. Nor is it exhaustive in providing all
the necessary background to solve any Java performance issue. However, it does
provide sufficient background to address a large majority of Java performance issues
that may require some of the concepts of the internal workings and capabilities of
a modern Java Virtual Machine. The information in this chapter is applicable to
understanding how to tune the HotSpot VM along with understanding the subject
matter of Chapter 7 and how to write effective benchmarks, the topics covered in
Chapters 8 and 9.

Chapter 4, “JVM Performance Monitoring,” as the title suggests, covers JVM per-
formance monitoring. It presents which JVM statistics are of interest to monitor

xvi Preface

ptg6882136

 Preface xvii

along with showing tools that can be used to monitor those statistics. It concludes
with suggesting tools that can be extended to integrate both JVM level monitoring
statistics along with Java application statistics of interest within the same monitor-
ing tool.

Chapter 5, “Java Application Profiling,” and Chapter 6, “Java Application Profiling
Tips and Tricks,” cover profiling. These two chapters can be seen as complementary
material to Chapter 2 and Chapter 4, which cover performance monitoring. Perfor-
mance monitoring is typically used to identify whether a performance issue exists,
or provides clues as to where the performance issue exists, that is, in the operating
system, JVM, Java application, and so on. Once a performance issue is identified and
further isolated with performance monitoring, a profiling activity usually follows.
Chapter 5 presents the basics of Java method profiling and Java heap (memory) pro-
filing. This profiling chapter presents free tools for illustrating the concepts behind
these types of profiling. The tools shown in this chapter are not intended to suggest
they are the only tools that can be used for profiling. Many profiling tools are avail-
able both commercially and for free that offer similar capabilities, and some tools
offer capabilities beyond what’s covered in Chapter 5. Chapter 6 offers several tips
and tricks to resolving some of the more commonly observed patterns in profiles
that tend to be indicative of particular types of performance problems. The tips and
tricks identified in this chapter are not necessarily an exhaustive list but are ones
that have been observed frequently by the authors over the course of years of Java
performance tuning activities. The source code in many of the examples illustrated
in this chapter can be found in Appendix B.

Chapter 7, “Tuning the JVM, Step by Step,” covers tuning the HotSpot VM. The
topics of tuning the HotSpot VM for startup, memory footprint, response time/
latency, and throughput are covered in the chapter. Chapter 7 presents a step-by-
step approach to tuning the HotSpot VM covering choices such as which JIT compiler
to use, which garbage collector to use, and how to size Java heaps, and also provides
an indication when the Java application itself may require some rework to meet the
performance goals set forth by application stakeholders. Most readers will likely find
Chapter 7 to be the most useful and most referenced chapter in this book.

Chapter 8, “Benchmarking Java Applications,” and Chapter 9, “Benchmarking
Multi-tiered Applications,” present information on how to write effective benchmarks.
Often benchmarks are used to help qualify the performance of a Java application by
implementing a smaller subset of a larger application’s functionality. These two chap-
ters also discuss the art of creating effective Java benchmarks. Chapter 8 covers the
more general topics associated with writing effective benchmarks such as exploring
some of the optimizations performed by a modern JVM. Chapter 8 also includes infor-
mation on how to incorporate the use of statistical methods to gain confidence in your
benchmarking experiments. Chapter 9 focuses more specifically on writing effective
Java EE benchmarks.

ptg6882136

For readers who have a specific interest in tuning Java EE applications, Chapter 10,
“Web Application Performance,” Chapter 11, “Web Services Performance,” and Chap-
ter 12, “Java Persistence and Enterprise Java Beans Performance,” focus specifically
on the areas of Web applications, Web services, persistence, and Enterprise Java Bean
performance, respectively. These three chapters present in-depth coverage of the
performance issues often observed in Java EE applications and provide suggested
advice and/or solutions to common Java EE performance issues.

This book also includes two appendixes. Appendix A, “HotSpot VM Command Line
Options of Interest,” lists HotSpot VM command line options that are referenced in
the book and additional ones that may be of interest when tuning the HotSpot VM.
For each command line option, a description of what the command line option does
is given along with suggestions on when it is applicable to use them. Appendix B,
“Profiling Tips and Tricks Example Source Code,” contains the source code used in
Chapter 6’s examples for reducing lock contention, resizing Java collections, and
increasing parallelism.

xviii Preface

ptg6882136

Acknowledgments

Charlie Hunt

Without the help of so many people this book would not have been possible. First I
have to thank my coauthor, Binu John, for his many contributions to this book. Binu
wrote all the Java EE material in this book. He is a talented Java performance engi-
neer and a great friend. I also want to thank Greg Doech, our editor, for his patience.
It took almost three years to go from a first draft of the book’s chapter outline until
we handed over a manuscript. Thank you to Paul Hohensee and Dave Keenan for
their insight, encouragement, support, and thorough reviews. To Tony Printezis and
Tom Rodriguez, thanks for your contributions on the details of the inner workings
of the Java HotSpot VM garbage collectors and JIT compilers. And thanks to all the
engineers on the Java HotSpot VM runtime team for having detailed documentation
on how various pieces of the HotSpot VM fit together. To both James Gosling and
Steve Wilson, thanks for making time to write a foreword. Thanks to Peter Kessler for
his thorough review of Chapter 7, “Tuning the JVM, Step by Step.” Thanks to others
who contributed to the quality of this book through their insight and reviews: Dar-
ryl Gove, Marty Itzkowitz, Geertjan Wielenga, Monica Beckwith, Alejandro Murillo,
Jon Masamitsu, Y. Srinivas Ramkakrishna (aka Ramki), Chuck Rasbold, Kirk Pep-
perdine, Peter Gratzer, Jeanfrancois Arcand, Joe Bologna, Anders Åstrand, Henrik
Löf, and Staffan Friberg. Thanks to Paul Ciciora for stating the obvious, “losing the
race” (when the CMS garbage collector can’t free enough space to keep up with the
young generation promotion rate). Also, thanks to Kirill Soshalskiy, Jerry Driscoll,

 xix

ptg6882136

xx Acknowledgments

both of whom I have worked under during the time of writing this book, and to John
Pampuch (Director of VM Technologies at Oracle) for their support. A very special
thanks to my wife, Barb, and sons, Beau and Boyd, for putting up with a grumpy
writer, especially during those times of “writer’s cramp.”

Binu John

This book has been possible only because of the vision, determination, and persever-
ance of my coauthor, Charlie Hunt. Not only did he write the sections relating to Java
SE but also completed all the additional work necessary to get it ready for publication.
I really enjoyed working with him and learned a great deal along the way. Thank you,
Charlie. A special thanks goes to Rahul Biswas for providing content relating to EJB
and Java persistence and also for his willingness to review multiple drafts and provide
valuable feedback. I would like to thank several people who helped improve the qual-
ity of the content. Thank you to Scott Oaks and Kim Lichong for their encouragement
and valuable insights into various aspects of Java EE performance; Bharath Mundla-
pudi, Jitendra Kotamraju, and Rama Pulavarthi for their in-depth knowledge of XML
and Web services; Mitesh Meswani, Marina Vatkina, and Mahesh Kannan for their
help with EJB and Java persistence; and Jeanfrancois Arcand for his explanations,
blogs, and comments relating to Web container. I was fortunate to work for managers
who were supportive of this work. Thanks to Madhu Konda, Senior Manager during
my days at Sun Microsystems; Sef Kloninger, VP of Engineering, Infrastructure, and
Operations; and Sridatta Viswanath, Senior VP of Engineering and Operations at
Ning, Inc. A special thank you to my children, Rachael and Kevin, and my wonderful
wife, Rita, for their support and encouragement during this process.

ptg6882136

About the Authors

 xxi

Charlie Hunt is the JVM Performance Lead Engineer at Oracle. He is responsible for
improving the performance of the HotSpot Java Virtual Machine and Java SE class librar-
ies. He has also been involved in improving the performance of both GlassFish Server
Open Source Edition and Oracle WebLogic application servers. He wrote his first Java
program in 1998 and joined Sun Microsystems, Inc., in 1999 as a Senior Java Architect.
He has been working on improving the performance of Java and Java applications ever
since. He is a regular speaker on the subject of Java performance at many worldwide
conferences including the JavaOne Conference. Charlie holds a Master of Science in
Computer Science from the Illinois Institute of Technology and a Bachelor of Science in
Computer Science from Iowa State University.

Binu John is a Senior Performance Engineer at Ning, Inc., the world’s largest plat-
form for creating social web sites. In his current role, he is focused on improving the
performance and scalability of the Ning platform to support millions of page views per
month. Before joining Ning, Binu spent more than a decade working on Java perfor-
mance at Sun Microsystems, Inc. As a member of the Enterprise Java Performance team,
he worked on several open source projects including the GlassFish Server Open Source
Edition application server, the Open Source Enterprise Service Bus (Open ESB), and
Open MQ JMS product. He has been an active contributor in the development of the vari-
ous industry standard benchmarks such as SPECjms2007 and SPECjEnterprise2010,
has published several performance white papers and has previously contributed to the
XMLTest and WSTest benchmark projects at java.net. Binu holds Master of Science
degrees in Biomedical Engineering and Computer Science from The University of Iowa.

ptg6882136

This page intentionally left blank

ptg6882136

1

1
Strategies, Approaches,
and Methodologies

With Java performance tuning, as with many other activities, you need a plan of
action, an approach, or strategy. And, like many other activities, a set of information
or background is required in a given domain to be successful. To be successful in a
Java performance tuning effort, you need to be beyond the stage of “I don’t know
what I don’t know” and into the “I know what I don’t know” stage or already be in the
“I already know what I need to know” stage.

If you find yourself a little lost in the definition of these three stages, they are
further clarified here:

� I don’t know what I don’t know. Sometimes you are given a task that
involves understanding a new problem domain. The first challenge in under-
standing a new problem domain is to learn as much about the problem as you
can because you may know little if anything about the problem domain. In this
new problem domain there are many artifacts about the problem domain you
do not know, or do not know what is important to know. In other words, you do
not know what you need to know about the problem domain. Hence, the phrase,
“I don’t know what I don’t know.”

� I know what I don’t know. Normally when you enter a new problem domain,
one that you know little about, you eventually reach a point where you have
discovered many different things about the problem domain that are important
to know. But you do not know the specific details about those things that are
important to know. When you have reached this stage it is called the “I know
what I don’t know” stage.

ptg6882136

2 Chapter 1 � Strategies, Approaches, and Methodologies

� I already know what I need to know. At other times you are given a task
in a problem domain in which you are familiar or you have developed the nec-
essary skills and knowledge in the area to the point where you are considered
a subject matter expert. Or as you learn a new problem domain you reach a
point where you feel comfortable working within it, i.e., you have learned the
information necessary to be effective in the problem domain. When you have
reached this point, you are at the stage of “I already know what I need to know.”

Given you have either bought this book or are considering buying this book, you
probably are not in the “I already know what I need know” stage, unless you have
a need to keep a good reference close by. If you are in the “I don’t know what I don’t
know” stage, this chapter will likely help you identify what you don’t know and help
you with an approach or strategy to tackle your Java performance issue. Those in the
“I know what I don’t know” stage may also find the information in this chapter useful.

This chapter begins by looking at the traditional forces at play that typically result
in a performance tuning effort and suggests a high level process for integrating per-
formance tuning into the software development process. This chapter then looks at
two different performance tuning approaches, top down and bottom up.

Forces at Play

It is generally accepted at a high level that the traditional software development
process consists of four major phases: analysis, design, coding, and testing. How these
phases flow to together is illustrated in Figure 1-1.

Analysis is the first phase of the process where requirements are evaluated, archi-
tectural choices are weighed against their advantages and challenges, and high level
abstractions are conceived. Design is the phase where, given the high level archi-
tecture choices made in the analysis phase along with its high level abstractions,
finer grained abstractions are realized and concrete implementations begin their
conception. Coding, of course, is the phase where implementation of the design occurs.
Following coding is the testing phase where the implementation is tested against the
application requirements. It is worth noting that often the testing phase encompasses
only functional testing, i.e, does the application do what it is specified to do, does it
execute the actions it is specified to execute. Once the testing phase is completed the
application is shipped or released to its customer(s).

Many applications developed through these traditional software development
phases tend to give little attention to performance or scalability until the applica-
tion is released, or at the earliest in the testing phase. Wilson and Kesselman in their
popular Java Platform Performance book [Wilson & Kesselman 2000] introduced an

ptg6882136

Forces at Play 3

additional performance phase to complement the traditional software development
process. The proposed performance testing phase was added after the testing phase
and contained a decision branch of “performance acceptable.” If the performance
and scalability criteria are met in this phase, the application is deemed ready to be
shipped. Otherwise, the work flow results in profiling the application and branches
back into one or more of the previous phases. Which particular phase the work flow
branches back into depends on the results of the profiling activity. In other words,
the output of the profiling activity identifies where the performance issue was intro-
duced. A diagram illustrating Wilson and Kesselman’s additional performance phase
is shown in Figure 1-2.

To aid in the development of performance criteria to be evaluated in the perfor-
mance testing phase, Wilson and Kesselman proposed the notion of specifying use
cases to meet or address requirements specifically targeting performance in the anal-
ysis phase. However, it is often the case an application’s requirements document fails
to specify performance or scalability requirements. If an application you are work-
ing with, or developing, does not specify performance and scalability requirements
explicitly you should ask for specific performance and scalability requirements.

Analysis

Design

Code

Deploy

Yes

No

Start

Quality OK?

Test

Figure 1-1 Traditional Software Development Process

ptg6882136

4 Chapter 1 � Strategies, Approaches, and Methodologies

For example, you should ask for throughput and latency requirements. The follow-
ing list is an example of the types of questions these requirements should answer:

� What is the expected throughput of the application?
� What is the expected latency between a stimulus and a response to that

stimulus?
� How many concurrent users or concurrent tasks shall the application support?
� What is the accepted throughput and latency at the maximum number of con-

current users or concurrent tasks?
� What is the maximum worst case latency?
� What is the frequency of garbage collection induced latencies that will be

tolerated?

The requirements and corresponding use cases documented to answer questions
such as those listed above should be used to drive the development of benchmarks

Analysis

Design

Code

Profile

Deploy

Yes

No

Start

Performance
Acceptable?

Performance
Testing

Figure 1-2 Wilson & Kesselman’s Performance Process

ptg6882136

Two Approaches, Top Down and Bottom Up 5

and performance tests to ensure the application meets the expected performance and
scalability. These benchmarks and performance tests should be executed as part of
the performance testing phase. As you evaluate use cases, some may be considered
high risk, i.e., those that may be difficult to meet. High risk cases should be mitigated
well before completion of the analysis phase by implementing prototypes, bench-
marks, and micro-benchmarks. This approach allows you to catch painful decisions
that are expensive to change once the software development leaves the analysis
phase. It has been well documented that the later in the software development cycle
a defect, poor design, or poor implementation choice is detected, the more expensive
it is to fix it. Mitigating high risk use cases helps avoid those costly mistakes.

Today many applications under development utilize automated build and test
procedures. As a result, the enhanced software development process proposed by
Wilson and Kesselman can be further improved by integrating automated perfor-
mance testing as part of the automated build and test activity. The output of an
automated performance testing activity could emit notifications, such as sending
e-mail to the application stakeholders notifying them of performance results, such as
identified performance regressions, identified performance improvements, or status
on how well performance criteria is being met. The automated procedures could also
file defects in a tracking system and automatically include pertinent performance
statistics from the performance tests that fail to meet the application’s performance
criteria.

Integrating performance testing into automated build processes allows perfor-
mance regressions to be identified earlier in the software development process by
more easily tracking performance at each coding change committed to the source
code base.

Another practice worth consideration of integrating into the automated perfor-
mance testing system is the use of statistical methods and automated statistical
analysis. The use of statistical methods improves confidence in your performance
testing results. Guidance and advice on the use of statistical methods, which can
be challenging for many software developers (and mere mortals for that matter), is
presented in the latter part of Chapter 8, “Benchmarking Java Applications.”

Two Approaches, Top Down and Bottom Up

There are two commonly accepted approaches to performance analysis: top down or
bottom up. Top down, as the term implies, focuses at the top level of the application
and drills down the software stack looking for problem areas and optimization oppor-
tunities. In contrast, bottom up begins at the lowest level of the software stack, at
the CPU level looking at statistics such as CPU cache misses, inefficient use of CPU
instructions, and then working up the software stack at what constructs or idioms are

ptg6882136

6 Chapter 1 � Strategies, Approaches, and Methodologies

used by the application. The top down approach is most commonly used by application
developers. The bottom up approach is commonly used by performance specialists
in situations where the performance task involves identifying performance differ-
ences in an application on differing platform architectures, operating systems, or in
the case of Java differing implementations of Java Virtual Machines. As you might
expect, each approach finds different types of performance issues.

In the following two subsections, these two approaches are looked at more closely
by presenting more specifics about the activities performed within each approach.

Top Down Approach

The top down approach, as mentioned earlier, is likely the most common approach
utilized for performance tuning. This approach is also commonly used when you have
the ability to change the code at the highest level of the application software stack.

In this approach, you begin by monitoring the application of interest under a load
at which a stakeholder observes a performance issue. There are also situations in
which an application is continuously monitored and as a result of a change in the
application’s configuration or a change in the typical load the application experiences
a degradation in performance. There may also be situations in which performance
and scalability requirements for the application change and the application in its
current state cannot meet those new requirements.

Whatever the cause that stimulates the performance tuning activity, monitoring
the application while it is running under a load of particular interest is the first step
in a top down approach. This monitoring activity may include observing operating
system level statistics, Java Virtual Machine (JVM) statistics, Java EE container
statistics, and/or application performance instrumentation statistics. Then based on
what the monitoring information suggests you begin the next step such as tuning
the JVM’s garbage collectors, tuning the JVM’s command line options, tuning the
operating system or profiling the application. Profiling the application may result in
making implementation changes to the application, identifying an inefficient imple-
mentation of a third-party library, or identifying an inefficient implementation of a
class or method in the Java SE class library.

For assistance in knowing what to monitor in a top down approach you can turn
to Chapters 2, “Operating System Performance Monitoring,” and Chapter 4, “JVM
Performance Monitoring.” These two chapters document the statistics of interest to
monitor and suggest clues as to what values of a given statistic should be cause for
further investigation. Then based on what the monitored statistics indicate as some-
thing worthy of further investigation, you can turn to other chapters for suggestions
on corrective actions. For example, if monitoring operating system statistics suggests
high sys CPU utilization, you should profile the application to determine what methods
are consuming the highest sys CPU cycles. Instructions on how to use the NetBeans

ptg6882136

Two Approaches, Top Down and Bottom Up 7

Profiler and Oracle Solaris Studio Performance Analyzer (formerly known as Sun
Studio Performance Analyzer) can be found in Chapter 5, “Java Application Profiling,”
and Chapter 6, “Java Application Profiling Tips and Tricks.” If the monitoring activity
and monitored statistic suggests the JVM’s garbage collectors require tuning, turn
to Chapter 7, “Tuning the JVM, Step by Step.” If you are familiar with the general
operation and basic workings of the Java HotSpot VM’s garbage collectors, consider
reading the section on garbage collectors in Chapter 3, “JVM Overview,” before reading
the chapter on tuning the JVM. If you are monitoring application level statistics, such
as those provided by a Java EE container, read the chapters on Java EE performance
tuning: Chapter 10, “Web Application Performance”; Chapter 11, “Web Services Perfor-
mance”; and Chapter 12, “Java Persistence and Enterprise Java Beans Performance,”
to learn how to resolve performance issues in an enterprise application.

Bottom Up Approach

The bottom up approach is most commonly used by performance specialists when
wanting to improve the performance of an application on one platform relative to
another where differences exists in the underlying CPU, CPU architecture, or number
of CPUs. The bottom up approach is also often used when wanting to improve the per-
formance of an application when it is migrated to support a different operating system.
This approach is also frequently used when it is not possible to make a change to the
application’s source code such as when an application is currently deployed in produc-
tion environments or in competitive situations where computer systems vendors are
vying for the business opportunity to run an application at peak performance.

In the bottom up approach, the gathering of performance statistics and the moni-
toring activity begin at the lowest level, the CPU. Statistics that are monitored at the
CPU level may include the number of CPU instructions required to execute a given
workload on the CPU, often referred to as path length and the number of CPU cache
misses that occur while running the application under load. Other CPU statistics
may be of interest, but the number of CPU instructions and the number CPU caches
misses tend to be the most commonly observed statistics in a bottom up approach. If
an application can perform and scale well under load by executing a fewer number
of CPU instructions it will likely execute the application faster. Reducing CPU cache
misses also improves an application’s performance since a CPU cache miss results in
wasted CPU cycles waiting for requested data to be fetched from memory. By reduc-
ing CPU cache misses, the application performs better since the CPU spends less
time waiting for data to be fetched from memory.

The focus of the bottom up approach is usually to improve the utilization of the
CPU without making changes to the application. In cases where the application can
be modified, the bottom up approach may result in making changes to the applica-
tion. These modifications may include a change to the application source code such as

ptg6882136

8 Chapter 1 � Strategies, Approaches, and Methodologies

moving frequently accessed data near each other so they can be accessed on the same
CPU cache line and thus not having to wait to fetch the data from memory. Such a
change could reduce CPU cache misses and thereby reduce the amount of time the
CPU waits for data to be fetched from memory.

In the context of a Java application executing in a modern Java Virtual Machine
that has a sophisticated JIT compiler there may be cause to implement optimiza-
tions that would, for example, emit more efficient generated machine code based
on memory access patterns exhibited by the application or the specific code paths
taken by the application. There may also be settings at the operating system level
that may be tuned or modified to allow for improved performance such as chang-
ing a CPU scheduling algorithm or the amount time the operating system waits
before it migrates an executing application thread to a different CPU hardware
thread.

If you find yourself in a situation where a bottom up approach would be useful,
you should begin by collecting operating system statistics and JVM statistics. Moni-
toring these statistics provides hints as to where to focus in the next step. Chapter 2
and Chapter 4 provide information as to what statistics to monitor. From there you
decide whether it makes sense to profile the application and the JVM. To profile both
the application and the JVM, use a profiling tool that can provide that information.
The Oracle Solaris Studio Performance Analyzer tool does this for Oracle Solaris
SPARC, Oracle Solaris x86/x64, and Linux x86/x64 operating systems. Other popular
tools such as Intel VTune or AMD’s CodeAnalyst Performance Analyzer can provide
similar information on Windows and Linux. All three tools also have the capability
to collect specific CPU counter information such as the number of CPU instruc-
tions executed and CPU cache misses along with being able to associate them with
specific methods or functions in a Java application of Java Virtual Machine. Using
a profiler with these capabilities is essential in a bottom up approach. You can find
additional information on how to use the Oracle Solaris Studio Performance Analyzer
in C hapter 5 and Chapter 6.

Choosing the Right Platform and Evaluating a System

At times a performance specialist is called upon to improve the performance of an
application only to find that the application is being run on an inappropriate CPU
architecture or system. CPU architectures and systems have evolved substantially
with the introduction of multiple cores per CPU and multiple hardware threads
per core (also known as CMT, chip multithreading). As a result, choosing the right
platform and CPU architecture for a given application has become more impor-
tant. In addition, the way in which the performance of a system is evaluated must
also be updated or revised as a result of the evolution of CPU architectures. This

ptg6882136

Choosing the Right Platform and Evaluating a System 9

section looks at some of the differences in CPU architectures available on modern
systems and presents some considerations to keep in mind when choosing a system
on which to run an application. This section also describes why traditional methods
of evaluating a system’s performance are invalid when it comes to modern multiple
hardware thread per core CPU architectures such as the SPARC T-series family
of processors.

Choosing the Right CPU Architecture

The introduction of the SPARC T-series processor brought chip multiprocessing
and chip multithreading to Oracle’s offering of processors. One of the major design
points behind the SPARC T-series processors is to address CPU cache misses by
introducing multiple hardware threads per core. The first generation SPARC
T-series, UltraSPARC T1, has four hardware threads per core and comes in four,
six, or eight cores per CPU. An UltraSPARC T1 processor with eight cores looks like
a 32-processor system from an operating system viewpoint. That is, the operating
system views each of the four hardware threads per core as a processor. Hence, a
system configured with an UltraSPARC T1 having eight cores would be seen as
having 32 processors from an operating system.

An important distinction between an UltraSPARC T1 is it has four hardware
threads per core. Of the four hardware threads per core, only one of the four threads
per core executes on a given clock cycle. However, when a long latency event occurs,
such as a CPU cache miss, if there is another runnable hardware thread in the
same UltraSPARC T1 core, that hardware thread executes on the next clock cycle.
In contrast, other modern CPUs with a single hardware thread per core, or even
hyperthreaded cores, will block on long latency events such as CPU cache misses
and may waste clock cycles while waiting for a long latency event to be satisfied.
In other modern CPUs, if another runnable application thread is ready to run
and no other hardware threads are available, a thread context switch must occur
before another runnable application thread can execute. Thread context switches
generally take hundreds of clock cycles to complete. Hence, on a highly threaded
application with many threads ready to execute, the SPARC T-series processors
have the capability to execute the application faster as a result of their capability
to switch to another runnable thread within a core on the next clock cycle. The
capability to have multiple hardware threads per core and switch to a different
runnable hardware thread in the same core on the next clock cycle comes at the
expense of a CPU with a slower clock rate. In other words, CPUs such as the SPARC
T-series processor that have multiple hardware threads tend to execute at a slower
clock rate than other modern CPUs that have a single hardware thread per core
or do not offer the capability to switch to another runnable hardware thread on a
subsequent clock cycle.

ptg6882136

10 Chapter 1 � Strategies, Approaches, and Methodologies

When it comes to choosing a computing system, if the target application is expected
to have a large number of simultaneous application threads executing concurrently,
it is likely this type of application will perform and scale better on a SPARC T-series
processor than a smaller number of hardware threads per core type of processor.
In contrast, an application that is expected to have a small number of application
threads, especially if the number of simultaneous application threads is expected to
be less than the total number of hardware threads on a SPARC T-series processor,
this application will likely perform better on a higher clock rate, smaller number of
hardware threads per core type of processor than a slower clock rate SPARC T-series
processor. In short, for a SPARC T-series processor to perform well, it needs a large
number of simultaneous application threads to keep the larger number of hardware
threads busy to leverage its capability to switch to a different hardware thread on
subsequent clock cycles when events such as CPU cache misses occur. In the absence
of a large number of simultaneous application threads, the SPARC T-series gener-
ally performs like slower clock rate traditional processors. The artifact of requiring a
large number of simultaneous application threads to keep the many SPARC T-series
hardware threads busy also suggests the traditional manner in which a system’s
performance is qualified may not represent a system’s true performance. This is the
topic of the next subsection.

Evaluating a System’s Performance

To evaluate the performance of a SPARC T-series, since it has the capability to switch
to another runnable hardware thread within a core on the next clock cycle, it must be
loaded with a workload having a large number of simultaneous application threads.

A common approach used to qualify or evaluate the performance of a new system
has been to place a portion of the expected target load on the system, or execute one
or more micro-benchmarks and observe how the system performs or observe the
amount of work the application does per some unit of time. However, to evaluate the
performance of a SPARC T-series processor, it must be loaded with enough concurrent
application threads to keep the large number of hardware threads busy. The work-
load needs to be large enough for the SPARC T-series to reap the benefit of switching

Tip

Sun Microsystems evolved the first generation SPARC T-series processor from the UltraSPARC T1 to
the UltraSPARC T2 and T3 by adding additional hardware threads per core and the capability for
multiple hardware threads per core to execute in a clock cycle. However, for the purposes of this
discussion, it is easier to talk about and understand how the UltraSPARC T1 processor differs from
other modern CPUs. Once the difference in CPU architecture is understood, it becomes easier
to extend the design points behind the UltraSPARC T1 to the UltraSPARC T2 and T3 processors.

ptg6882136

Bibliography 11

to a different runnable thread on the next clock cycle when long latency events such
as CPU cache misses occur. Blocking and waiting for a CPU cache miss to be satisfied
takes many CPU cycles, on the order of hundreds of clock cycles. Therefore, to take
full advantage of a SPARC T-series processor, the system needs to be loaded with
enough concurrent work to where its design point of switching to another runnable
hardware thread on the next clock cycle can be realized.

In situations where a subset of a targeted workload is executed by a SPARC
T-series processor, it may appear as though the system does not perform very well
since all its hardware threads may not be busy. Remember that one of the major
design points for the SPARC T-series processors is to address long latency CPU
events by allowing other runnable hardware threads to execute on the next clock
cycle. In a single hardware thread per core family of processors, long latency events
such as a CPU cache miss mean many CPU clock cycles are wasted waiting for data
to be fetched from memory. To switch to another runnable application thread, that
other runnable application thread and its state information must replace the exist-
ing thread and its state information. This not only requires clock cycles to make this
context switch, it may also require the CPU cache to fetch different state information
for the new runnable application thread.

Hence, when evaluating the performance of a SPARC T-series processor it is impor-
tant to put enough load on the system to take advantage of the additional hardware
threads and its capability to switch to another runnable hardware thread within the
same CPU core on the next clock cycle.

Bibliography

Dagastine, David, and Brian Doherty. Java Platform Performance presentation. Java-
One Conference, San Francisco, CA, 2005.

Wilson, Steve, and Jeff Kesselman. Java Platform Performance: Strategies and Tac-
tics, Addison-Wesley, Reading, MA, 2000. ISBN 0-201-70969-4.

ptg6882136

This page intentionally left blank

ptg6882136

13

2
Operating System
Performance
Monitoring

Knowing when an application is not performing as desired or expected is important
to an application’s capability to meet service level agreement(s) set forth by the appli-
cation’s stakeholders. Hence, knowing what to monitor, where in the software stack
to monitor, and what tools to use are critical. This chapter describes what should be
monitored at the operating system level and presents operating system tools that can
be used to observe an application’s performance. Additionally, general guidelines are
given to help identify potential performance issues. The operating systems covered
in this chapter are Windows, Linux, and Oracle Solaris, also referred to as Solaris
hereafter. The monitoring tools presented are not intended to be an exhaustive list of
tools or the only means to monitor an application’s or a system’s performance. Rather,
the principles of why and what attributes of a system are important to monitor is
the intention. Readers who are running a Java application on an operating system
other than those covered should be able to identify the operating system performance
statistics to monitor and be able to identify appropriate monitoring tools.

Tip

The first step in isolating a performance issue is to monitor the application’s behavior.
Monitoring offers clues as to the type or general category of performance issue.

This chapter begins by presenting definitions for performance monitoring, per-
formance profiling, and performance tuning. Then sections that describe operating
system statistics of interest to monitor are presented. Both command line and GUI

ptg6882136

14 Chapter 2 � Operating System Performance Monitoring

tools that can be used to monitor the performance statistics are included. In addi-
tion, guidelines are offered as to what performance statistic values are indicators of
potential root causes, or a next step to take in your performance analysis.

Definitions

Three distinct activities are involved when engaging in performance improvement
activities: performance monitoring, performance profiling, and performance tuning.

� Performance monitoring is an act of nonintrusively collecting or observing per-
formance data from an operating or running application. Monitoring is usu-
ally a preventative or proactive type of action and is usually performed in a
production environment, qualification environment, or development environ-
ment. Monitoring is also usually the first step in a reactive situation where an
application stakeholder has reported a performance issue but has not provided
sufficient information or clues as to a potential root cause. In this situation,
performance profiling likely follows performance monitoring.

� Performance profiling in contrast to performance monitoring is an act of col-
lecting performance data from an operating or running application that may be
intrusive on application responsiveness or throughput. Performance profiling
tends to be a reactive type of activity, or an activity in response to a stakeholder
reporting a performance issue, and usually has a more narrow focus than per-
formance monitoring. Profiling is rarely done in production environments. It
is typically done in qualification, testing, or development environments and
is often an act that follows a monitoring activity that indicates some kind of
performance issue.

� Performance tuning, in contrast to performance monitoring and perfor-
mance profiling, is an act of changing tune-ables, source code, or configura-
tion attribute(s) for the purposes of improving application responsiveness
or throughput. Performance tuning often follows performance monitoring or
performance profiling activities.

CPU Utilization

For an application to reach its highest performance or scalability it needs to not only
take full advantage of the CPU cycles available to it but also to utilize them in a
manner that is not wasteful. Being able to make efficient use of CPU cycles can be
challenging for multithreaded applications running on multiprocessor and multicore

ptg6882136

CPU Utilization 15

systems. Additionally, it is important to note that an application that can saturate
CPU resources does not necessarily imply it has reached its maximum performance
or scalability. To identify how an application is utilizing CPU cycles, you monitor CPU
utilization at the operating system level. CPU utilization on most operating systems
is reported in both user CPU utilization and kernel or system (sys) CPU utilization.
User CPU utilization is the percent of time the application spends in application
code. In contrast, kernel or system CPU utilization is the percent of time the applica-
tion spends executing operating system kernel code on behalf of the application. High
kernel or system CPU utilization can be an indication of shared resource contention
or a large number of interactions between I/O devices. The ideal situation for maxi-
mum application performance and scalability is to have 0% kernel or system CPU
utilization since CPU cycles spent executing in operating system kernel code are
CPU cycles that could be utilized by application code. Hence, one of the objectives to
achieving maximum application performance and scalability is to reduce kernel or
system CPU utilization as much as possible.

For applications that are compute intensive, performance monitoring may go much
deeper than observing user CPU utilization and kernel or system utilization. On
compute-intensive systems, further monitoring of the number of CPU instructions
per CPU clock cycle (also known as IPC, instructions per clock) or the number of CPU
clock cycles per CPU instruction (also known as CPI, cycles per instruction) may be
required. These two additional metrics are of interest to compute intensive appli-
cations because CPU utilization monitoring tools bundled with modern operating
systems report CPU utilization and do not report the percentage of CPU clock cycles
the CPU has been executing instructions. This means that the operating system tools
report a CPU as being utilized even though the CPU may be waiting for data to be
fetched from memory. This scenario is commonly referred to as a stall. Stalls occur
any time the CPU executes an instruction and the data being operated on by the
instruction is not readily available in a CPU register or cache. When this occurs, the
CPU wastes clock cycles because it must wait for the data to be loaded from memory
into a CPU register before the CPU instruction can execute on it. It is common for a
CPU to wait (waste) several hundred clock cycles during a stall. Thus the strategy
for increasing the performance of a compute intensive application is to reduce the
number of stalls or improve the CPU’s cache utilization so fewer CPU clock cycles are
wasted waiting for data to be fetched from memory. Performance monitoring activi-
ties of this kind go beyond the scope of this book and may require the assistance of
a performance expert. However, the profiler covered in Chapter 5, “Java Application
Profiling,” Oracle Solaris Studio Performance Analyzer, has the capability to capture
a profile of a Java application including this kind of data.

Each operating system presents user CPU utilization and kernel or system CPU
utilization differently. The next several sections describe tools to monitor CPU utili-
zation on Microsoft Windows, Linux, and Solaris operating systems.

ptg6882136

16 Chapter 2 � Operating System Performance Monitoring

Monitoring CPU Utilization on Windows

The commonly used CPU utilization monitoring tool on Windows is Task Manager
and Performance Monitor. Both Task Manager and Performance Monitor use a color-
ing scheme to distinguish between user CPU and kernel or system CPU utilization.
Figure 2-1 shows the Windows Task Manager performance monitoring window.

CPU utilization is shown in the upper half of the Windows Task Manager. CPU
utilization across all processors is shown in the CPU Usage panel on the upper left. A
running history of CPU utilization for each processor is displayed in the CPU Usage
History panel on the upper right. The upper line, a green colored line, indicates the
combined user and system or kernel CPU utilization. The lower line, a red colored
line, indicates the percentage of system or kernel CPU usage. The space between the
lower line and upper line represents the percentage of user CPU utilization. Note
that to view system or kernel CPU utilization in Window’s Task Manager, the Show
Kernel Utilization option must be enabled in the View 7 Show Kernel Utilization
menu.

On Windows systems that include the Performance Monitor (perfmon), the default
view of the Performance Monitor varies depending on the Windows operating system.

Figure 2-1 Windows Task Manager. The graph lines in the two CPU usage history
windows shows both user and kernel/system CPU utilization

ptg6882136

CPU Utilization 17

This chapter describes the Performance Monitor view in Windows 7. Note that to
run the Windows Performance Monitor you must have membership in either the
Administrators, Performance Log Users, or equivalent group.

The Windows Performance Monitor uses a concept of performance objects. Per-
formance objects are categorized into areas such as network, memory, processor,
thread, process, network interface, logical disk, and many others. Within each of these
categories are specific performance attributes, or counters, that can be selected as
performance statistics to monitor. Covering all the performance counters available
to monitor is beyond the scope of this chapter. The focus in this chapter is to identify
the performance statistics of most interest to monitor and the tools to monitor them.

User CPU utilization and kernel or system CPU utilization can be added to the
Performance Monitor by right-clicking in the Performance Monitor’s display area and
selecting the Add Counters option from the context sensitive menu. User and kernel
or system CPU utilization can be monitored by selecting the Processor performance
object, and then selecting both % User Time and % Privileged Time counters and click-
ing the Add button. Windows uses the term “Privileged Time” to represent kernel or
system CPU utilization. See Figure 2-2 for an example of the Add Counters screen.

Figure 2-2 Performance Monitor’s user time and privileged time

ptg6882136

18 Chapter 2 � Operating System Performance Monitoring

Figure 2-3 Monitoring CPU utilization. The upper line represents % processor time.
The middle line is % user time. The bottom line is % privileged time

The Performance Monitor display is updated with the new counters after they
have been added. At the bottom of the Performance Monitor, you can see the coun-
ters that are currently being monitored (see Figure 2-3). Right-clicking on the list
of performance counters allows you to change the performance counters’ properties.
For example, you can change the color associated with a performance counter. This
is useful when the performance counters you have selected to monitor use the same
default color. You can also add and remove performance counters from the same
context sensitive menu.

By default the Performance Monitor uses a scrolling style window to show the last
60 seconds of performance statistics. The scrolling part of the window is identified by
a vertical bar. The values to the immediate left of the vertical bar are the most recent
performance statistics, see Figure 2-3.

You can choose a different type of data presentation by selecting the Properties option
from the context sensitive menu in the Performance Monitor and clicking the Graph tab.

In Figure 2-3, the upper line is the % user processor time, the total of % user time,
and % privileged time. In this example, the monitored application has higher % user

ptg6882136

CPU Utilization 19

time than % privileged time. That relationship is a desired relationship to observe. In
other words, it is desirable for an application to spend more time executing applica-
tion code than executing in operating system kernel code.

Many additional capabilities in the Performance Monitor can be leveraged such as
the ability to create a Data Collector Set and generate performance reports. Creat-
ing Data Collector Sets, generating performance reports, and other capabilities are
beyond the scope of this chapter but may be of interest to further explore as part of
your performance monitoring efforts.

Monitoring CPU Utilization with Windows typeperf

Windows typeperf is a command line tool that can be used to collect operating sys-
tem performance statistics. typeperf can be run in a Windows Command Prompt
window, or it can be scripted and run from a bat or cmd file. You specify the perfor-
mance statistics you want to collect using the Microsoft performance counter names.
The Microsoft performance counter names are the same as those used in the Perfor-
mance Monitor. For example, to collect user and kernel or system CPU utilization
you specify the User Time and Privileged Time performance counters. In a Command
Prompt window, or in a cmd file, the command looks like

typeperf "\Processor(_Total)\% Privileged Time" "\Processor(_Total)\% User
Time"

Each performance counter should be enclosed in quotation marks, and the syntax
of the performance counter follows the name as you would find it in the Performance
Monitor. You can also assemble a list of performance counters in a file and pass the
name of the file to the typeperf command. For example, you can enter the following
performance counters in a file named cpu-util.txt:

\Processor(_Total)\% Privileged Time
\Processor(_Total)\% User Time

Then, invoke the typeperf command with the option -cf followed by the file name.

typeperf -cf cpu-util.txt

The following output shows the result of executing the typeperf command using
three performance counters to capture the total, kernel, or system and user CPU
utilization.

ptg6882136

20 Chapter 2 � Operating System Performance Monitoring

In the preceding output, the first row is a header describing the data to be col-
lected. That is followed by rows of reported data. In each row, there is a date and
time stamp indicating when the data was collected along with the values of the
performance counters. By default, the typeperf reporting interval is one second.
The reporting interval can be changed using the -si option. The -si option accepts
a form of [mm:]ss where mm: is optional minutes and ss is the number of seconds.
You may consider specifying a larger interval than the default if you intend to moni-
tor over an extended period of time to reduce the amount of data you need to process.

Additional details on the typeperf command and its options can be found at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/
nt_command_typeperf.mspx?mfr=true.

Monitoring CPU Utilization on Linux

On Linux, CPU utilization can be monitored graphically with the GNOME System
Monitor tool, which is launched with the gnome-system-monitor command. The
GNOME System Monitor tool displays CPU utilization is the upper portion of the
display of the Resource tab, as shown in Figure 2-4.

The GNOME System Monitor shown in Figure 2-4 is running on a system with two
virtual processors. The number of virtual processors matches the number returned
by the Java API Runtime.availableProcessors(). A system with a single CPU
socket with a quad core processor with hyperthreading disabled will show four CPUs
in the GNOME System Monitor and report four virtual processors using the Java
API Runtime.availableProcessors().

In the GNOME System Monitor, there is a CPU history area where a line for
each virtual processor’s CPU utilization is drawn illustrating its CPU utilization
over a period of time. The GNOME System Monitor also displays the current CPU
utilization for each virtual processor found on the system in a table below the CPU
history.

typeperf "\Processor(_Total)\% User Time" "\Processor(_Total)%
Privileged Time" "\Processor(_Total)% Processor Time”

"(PDH-CSV 4.0)","\\PICCOLO\Processor(_Total)% User
Time","\\PICCOLO\Processor(_Total)% Privileged
Time","\\PICCOLO\Processor(_Total)% Processor Time"
"02/15/2011 11:33:54.079","77.343750","21.875000","99.218750"
"02/15/2011 11:33:55.079","75.000000","21.875000","96.875000"
"02/15/2011 11:33:56.079","58.593750","21.875000","80.468750"
"02/15/2011 11:33:57.079","62.500000","21.093750","83.593750"
"02/15/2011 11:33:58.079","64.062500","15.625000","79.687500"

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true

ptg6882136

CPU Utilization 21

Figure 2-4 GNOME System Monitor on Linux

Another popular graphical tool to monitor CPU utilization on Linux is xosview.
Some Linux distributions may not include xosview in their default distribution. But
a search of their distribution’s software package management facility for xosview
will likely find it. One of the additional features of xosview in CPU utilization is
further broken down into user CPU, kernel or system CPU, and idle CPU.

Monitoring CPU Utilization on Solaris

On Solaris, CPU utilization can be monitored graphically with the GNOME System
Monitor tool. It is launched with the gnome-system-monitor command. An exam-
ple of the GNOME System Monitor monitoring a system with 32 virtual processors
is shown in Figure 2-5.

Another way to graphically observe CPU utilization on Solaris is using an optional
tool called cpubar found on the Solaris Performance Tools CD 3.0 (also download-
able at http://www.schneider4me.de/ToolsCD-v3.0.iso.zip). In addition to monitor-
ing CPU utilization, other system attributes can be monitored with cpubar such
as kernel thread queue depths, memory paging, and memory scan rate. Figure 2-6
shows cpubar.

http://www.schneider4me.de/ToolsCD-v3.0.iso.zip

ptg6882136

22

Figure 2-5 GNOME System Monitor on Solaris

Figure 2-6 Solaris cpubar uses color to indicate system status. In 0 bar, 1 bar, and avg
bar, green represents user CPU utilization, red represents system or kernel CPU utilization,
and a blue color is idle. For the r bar, b bar, and w bar, red indicates occupancy, and blue
represents emptiness. For the p/s bar, red represents activity; blue represents idle. For the
ram bar, red represents the amount of memory committed, yellow represents allocated,
and blue represents free/available memory. The sr bar is similar to the p/s bar: red indicates
activity; blue represents idle. In the vm bar, red represents committed virtual memory,
green represents allocated memory, and blue represents free/available virtual memory.

ptg6882136

CPU Utilization 23

On multicore and multiprocessor systems the bar with the avg label shows the
overall CPU utilization. To the left of the overall CPU utilization bar there is an indi-
vidual bar for each virtual processor’s CPU utilization. The combined colors of green
and red show overall CPU utilization. The blue color indicates idle CPU utilization.
The green color shows the percentage of user CPU utilization, and a red color shows
the percentage of system or kernel CPU utilization. The hyphenated/dashed horizon-
tal bar embedded within the CPU utilization bars represents a running historical
average CPU utilization since the system was last booted.

Also shown in Solaris cpubar are additional performance statistics such as kernel
thread queue depths, memory paging, amount of memory utilized, page scan rate,
and amount of memory utilized by the Solaris VM. The kernel threads’ queue depths
are found to the right of the CPU utilization bars and have an “r” label, “b” label,
and “w” label. Each of the vertical bars above those three labels represents a queue
depth. The vertical bar for the “r” label represents the run queue depth. Entries show
up in the run queue when there are kernel threads that are ready to run but do not
have an available processor to run. In Figure 2-6, the vertical bar above the “r” label
indicates there are two kernel threads ready to run and waiting for a CPU to execute.
Monitoring the kernel thread’s run queue is an important statistic to monitor. How
you monitor the kernel thread’s run queue is presented in the “CPU Scheduler Run
Queue” section later in this chapter. The vertical bar for the “b” label represents the
blocked queue. Entries show up in the blocked queue when kernel threads are wait-
ing on resources such as I/O, memory pages, and so on. The vertical bar for the “w”
label represents the waiting queue. Entries show up in the waiting queue when a
swapped out lightweight process is waiting for resources to finish. The number above
the three kernel thread queue vertical bars is the number of kernel threads currently
running on the system. In Figure 2-6, 93 kernel threads were running at the time
the screenshot was taken.

To the right of the kernel thread queue depths is a vertical bar illustrating the
page in/page out activity, that is, the number of memory pages paged in or paged out.
This vertical bar has the “p/s” label below it. In Figure 2-6, there was little paging
activity at the time the screenshot was taken. Monitoring paging activity is covered
in the “Memory Utilization” section later in this chapter.

To the right of the memory paging activity (p/s) vertical bar is a vertical bar
illustrating the amount of physical RAM currently being utilized by the system. This
vertical bar has the “ram” label below it. A red color shows the amount of memory
utilized by the kernel. A yellow color shows the amount of memory utilized by user
processes, and blue is the amount of free or available memory. Figure 2-6 shows there
was little free memory available at the time the screenshot was taken.

To the right of the physical memory utilization (ram) vertical bar is a vertical bar
illustrating the page scanning rate. This vertical bar has an “sr” label below it. As
the amount of free physical memory reduces, the system attempts to free up memory

ptg6882136

24 Chapter 2 � Operating System Performance Monitoring

by locating pages that have not been used in a long time. It then pages these out
to disk. This page scanning activity is reported as scan rate. A high scan rate is an
indicator of low physical memory. Monitoring the page scan rate is essential to iden-
tifying when a system is swapping. This is presented in more detail in the “Memory
Utilization” section of this chapter.

To the right of the page scanning (sr) vertical bar is a bar representing vir-
tual memory usage, or swap usage. This vertical bar has the “vm” label below it.
The amount of virtual memory used is colored red. The amount of virtual memory
reserved is colored yellow, and the amount of free memory is colored blue. The total
amount of virtual memory is displayed at the top of the vertical bar. Figure 2-6 shows
1.33 gigabytes of virtual memory on the system.

Monitoring CPU Utilization on Linux and Solaris
with Command Line Tools

Linux and Solaris also provide command line tools to monitor CPU utilization. These
command line tools are useful when you want to keep a running textual history of
CPU utilization or keep a log of CPU utilization. Linux and Solaris have vmstat,
which shows combined CPU utilization across all virtual processors. Both versions
of vmstat optionally take a reporting interval, in seconds, as a command line argu-
ment. If no reporting interval is given to vmstat, the reported output is a summary
of all CPU utilization data collected since the system has last been booted. When a
reporting interval is specified, the first row of statistics is a summary of all data col-
lected since the system was last booted. As a result, the first row of data from vmstat
is most often ignored.

The display format of vmstat for Linux and Solaris is similar. For example, the
following shows vmstat from Linux. The columns of interest for monitoring CPU
utilization are shown in bold.

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 4 0 0 959476 340784 1387176 0 0 0 0 1030 8977 63 35 1 0
 3 0 0 959444 340784 1387176 0 0 0 0 1014 7981 62 36 2 0
 6 0 0 959460 340784 1387176 0 0 0 16 1019 9380 63 36 1 0
 1 0 0 958820 340784 1387176 0 0 0 0 1036 9157 63 35 2 0
 4 0 0 958500 340784 1387176 0 0 0 29 1012 8582 62 37 1 0

The “us” column shows the percentage of user CPU utilization. The “sy” column
shows the percentage of kernel or system CPU utilization. The “id” column shows
the percentage of idle or available CPU. The sum of the “us” column and “sy” col-
umn should be equal to 100 minus the value in the “id” column, that is, 100 – (“id”
column value).

ptg6882136

CPU Utilization 25

The vmstat output from Solaris, shown in the following example, has three col-
umns of CPU utilization interest and has column headings of “us,” “sy,” and “id”
that show user, kernel or system, and idle CPU utilization, respectively.

kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr f0 s0 s1 s2 in sy cs us sy id
0 0 0 672604 141500 10 40 36 6 10 0 20 0 3 0 2 425 1043 491 4 3 93
1 1 0 888460 632992 7 32 97 0 0 0 0 0 21 0 12 462 1099 429 32 19 49
0 1 0 887848 631772 4 35 128 0 0 0 0 0 30 0 13 325 575 314 38 13 49
0 1 0 887592 630844 6 26 79 0 0 0 0 0 40 0 11 324 501 287 36 10 54
1 0 0 887304 630160 5 33 112 0 0 0 0 0 50 0 16 369 899 367 37 11 52
0 1 0 886920 629092 4 30 101 0 0 0 0 0 26 0 18 354 707 260 39 14 46

Solaris and Linux also offer a tabular view of CPU utilization for each virtual
processor using the command line tool mpstat.

Tip

Most Linux distributions require an installation of the sysstat package to use mpstat.

Using mpstat to observe per virtual processor CPU utilization can be useful in
identifying whether an application has threads that tend to consume larger percent-
ages of CPU cycles than other threads or whether application threads tend to utilize
the same percentage of CPU cycles. The latter observed behavior usually suggests
an application that may scale better. CPU utilization in Solaris mpstat, as shown in
the following example, is reported in the columns “usr,” “sys,” “wt,” and “idl,” where
usr is the percentage of CPU time spent executing user code, sys is the percentage of
CPU time spent executing kernel code, wt is the percentage of I/O wait time (no lon-
ger calculated and always reports 0), and idl is percentage of time the CPU was idle.

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 28 2 0 192 83 92 32 14 2 0 185 78 15 0 7
 1 49 1 0 37 1 80 28 16 2 0 139 80 16 0 4
 2 28 1 0 20 7 94 34 17 1 0 283 83 12 0 5
 3 39 1 2 52 1 99 36 16 3 0 219 74 19 0 7
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 34 0 2 171 75 78 32 12 1 0 173 90 9 0 2
 1 38 1 0 39 1 84 29 13 2 0 153 66 12 0 23
 2 28 8 0 21 9 97 31 20 2 0 167 67 13 0 20
 3 35 3 1 43 1 98 29 20 3 0 190 52 25 0 23

If no reporting interval is given to mpstat, the reported output is a summary of all
mpstat data collected since the system was last booted. When a reporting interval

ptg6882136

26 Chapter 2 � Operating System Performance Monitoring

is given, the first row of statistics is a summary of all data collected since the system
was last booted.

Other popular alternatives to vmstat on Solaris and Linux can be used to moni-
tor CPU utilization. A couple of the more common ones are prstat for Solaris and
top for Linux.

Linux top reports not only CPU utilization but also process statistics and memory
utilization. Its display, shown in the following example, has two major parts. The
upper section of the display reports overall system statistics, while the lower section
reports process level statistics that, by default, are ordered in highest to lowest CPU
utilization.

top - 14:43:56 up 194 days, 2:53, 4 users, load average: 8.96, 6.23, 3.96
Tasks: 127 total, 2 running, 125 sleeping, 0 stopped, 0 zombie
Cpu(s): 62.1% us, 26.2% sy, 0.8% ni, 1.7% id, 0.0% wa, 0.0% hi, 9.1% si
Mem: 4090648k total, 3141940k used, 948708k free, 340816k buffers
Swap: 4192956k total, 0k used, 4192956k free, 1387144k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
30156 root 25 10 32168 18m 10m R 2.3 0.5 20:41.96 rhn-applet-gui
30072 root 15 0 16344 12m 2964 S 0.7 0.3 13:08.52 Xvnc
 5830 huntch 16 0 3652 1084 840 R 0.7 0.0 0:00.16 top
 1 root 16 0 3516 560 480 S 0.0 0.0 0:01.62 init
 2 root RT 0 0 0 0 S 0.0 0.0 0:07.38 migration/0
 3 root 34 19 0 0 0 S 0.0 0.0 0:00.27 ksoftirqd/0
 4 root RT 0 0 0 0 S 0.0 0.0 0:08.03 migration/1
 ...

Solaris prstat shows similar information to Linux top. The following example
is the default output for prstat.

 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 1807 huntch 356M 269M cpu1 45 0 0:00:37 46% java/40
 1254 huntch 375M 161M run 29 0 0:06:51 2.9% firefox-bin/13
 987 huntch 151M 123M sleep 59 0 0:06:25 2.7% Xorg/1
 1234 huntch 257M 132M sleep 49 0 0:03:52 0.5% soffice.bin/7
 ...

Solaris prstat does not show an overall system summary section like top. But,
like top, it does report per process level statistics that are ordered, by default, from
highest to lowest CPU utilization.

Both prstat and top are good tools for providing a high level view of CPU utili-
zation at a per process level. But as the need arises to focus more on per process and
per lightweight process CPU utilization, Solaris prstat has additional capabilities
such as reporting both user and kernel or system CPU utilization along with other

ptg6882136

CPU Utilization 27

microstate information using the prstat -m and -L options. The -m option prints
microstate information, and -L prints statistics on per lightweight process.

Using the -m and -L options can be useful when you want to isolate CPU utili-
zation per lightweight process and Java thread. A Java process showing high CPU
utilization with prstat -mL can be mapped to a Java process and Java thread(s)
on Solaris through a sequence of steps using prstat, pstack, and Java 6’s jstack
command line tool. The following example illustrates how to do this.

The output in the following example, gathered with prstat -mL 5, shows process
id 3897 has three lightweight process ids consuming about 5% of kernel or system
CPU. LWPID 2 is consuming the most at 5.7%.

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROC/LWPID
3897 huntch 6.0 5.7 0.1 0.0 0.0 2.6 8.2 78 9K 8K 64K 0 java/2
3897 huntch 4.9 4.8 0.0 0.0 0.0 59 0.0 31 6K 6K 76K 0 java/13
3897 huntch 4.7 4.6 0.0 0.0 0.0 56 0.0 35 5K 6K 72K 0 java/14
3917 huntch 7.4 1.5 0.0 0.0 0.0 3.8 53 34 5K 887 16K 0 java/28
...

In the absence of using a profiler, which is covered in detail in Chapter 5, there is a
quick way to isolate which Java thread, along with which Java method, is consuming
large amounts of CPU as reported by prstat, either USR or SYS. A Java, or JVM,
process thread stack dump at the Solaris level can be generated using the Solaris
command line tool pstack and the process id 3897. The pstack output in the follow-
ing example, produced using the command pstack 3897/2, shows the lightweight
process (lwp) id and thread id that matches LWPID 2 from prstat.

----------------- lwp# 2 / thread# 2 --------------------
fef085c7 _lwp_cond_signal (81f4200) + 7
feb45f04 __1cNObjectMonitorKExitEpilog6MpnGThread_pnMObjectWaiter__v_
(829f2d4, 806f800, e990d710) + 64
fe6e7e26 __1cNObjectMonitorEexit6MpnGThread__v_ (829f2d4, 806f800) + 4fe
fe6cabcb __1cSObjectSynchronizerJfast_exit6FpnHoopDesc_pnJBasicLock_
pnGThread__v_ (ee802108, fe45bb10, 806f800) + 6b

If you convert the thread id value to hexadecimal and use the JDK’s jstack
command you can find the Java thread that corresponds to Solaris thread# 2 by
searching for a “nid” label. The thread number, 2 in decimal, is also 2 in hexadeci-
mal. The following output from the JDK’s jstack command is trimmed but shows
that a Java thread with a 0x2 is the “main” Java thread. According to the stack
trace produced by jstack, the Java thread corresponding to Solaris pstack’s
LWPID 2 and prstat’s LWPID 2 is executing a Java NIO Selector.select()
method.

ptg6882136

28 Chapter 2 � Operating System Performance Monitoring

Once a Java thread has been identified and with the stack trace readily available,
you can begin to investigate in more detail the methods shown in the stack trace for
possible candidates of high kernel or system CPU utilization through a more thor-
ough profiling activity.

 CPU Scheduler Run Queue

In addition to CPU utilization, monitoring the CPU scheduler’s run queue is impor-
tant to tell if the system is being saturated with work. The run queue is where light-
weight processes are held that are ready to run but are waiting for a CPU where it
can execute. When there are more lightweight processes ready to execute than the
system’s processors can handle, the run queue builds up with entries. A high run
queue depth can be an indication a system is saturated with work. A system operat-
ing at a run queue depth equal to the number of virtual processors may not experi-
ence much user visible performance degradation. The number of virtual processors is
the number of hardware threads on the system. It is also the value returned by the
Java API, Runtime.availableProcessors(). In the event the run queue depth
reaches four times the number of virtual processors or greater, the system will have
observable sluggish responsiveness.

A general guideline to follow is observing run queue depths over an extended
period of time greater than 1 times the number of virtual processors is something to
be concerned about but may not require urgent action. Run queue depths at 3 to 4
times, or greater, than the number of virtual processors over an extended time period
should be considered an observation that requires immediate attention or action.

There are generally two alternative resolutions to observing high run queue depth.
One is to acquire additional CPUs and spread the load across those additional CPUs,
or reduce the amount of load put on the processors available. This approach essen-
tially reduces the number of active threads per virtual processor and as a result
fewer lightweight processes build up in the run queue.

”main” prio=3 tid=0x0806f800 nid=0x2 runnable [0xfe45b000..0xfe45bd38]
 java.lang.Thread.State: RUNNABLE
 at sun.nio.ch.DevPollArrayWrapper.poll0(Native Method)
 at sun.nio.ch.DevPollArrayWrapper.poll(DevPollArrayWrapper.java:164)
 at sun.nio.ch.DevPollSelectorImpl.doSelect(DevPollSelectorImpl.java:68)
 at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69)
 - locked <0xee809778> (a sun.nio.ch.Util$1)
 - locked <0xee809768> (a java.util.Collections$UnmodifiableSet)
 - locked <0xee802440> (a sun.nio.ch.DevPollSelectorImpl)
 at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80)
 at com.sun.grizzly.SelectorThread.doSelect(SelectorThread.java:1276)

ptg6882136

 CPU Scheduler Run Queue 29

The other alternative is to profile the applications being run on the system and
improve the CPU utilization of those applications. In other words, explore alterna-
tive approaches that will result in fewer CPU cycles necessary to run the applica-
tion such as reducing garbage collection frequency or alternative algorithms that
result in fewer CPU instructions to execute the same work. Performance experts
often refer to this latter alternative as reducing code path length and better CPU
instruction selection. A Java programmer can realize better performance through
choosing more efficient algorithms and data structures. The JVM, through a mod-
ern JIT compiler, can improve an application’s performance by generating code that
includes sophisticated optimizations. Since there is little a Java application pro-
grammer can do to manipulate a JVM’s JIT compiler, the focus for Java developers
should be on more efficient alternative algorithms and data structures. Where to
focus with alternative algorithms and data structures is identified through profil-
ing activities.

Monitoring Windows CPU Scheduler Run Queue

The run queue depth on Windows is monitored using the \System\Processor Queue
Length performance counter. This performance counter can be added to the Per-
formance Monitor by selecting the System 7 Processor Queue Length performance
counter from the Add Counters dialog. Recall from the “Monitoring CPU Utilization
on Windows” section earlier in the chapter, the Add Counters dialog is displayed
by right-clicking in the Performance Monitor’s main window and selecting the Add
Counters option from the context sensitive menu.

Figure 2-7 shows the Performance Monitor monitoring a system’s run queue
depth.

It is important to notice the scale factor in Performance Monitor. In Figure 2-7,
the scale factor is 10. This means a run queue depth of 1 is displayed on the chart
as 10, 2 as 20, 3 as 30, and so on. Based on a scale factor of 10, the actual run queue
depth in Figure 2-7 ranges from 3 to at least 10. The reported run queue depth should
be evaluated against the number of virtual processors on the system to determine
whether further action is required such as monitoring over a longer period of time
or initiating profiling activities.

Windows typeperf can also be used to monitor run queue depth. As mentioned
in earlier sections, the typeperf command accepts Windows performance counter
names and prints the collected performance data in a tabular form. The following
typeperf command monitors run queue depth:

typeperf ”\System\Processor Queue Length”

ptg6882136

30 Chapter 2 � Operating System Performance Monitoring

Figure 2-7 Processor queue length

What follows is example output using typeperf and the \System\Processor Queue
Length performance counter reporting at a 5 second interval rather than a default
1 second.

typeperf -si 5 ”\System\Processor Queue Length”

”(PDH-CSV 4.0)”,”\\PICCOLO\System\Processor Queue Length”
”02/26/2011 18:20:53.329”,”3.000000”
”02/26/2011 18:20:58.344”,”7.000000”
”02/26/2011 18:21:03.391”,”9.000000”
”02/26/2011 18:21:08.485”,”6.000000”
”02/26/2011 18:21:13.516”,”3.000000”
”02/26/2011 18:21:18.563”,”3.000000”
”02/26/2011 18:21:23.547”,”3.000000”
”02/26/2011 18:22:28.610”,”3.000000”

The run queue depth reported by typeperf is its actual value. There is no scale
factor involved as there is with the Performance Monitor. In the above data, the run

ptg6882136

 CPU Scheduler Run Queue 31

queue depth over the reported 35 second interval ranges from 3 to 9. The run queue
data suggests the peak of 9 may be short lived. If further monitoring confirms this
is the case, no corrective action is needed since this data is from a system that has
four virtual processors.

Monitoring Solaris CPU Scheduler Run Queue

On Solaris, a system’s run queue depth can be monitored graphically using cpubar
and via command line using vmstat. Solaris cpubar, shown in Figure 2-8, shows
run queue depth to the right of the CPU utilization bars with the vertical bar above
the “r” label. The height of the bar is scaled based on the actual number of entries in
the run queue, not a percentage of queue fullness.

The run queue can also be monitored with the vmstat command. The first column
in vmstat reports the run queue depth. The value reported is the number of light-
weight processes in the run queue. The following is an example with the run queue
column in bold.

 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd s0 - - n sy cs us sy id
 2 0 0 333273 177562 99 265 0 0 0 0 0 97 0 0 0 1737 14347 1225 28 4 68
 4 0 0 330234 174274 69 977 0 0 0 0 0 70 0 0 0 1487 13715 1293 68 3 29
 2 0 0 326140 169259 48 303 0 0 0 0 0 85 0 0 0 1746 29014 2394 48 5 47
 6 0 0 323751 164876 92 730 0 0 0 0 0 58 0 0 0 1662 48860 3029 67 5 28
 5 0 0 321284 160069 38 206 0 0 0 0 0 48 0 0 0 1635 50938 2714 83 5 12

Monitoring Linux CPU Scheduler Run Queue

On Linux a system’s run queue depth can be monitored using the vmstat command.
The first column in vmstat reports the run queue depth. The number reported is the

Figure 2-8 Solaris cpubar showing run queue depth

ptg6882136

32 Chapter 2 � Operating System Performance Monitoring

actual number of lightweight processes in the run queue. The following is an example
with the run queue column in bold.

procs ----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 4 0 0 959476 340784 1387176 0 0 0 0 1030 8977 63 35 1 0
 3 0 0 959444 340784 1387176 0 0 0 0 1014 7981 62 36 2 0
 6 0 0 959460 340784 1387176 0 0 0 16 1019 9380 63 36 1 0
 1 0 0 958820 340784 1387176 0 0 0 0 1036 9157 63 35 2 0
 4 0 0 958500 340784 1387176 0 0 0 29 1012 8582 62 37 1 0

Memory Utilization

In addition to CPU utilization there are attributes of a system’s memory that should
be monitored, such as paging or swapping activity, locking, and voluntary and invol-
untary context switching along with thread migration activity.

A Java application or JVM that is swapping or utilizing virtual memory experi-
ences pronounced performance issues. Swapping occurs when there is more memory
being consumed by applications running on the system than there is physical memory
available. To deal with this potential situation, a system is usually configured with
an area called swap space. Swap space is typically allocated on a disk in a distinct
disk partition. When the amount of physical memory is exhausted by the applications
running on the system, the operating system swaps out a portion of an application
to swap space on disk. Usually the operating system swaps out a portion of an appli-
cation that is executing the least frequently so as to not impact the applications or
the portions of applications that are the busiest. When a portion of an application is
accessed that has been swapped out, that portion of the application must be paged in
from the swap space on disk to memory. Swapping in from disk to memory can have
a significant impact on an application’s responsiveness and throughput.

A JVM’s garbage collector performs poorly on systems that are swapping because
a large portion of memory is traversed by the garbage collector to reclaim space from
objects that are unreachable. If part of the Java heap has been swapped out it must
be paged into memory so its contents can be scanned for live objects by the garbage
collector. The time it takes to page in any portion of the Java heap into memory can
dramatically increase the duration of a garbage collection. If the garbage collection
is a “stop the world” type of operation, one that stops all application threads from
executing, a system that is swapping during a garbage collection is likely to experi-
ence lengthy JVM induced pause times.

If you observe lengthy garbage collections, it is a possibility that the system is
swapping. To prove whether the lengthy garbage collection pauses are caused by
swapping, you must monitor the system for swapping activity.

ptg6882136

Memory Utilization 33

Monitoring Memory Utilization on Windows

On Windows systems that include the Performance Monitor, monitoring memory
pages per second (\Memory\Pages / second) and available memory bytes (\Memory\
Available MBytes), can identify whether the system is swapping. When the avail-
able memory, as reported by the \Memory\Available MBytes counter, is low and you
observe paging activity, as reported by the \Memory\Pages / Second counter, the
system is likely swapping.

It is easiest to illustrate a Windows system that is swapping using the output from
the typeperf command. The following is a typeperf command to report available
memory and paging activity at 5 second intervals (the -si specifies the reporting
interval).

typeperf -si 5 ”\Memory\Available Mbytes” ”\Memory\Pages/sec”

The following output from typeperf is taken from a system that is swapping. The
first column of data is the date and time stamp. The second column is the available
memory, and the third column is the pages per second.

”02/15/2011 15:28:11.737”,”150.000000”,”0.941208”
”02/15/2011 15:28:16.799”,”149.000000”,”1.857361”
”02/15/2011 15:28:21.815”,”149.000000”,”2.996049”
”02/15/2011 15:28:26.831”,”149.000000”,”17.687691”
”02/15/2011 15:28:31.909”,”149.000000”,”0.929074”
”02/15/2011 15:28:36.940”,”149.000000”,”1.919541”
”02/15/2011 15:28:41.956”,”149.000000”,”0.991037”
”02/15/2011 15:28:46.971”,”149.000000”,”1.977258”
”02/15/2011 15:28:51.002”,”149.000000”,”0.969558”
”02/15/2011 15:28:56.065”,”149.000000”,”14.120284”
”02/15/2011 15:29:01.127”,”150.000000”,”8.470692”
”02/15/2011 15:29:06.174”,”152.000000”,”9.552139”
”02/15/2011 15:29:11.174”,”151.000000”,”2.000104”
”02/15/2011 15:29:16.174”,”152.000000”,”1.999969”
”02/15/2011 15:29:21.174”,”153.000000”,”0.999945”

Notice the amount of memory available is staying fairly constant around 150
megabytes yet there is consistent paging activity. Since the amount of available
memory is staying fairly constant, it is reasonable to assume no new applications are
being launched. When an application launches, the amount of available memory is
expected to drop, and it is expected to see paging activity since the application must
be paged into memory. Therefore, if the system is using a fairly consistent amount

ptg6882136

34 Chapter 2 � Operating System Performance Monitoring

of memory and no new applications are launching, yet there is paging activity, it is
likely the system is swapping.

It is important to note that a system can report little available memory and report
no paging activity. In such a situation, the system is not swapping. It just simply
is utilizing most of the physical RAM available on the system. Likewise, a system
may be experiencing paging activity, yet have sufficient memory available and as
a result not be swapping. The paging activity could be the result of an application
being launched.

Monitoring Memory Utilization on Solaris

On Solaris, when available memory becomes low, the kernel’s page scanner begins
looking for memory pages no longer in use by an application so they can be made
available for other applications and processes. If the page scanner is unable to find
the memory demanded by the applications and no additional physical memory is
available, it begins to swap out the least recently used memory pages to a swap space
on disk. The lower the amount of available memory, the higher the page scan rate.
In other words, as lower memory is available, the page scanner gets more aggressive
with trying to find available memory pages it can reclaim.

Since the page scanner becomes more aggressive as available memory becomes
low, identifying a Solaris system that is experiencing swapping requires monitoring
a combination of the amount of free memory and page scanner activity. Both avail-
able free memory and page scanner activity are reported in Solaris vmstat columns
labeled “free” and “sr.”

When vmstat, cpubar, or any other Solaris monitoring tool reports a scan rate of
0, regardless of the reported available free memory, no swapping is occurring. How-
ever, if the scan rate is nonzero and the trend of reported free memory is decreasing,
then swapping is likely occurring. The following example output from Solaris vmstat
illustrates a system currently using most of its available physical memory; about 100
megabytes are free, as shown in the “free” column, but it is not swapping since its
scan rate, the “sr” column, is 0.

 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd f0 s0 - in sy cs us sy id
 0 0 0 1641936 861222 106 2591 0 3 3 0 0 0 0 0 0 4930 24959 10371 60 10 30
 0 0 0 1594944 116940 37 1718 8 0 0 0 0 8 0 0 0 4169 17820 10111 52 5 43
 0 0 0 1579952 103208 24 521 0 0 0 0 0 1 0 0 0 2948 14274 6814 67 4 29
 0 0 0 1556244 107408 97 1116 3 0 0 0 0 11 0 0 0 1336 7662 1576 45 3 52

In contrast, the following example illustrates a system that is experiencing a short-
age of available physical memory, dropping pretty rapidly from about 150 Mbytes

ptg6882136

Memory Utilization 35

to 44 Mbytes, and by the time it reaches 17 Mbytes, the scan rate, the “sr” column,
is reporting significant activity. Observing this kind of pattern with vmstat is an
indication the system may be swapping and its performance will begin to become
sluggish if it is not already.

 kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr cd f0 s0 -- in sy cs us sy id
1 0 0 499792 154720 1 1697 0 0 0 0 0 0 0 0 12 811 612 1761 90 7 4
1 0 0 498856 44052 1 3214 0 0 0 0 0 0 0 0 12 1290 2185 3078 66 18 15
3 0 0 501188 17212 1 1400 2 2092 4911 0 37694 0 53 0 12 5262 3387 1485 52 27 21
1 0 0 500696 20344 26 2562 13 4265 7553 0 9220 0 66 0 12 1192 3007 2733 71 17 12
1 0 0 499976 20108 3 3146 24 3032 10009 0 10971 0 63 0 6 1346 1317 3358 78 15 7
1 0 0 743664 25908 61 1706 70 8882 10017 0 19866 0 78 0 52 1213 595 688 70 12 18

Notice in the example, paying attention only to either the “free” or “swap” col-
umns can be misleading and alone do not provide obvious clues that a system may
be swapping.

Monitoring Memory Utilization on Linux

On Linux, monitoring for swapping activity can be done using vmstat and observing
the free column. There are other ways to monitor for swap activity on Linux such
as using the top command or observing the contents of the file /proc/meminfo.
Monitoring for swapping activity using Linux vmstat is shown here. The columns in
Linux vmstat to monitor are the “si” and “so” columns, which represent the amount
of memory paged-in and the amount of memory paged-out. In addition, the “free”
column reports the amount of available free memory. The actual units are not as
important as observing whether the amount of free memory is low and high paging
activity is occurring at the same time. Observing the pattern just described in these
statistics is an indication that the system maybe experiencing swapping activity. The
following is an example of a system that is experiencing no swapping activity; since
there is no paging activity as shown in the “si” and “so” columns and the amount of
free memory is not very low.

procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
2 0 0 9383948 265684 1879740 0 0 0 0 1 1 0 0 100 0 0
3 0 0 9383948 265684 1879740 0 0 0 11 1012 529 14 0 86 0 0
3 0 0 9383916 265684 1879740 0 0 0 0 1021 5105 20 0 80 0 0
3 0 0 9383932 265684 1879740 0 0 0 13 1014 259 19 0 81 0 0
3 0 0 9383932 265684 1879740 0 0 0 7 1018 4952 20 0 80 0 0

ptg6882136

36 Chapter 2 � Operating System Performance Monitoring

However, the following vmstat output from a Linux system illustrates a system that
is experiencing swapping.

procs ------------memory----------- ----swap--- -----io---- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 9500784 265744 1879752 0 0 0 0 1015 228 0 6 94 0 0
1 0 0 8750540 265744 1879752 0 0 0 2 1011 216 0 6 94 0 0
1 0 0 2999792 265744 1879752 0 0 0 2 1012 218 0 6 94 0 0
2 0 0 155964 185204 1370300 0 0 0 0 1009 215 0 9 90 0 0
2 0 9816 155636 24160 815332 0 1963 0 2000 1040 238 0 13 87 0 0
0 2 218420 165152 384 18964 0 41490 0 41498 1247 286 0 6 88 5 0
0 6 494504 157028 396 18280 45 55217 67 55219 1363 278 0 1 79 21 0
0 7 799972 159508 408 18356 70 61094 145 61095 1585 337 0 1 72 27 0
0 8 1084136 155592 416 18512 65 56833 90 56836 1359 292 0 1 75 24 0
0 3 1248428 174292 500 23420 563 32858 1689 32869 1391 550 0 0 83 17 0
1 1 1287616 163312 624 28800 13901 7838 15010 7838 2710 6765 1 0 93 6 0
1 0 1407744 163508 648 29688 18218 24026 18358 24054 3154 2465 1 1 92 6 0
0 2 1467764 159484 648 28380 19386 12053 19395 12118 2893 2746 2 1 91 5 0

Notice the pattern in this example. Where free memory initially decreases, there
is little paging activity shown in either the “si” column or “so” column. But as free
memory reaches values in the 155,000 – 175,000 range, page-out activity picks
up as shown in the “so” column. Once the page-out activity begins to plateau, the
page-in activity begins and increases rather quickly as shown in the “si” column. In
general what is happening is the system has an application, or set of applications,
that placed significant memory allocation and/or memory access pressure on the
system. As the amount of physical memory started to become exhausted, the system
began to page-out to virtual memory the least recently used pages in memory. As the
applications on the system began to demand pages from memory, page-in activity
began to occur. As the paging activity increased, the amount of free memory remained
about the same. In other words, the system is swapping in pages nearly as quickly as
it is paging them out while the amount of free memory remained rather small. This
is a typical pattern that can be observed in Linux vmstat when a Linux system is
experiencing swapping.

Monitoring Lock Contention on Solaris

Many Java applications that do not scale suffer from lock contention. Identifying
that lock contention in Java applications can be difficult and the tools to identify
lock contention are limited.

In addition, optimizations have been made in modern JVMs to improve the per-
formance of applications that experience lock contention. For example, in Java 5,

ptg6882136

Memory Utilization 37

optimizations were integrated into the Java HotSpot VM (also referred to HotSpot
VM hereafter) to implement much of the locking logic, the artifact resulting from
Java synchronized methods and synchronized blocks, in user code rather than rely-
ing immediately on operating system lock primitives. Prior to Java 5, the HotSpot
VM delegated almost all of the locking logic to operating system locking primitives.
This allowed for operating system tools such as Solaris mpstat to easily monitor a
Java application for lock contention by observing the “smtx” (spin on mutex) column
along with observing system or kernel CPU utilization.

As a result of the Java 5 HotSpot VM optimizations to implement much of locking
logic in user code, using Solaris mpstat and observing the “smtx” column and “sys”
CPU utilization columns no longer work as well. Instead, an alternative approach
is needed.

A high level simplistic description of the lock optimization added to Java 5 Hot-
Spot VMs and later is given as follows; spin in a tight loop trying to acquire a lock,
if not successful after a number of tight loop spins, park the thread and wait to be
notified when to try acquiring the lock again. The act of parking a thread along
with awaking a thread results in an operating system voluntary context switch.
Hence, an application experiencing heavy lock contention exhibits a high number
of voluntary context switches. The cost of a voluntary context switch at a proces-
sor clock cycle level is an expensive operation, generally upwards of about 80,000
clock cycles.

Context switching can be monitored on Solaris with mpstat by observing the
“csw” column. The value reported by the “csw” column in mpstat is the total num-
ber of context switches including involuntary context switches. Involuntary context
switching is also reported in mpstat in the “icsw” column. Hence, the number of
voluntary context switches is the “csw” minus “icsw.”

A general rule to follow is that any Java application experiencing 5% or more of its
available clock cycles in voluntary context switches is likely to be suffering from lock
contention. Even a 3% to 5% level is worthy of further investigation. An estimate of
the number of clock cycles spent in voluntary context switching can be calculated by
taking the number of thread context switches (csw) observed in an mpstat interval,
minus the involuntary context switches observed in an mpstat interval, (icsw),
multiplying that number by 80,000 (the general cost of a context switch in number
clock cycles), and dividing it by the total number of clock cycles available in the
mpstat interval.

To illustrate with an example, the following Solaris mpstat output captured at a 5
second interval from a 3.0GHz dual core Intel Xeon CPU executing a Java application
shows context switches (csw) at about 8100 per 5 second interval and involuntary
context switches (icsw) at about 100 per 5 second interval.

ptg6882136

38 Chapter 2 � Operating System Performance Monitoring

An estimate of the number of clock cycles wasted due to voluntary context switches
is roughly (8100 - 100) * 80,000 = 640,000,000 clock cycles. The number of clock
cycles available in a 5 second interval is 3,000,000,0001 * 5 = 15,000,000,000. Hence,
640,000,000 / 15,000,000,000 = 4.27%. About 4.27% of the available clock cycles are
consumed in voluntary context switches. Based on the general rule of a Java appli-
cation spending 3% to 5% or more of available clock cycles in voluntary clock cycles
implies this Java application is suffering from lock contention. This lock contention
is likely coming from areas where multiple threads are trying to access the same
synchronized method or synchronized block of code, or a block of code that is guarded
by a Java locking construct such as a java.util.concurrent.locks.Lock.

$ mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 4 0 1 479 357 8201 87 658 304 0 6376 86 4 0 10
 1 3 0 1 107 3 8258 97 768 294 0 5526 85 4 0 10
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 0 551 379 8179 91 717 284 0 6225 85 5 0 10
 1 2 0 0 2292 2 8247 120 715 428 0 7062 84 5 0 10
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 0 562 377 8007 98 700 276 0 6493 85 5 0 10
 1 0 0 0 2550 4 8133 137 689 417 0 6627 86 4 0 11
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 0 544 378 7931 90 707 258 0 6609 87 5 0 8
 1 0 0 0 2428 1 8061 125 704 409 0 6045 88 3 0 9

1. A 3.0 GHz processor executes 3 billion clock cycles per second.

Tip

Profiling a Java application with Oracle Solaris Studio Performance Analyzer is a strategy to
employ when more concrete information on lock contention and whether lock contention
may be a performance concern is required. Profiling with Oracle Solaris Studio Performance
Analyzer is covered in detail in Chapter 5 of this book.

Monitoring Lock Contention on Linux

It is possible to monitor lock contention by observing thread context switches in
Linux with the pidstat command from the sysstat package. However, for pidstat
to report context switching activity, a Linux kernel version of 2.6.23 or later is
required. The use of pidstat -w reports voluntary context switches in a “cswch/s”
column. It is important to notice that Linux pidstat -w reports voluntary con-
text switches, not a sum of all context switches that Solaris mpstat reports. Addi-
tionally, Linux pidstat -w reports the number of voluntary context switches per

ptg6882136

Memory Utilization 39

second, not per measurement interval like Solaris mpstat. Therefore, the estimate
of the percentage of clock cycles wasted on voluntary context switching is calculated
as the number of pidstat -w voluntary context switches divided by the number of
virtual processors. Remember that pidstat -w reports voluntary context switches
for all virtual processors. As a result, the number of voluntary context switches
times 80,000 divided by the number of clock cycles per second of the CPU provides
the percentage of CPU clock cycles spent in voluntary context switches. The follow-
ing is an example from pidstat -w monitoring a Java application having a process
id of 9391 reporting results every 5 seconds.

$ pidstat -w -I -p 9391 5
Linux 2.6.24-server (payton) 07/10/2008

08:57:19 AM PID cswch/s nvcswch/s Command
08:57:26 AM 9391 3645 322 java
08:57:31 AM 9391 3512 292 java
08:57:36 AM 9391 3499 310 java

To estimate the percentage of clock cycles wasted on context switching, there are
about 3500 context switches per second occurring on the system being monitored
with pidstat -w, a 3.0GHz dual core Intel CPU. Hence, 3500 divided by 2, the num-
ber of virtual processors = 1750. 1750 * 80,000 = 140,000,000. The number of clock
cycles in 1 second on a 3.0GHz processor is 3,000,000,000. Thus, the percentage of
clock cycles wasted on context switches is 140,000,000/3,000,000,000 = 4.7%. Again
applying the general guideline of 3% to 5% of clock cycles spent in voluntary context
switches implies a Java application that may be suffering from lock contention.

Monitoring Lock Contention on Windows

On Windows, in contrast to Solaris and Linux, observing Java lock contention using
built-in operating system tools is more difficult. Windows operating systems that
include the Performance Monitor and typeperf have the capability to monitor context
switches. But the capability to distinguish between voluntary and involuntary context
switching is not available via a performance counter. To monitor Java lock contention
on Windows, tools outside the operating system are often used, such as Intel VTune or
AMD CodeAnalyst. Both of these tools have Java lock profiling capabilities along with
capabilities to monitor other performance statistics and CPU performance counters.

Isolating Hot Locks

Tracing down the location in Java source code of contended locks has historically
been a challenge. A common practice to find contended locks in a Java application

ptg6882136

40 Chapter 2 � Operating System Performance Monitoring

has been to periodically take thread dumps and look for threads that tend to be
blocked on the same lock across several thread dumps. An example of this procedure
is presented in Chapter 4, “JVM Performance Monitoring.”

Oracle Solaris Studio Performance Analyzer, which is available for Linux and
Solaris, is one of the best tools the authors have used to isolate and report on Java
lock contention. Using Performance Analyzer to find contended locks in a Java appli-
cation is covered in detail in Chapter 5, and an example is presented in Chapter 6,
“Java Application Profiling Tips and Tricks.”

Other profilers can identify contended locks on Windows. Profilers that are similar
in functionality to the Oracle Solaris Studio Performance Analyzer are Intel VTune
and AMD CodeAnalyst.

Monitoring Involuntary Context Switches

Involuntary context switching was mentioned earlier but not explained in any detail,
or how it differs from voluntary context switching. In contrast to voluntary context
switching where an executing thread voluntarily takes itself off the CPU, involun-
tary thread context switches occur when a thread is taken off the CPU as a result
of an expiring time quantum or has been preempted by a higher priority thread.
Involuntary context switches can be monitored with Solaris mpstat by observing
the “icsw” column.

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 11 13 558 760 212 265 1 3 1 0 525 9 1 0 90
 1 9 11 479 467 0 251 1 3 1 0 474 9 1 0 89
 2 7 4 226 884 383 147 0 4 2 0 192 4 1 0 96
 3 7 4 234 495 0 146 0 3 0 0 215 5 1 0 95

Involuntary context switching can also be observed using Solaris prstat -m.
High involuntary context switches are an indication there are more threads ready
to run than there are virtual processors available to run them. As a result it is com-
mon to observe a high run queue depth in vmstat, high CPU utilization, and a high
number of migrations (migrations are the next topic in this section) in conjunction
with a large number of involuntary context switches. Strategies to reduce involun-
tary context switches include using the Solaris command psrset to create processor
sets for systems running multiple applications and assigning applications to specific
processor sets, or reducing the number of application threads being run on the sys-
tem. An alternative strategy, and usually less effective, is profiling the application to
identify areas of the application where you can reduce CPU usage by using improved
algorithms so they consume fewer CPU cycles.

ptg6882136

Network I/O Utilization 41

Involuntary context switches can also be monitored on Linux using pidstat -w.
But as mentioned earlier, pidstat -w reporting of involuntary context switch-
ing requires Linux kernel 2.6.23 or later. On Linux, creation of processor sets and
assigning applications to those processor sets can be accomplished using the Linux
taskset command. See your Linux distribution’s documentation for details on how
to use Linux taskset.

On Windows systems, applications can be assigned to a processor or set of proces-
sors by using Task Manager’s Process tab. Select a target process, right-click, and
select Set Affinity. Then choose the processors the selected process should execute on.
On Windows Server operating systems, Windows Vista and Windows 7, an applica-
tion can be launched from the command line with start /affinity <affinity
mask>, where <affinity mask> is the processor affinity mask in hexadecimal. See
the Windows operating system’s documentation for the use of start command and
affinity mask.

Monitoring Thread Migrations

Migration of ready-to-run threads between processors can also be a source of observed
performance degradation. Most operating systems’ CPU schedulers attempt to keep
a ready-to-run thread on the same virtual processor it last executed. If that same
virtual processor is busy, the scheduler may migrate that ready-to-run thread to
some other available virtual processor. Migration of threads can impact an applica-
tion’s performance since data, or state information, used by a ready-to-run thread
may not be readily available in a virtual processor’s cache. On Solaris you can use
mpstat and observe the “migr” column to monitor whether thread migrations are an
issue to a Java application’s performance. If you are running a Java application on
a multicore system and observing a high number of migrations, a strategy to reduce
thread migrations is creating processor sets and assigning Java applications to those
processor sets. As a general guideline, Java applications scaling across multiple cores
or virtual processors and observing migrations greater than 500 per second could
benefit from binding Java applications to processor sets. In extreme cases, the Solaris
kernel tunable rechoose_interval can be increased as a means to reduce thread
migrations. The former, creating processor sets, is the preferred strategy, and the
latter, tuning the kernel, should be considered only as a secondary approach.

Network I/O Utilization

Distributed Java applications may find performance and scalability limited to either
network bandwidth or network I/O performance. For instance, if a system’s network
interface hardware is sent more traffic than it can handle, messages can be queued

ptg6882136

42 Chapter 2 � Operating System Performance Monitoring

in operating system buffers, which may cause application delays. Additionally, other
things may be occurring on the network that cause delays as well.

Identifying and monitoring a single network utilization statistic can be hard to find
in bundled operating system utilities. For example, even though Linux has netstat
with its optional sysstat package and Solaris bundles netstat, neither the Linux nor
Solaris implementation of netstat reports network utilization. Both provide statistics
such as packets sent and packets received per second along with errors and collisions.
Collisions in a small amount are a normal occurrence of Ethernet. Large numbers of
errors usually are the result of a faulty network interface card, poor wiring or auto-
negotiation problems. Also, for a given number of packets received or transmitted per
interval as reported by netstat, it is difficult to know whether the interface is being
fully utilized. For example, if a netstat -i command reports 2500 packets per second
passing through the network interface card, you do not know whether the network is
at 100% utilization or 1% utilization. One conclusion you can make is network traffic
is occurring. But that is about the only conclusion you can make without knowing the
rated throughput of the underlying network cards and the packet sizes being trans-
mitted. In short, it is difficult to tell from the output of netstat on Linux or Solaris
to determine whether network utilization is limiting an application’s performance.
Regardless of the operating system running your Java application, there is a need for
a tool that can show network utilization on the network interfaces your application is
using. The next two subsections present tools that can be used on Solaris, Linux, and
Windows to monitor network utilization.

Monitoring Network I/O Utilization on Solaris

On Solaris, a tool called nicstat from the freeware K9Toolkit reports network uti-
lization and saturation by network interface. The K9Toolkit is also included in the
Solaris Performance Tools CD 3.0 package mentioned earlier in the “Monitoring CPU
Utilization on Solaris” section of this chapter. The K9Toolkit can also be downloaded
from http://www.brendangregg.com/k9toolkit.html.
nicstat has the following command line syntax:

nicstat [-hnsz] [-i interface[,...]] | [interval [count]]

where -h displays a help message, -n shows nonlocal interfaces only, -s shows a
summary output, -z skips reporting of zero values, -i interface is the network inter-
face device name, interval is the frequency at which output is to be reported in sec-
onds, and count is the number of samples to report.

The following is example output from nicstat -i yukonx0 1, which samples
the network interface device yukonx0 at a 1 second interval.

http://www.brendangregg.com/k9toolkit.html

ptg6882136

Network I/O Utilization 43

The column headings are

� Int is the network interface device name.
� rKb/s is the number of kilobytes read per second.
� wKb/s is the number of kilobytes written per second.
� rPk/s is the number of packets read per second.
� wPk/s is the number of packets written per second.
� rAvs is average bytes read per read.
� wAvs is the average bytes written per write.
� %Util is the network interface utilization.
� Sat is the saturation value.

As you can see a wealth of meaningful data is presented with nicstat to help
you identify whether your distributed Java application is saturating the network.
You can see there is activity occurring at the yukonx0 network interface as shown
in the number of bytes read and written yet the network utilization never reaches
much above 4% utilization. As a result, you can conclude the applications running
on this system are not experiencing a performance issue as a result of a saturated
network.

Monitoring Network I/O Utilization on Linux

A port of the Solaris nicstat monitoring tool for Linux is available. The source
code can be downloaded from http://blogs.sun.com/roller/resources/timc/nicstat/
nicstat-1.22.tar.gz. It requires compilation before being able to use it. It reports net-
work utilization in the same way as described in the previous section on monitoring
network utilization on Solaris.

 Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
19:24:16 yukonx0 0.75 4.68 2.72 3.80 281.3 1261.9 0.00 0.00
19:24:17 yukonx0 54.14 1924.9 724.1 1377.2 76.56 1431.2 1.58 0.00
19:24:18 yukonx0 44.64 1588.4 598.0 1138.0 76.45 1429.3 1.30 0.00
19:24:19 yukonx0 98.89 3501.8 1320.0 2502.0 76.72 1433.2 2.87 0.00
19:24:20 yukonx0 0.43 0.27 2.00 3.00 222.0 91.33 0.00 0.00
19:24:21 yukonx0 44.53 1587.2 598.0 1134.0 76.26 1433.2 1.30 0.00
19:24:22 yukonx0 101.9 3610.1 1362.0 2580.0 76.64 1432.8 2.96 0.00
19:24:23 yukonx0 139.9 4958.1 1866.7 3541.4 76.73 1433.6 4.06 0.00
19:24:24 yukonx0 77.23 2736.4 1035.1 1956.2 76.40 1432.4 2.24 0.00
19:24:25 yukonx0 48.12 1704.1 642.0 1220.0 76.75 1430.3 1.40 0.00
19:24:26 yukonx0 59.80 2110.8 800.0 1517.0 76.54 1424.8 1.73 0.00

http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz
http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz

ptg6882136

44 Chapter 2 � Operating System Performance Monitoring

Monitoring Network I/O Utilization on Windows

Monitoring network utilization on Windows is not as simple as adding performance
counters to Performance Monitor and observing their values. It requires knowing the
possible bandwidth of the network interface you are interested in monitoring and
some measure of the amount of data passing through the network interface.

The number of bytes transmitted across a network interface can be obtained
using the “\Network Interface(*)\Bytes Total/sec” performance counter. The “*” wild-
card reports the bandwidth for all network interfaces on the system. You can use
the typeperf \Network Interface(*)\Bytes Total/sec command to see
the names of the network interfaces. Then, you can replace the wildcard “*” with
the network interface you are interested in monitoring. For example, suppose the
output from typeperf \Network Interface(*)\Bytes Total/sec shows the
network interfaces as Intel[R] 82566DM-2 Gigabit Network Connection, isatap.
gateway.2wire.net, Local Area Connection* 11 and you know the network interface
card installed in your system is an Intel network card. You can substitute “Intel[R]
82566DM-2 Gigabit Network Connection” for the “*” wildcard when adding the per-
formance counter to Performance Monitor or when using the typeperf command.

In addition to the bytes transmitted across the interface, the bandwidth of the net-
work interface must also be obtained. It can be obtained using the “\Network Inter-
face(*)\Current Bandwidth” performance counter. Again, the “*” wildcard should be
replaced with the network interface you are interested in monitoring.

It is important to note that the Current Bandwidth performance counter reports
bandwidth in bits per second. In contrast, the Bytes Total/sec reports in units of bytes
per second. Therefore, the formula to calculate network utilization must compen-
sate for the proper units, bits per second, or bytes per second. The following are two
formulas that compute network utilization: the first one by adjusting the Current
Bandwidth into bytes per second by dividing the Current Bandwidth by 8, and the
second one by adjusting the Bytes Total/sec into bits per second by multiplying it by
8 (8 bits per byte).

network utilization % = Bytes Total/sec/(Current Bandwidth / 8) x 100

Or, alternatively as

network utilization % = (Bytes Total/sec * 8) / Current Bandwidth x 100

Network utilization can also be monitored in Windows using Task Manager and
clicking on the Networking tab. An example is shown in Figure 2-9.

ptg6882136

Network I/O Utilization 45

Figure 2-9 Task Manager showing network utilization

Application Performance Improvement Considerations

An application executing a large number of reads and writes to a network with small
amounts of data in each individual read or write call consumes large amounts of
system or kernel CPU and may also report a high number of system calls. A strat-
egy to reduce system or kernel CPU in such an application is to reduce the number
network read or write system calls. Additionally, the use of nonblocking Java NIO
instead of blocking java.net.Socket may also improve an application’s perfor-
mance by reducing the number of threads required to process incoming requests or
send outbound replies.

A strategy to follow when reading from a nonblocking socket is to design and
implement your application to read as much data as there is available per read call.
Also, when writing data to a socket, write as much data as possible per write call.
There are Java NIO frameworks that incorporate such practices, such as Project
Grizzly (https://grizzly.dev.java.net). Java NIO frameworks also tend to simplify the
programming of client-server type applications. Java NIO, as offered in the JDK,
tends to be a “bare metal” type of implementation, and there is plenty of room to
make poor use of its Java APIs that can lead to disappointing application perfor-
mance, and hence the suggestion of using a Java NIO framework.

https://grizzly.dev.java.net

ptg6882136

46 Chapter 2 � Operating System Performance Monitoring

Disk I/O Utilization

If an application performs disk operations, disk I/O should be monitored for possible
performance issues. Some applications make heavy use of disk as a major part of its
core functionality such as databases, and almost all applications utilize an application
log to write important information about the state or behavior of the application as
events occur. Disk I/O utilization is the most useful monitoring statistic for under-
standing application disk usage since it is a measure of active disk I/O time. Disk
I/O utilization along with system or kernel CPU utilization can be monitored using
iostat on Linux and Solaris.

To use iostat on Linux, the optional sysstat package must be installed.
To monitor disk utilization on Windows Server systems, the Performance Monitor

has several performance counters available under its Logical Disk performance object.
On Solaris, iostat -xc shows disk utilization for each disk device on the system

along with reporting CPU utilization. This command is useful for showing both disk
utilization and system or kernel CPU utilization together. The following example
shows a system that has three disks, sd0, sd2, and sd4, with disk I/O utilization of
22%, 13%, and 36%, respectively, along with 73% system or kernel CPU utilization.
The other statistics from iostat are not as important for application performance
monitoring since they do not report a “busy-ness” indicator.

$ iostat -xc 5
 extended disk statistics cpu
 disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b us sy wt id
 sd0 3.4 1.1 17.1 9.8 0.1 0.2 16.2 1 22 3 73 8 16
 sd2 2.1 0.5 16.7 4.0 0.0 0.1 23.6 1 13
 sd4 5.2 6.0 41.4 45.2 0.2 0.4 59.2 8 36

To monitor disk I/O utilization and system or kernel CPU utilization on Linux
you can use iostat -xm. The following is an example of iostat -xm from a
Linux system showing 97% and 69% for disks hda and hdb, respectively, along
with 16% system or kernel CPU utilization. Columns reporting 0 values were
removed from the output for ease of reading.

$ iostat -xm 5

avg-cpu: %user %nice %system %iowait
 0.20 0.40 16.37 83.03

Device: rrqm/s r/s rsec/s rMB/s avgqu-sz await svctm %util
hda 9662.87 305.59 87798.80 42.87 1.64 5.39 3.17 97.01
hdb 7751.30 225.15 63861.08 31.18 1.18 5.24 3.11 69.94

ptg6882136

Disk I/O Utilization 47

One of the challenges with monitoring disk I/O utilization is identifying which
files are being read or written to and which application is the source of the disk
activity. Recent versions of Solaris 10 and Solaris 11 Express include several DTrace
scripts in the /usr/demo/dtrace directory that can help monitor disk activity. The
iosnoop.d DTrace script provides details such as which user id is accessing the
disk, what process is accessing the disk, the size of the disk access, and the name
of the file being accessed. The iosnoop.d script is also included in the Solaris
DTraceToolKit downloadable at http://www.solarisinternals.com/wiki/index.php/
DTraceToolkit. The following is example output from executing iosnoop.d while
launching NetBeans IDE. The entire output is not displayed since there are many
files accessed during a NetBeans IDE launch. Hence, for brevity the output is
trimmed.

Tip

The Solaris Performance Tools CD 3.0, presented in the “CPU Utilization” section earlier in
this chapter contains a graphical tool called iobar that displays disk I/O in a cpubar like
manner. The Solaris Performance Tools CD 3.0, also contains a command line tool called
iotop that displays Solaris iostat -x information in a prstat or top manner.

$ iosnoop.d
 UID PID D BLOCK SIZE COMM PATHNAME
97734 1617 R 4140430 1024 netbeans /huntch/tmp/netbeans
97734 1617 R 4141518 1024 bash /huntch/tmp/netbeans/modules
97734 1617 R 4150956 1024 bash /huntch/tmp/netbeans/update
97734 1697 R 4143242 1024 java /huntch/tmp/netbeans/var
97734 1697 R 4141516 1024 java /huntch/tmp/netbeans/config
97734 1697 R 4143244 1024 java /huntch/tmp/netbeans/var/log
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 12830464 8192 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12830480 20480 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12830448 8192 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12830416 8192 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12830432 4096 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12828264 8192 java /usr/jdk1.6.0/jre/lib/rt.jar
[... additional output removed ...]

http://www.solarisinternals.com/wiki/index.php/DTraceToolkit
http://www.solarisinternals.com/wiki/index.php/DTraceToolkit

ptg6882136

48 Chapter 2 � Operating System Performance Monitoring

The “UID” column reports the user id responsible for performing the disk access.
The “PID” column is the process id of the process performing the disk access. The “D”
column indicates whether the disk access is the result of a read or write, “R” = read,
“W” = write. The “BLOCK” column is the disk block. The “SIZE” column is the amount
of data accessed in bytes. The “COMM” column is the name of the command performing
the disk access, and the “PATHNAME” column is the name of the file being accessed.

Patterns to look for in the output of iosnoop.d is repeated accesses to the same
file, same disk block, by the same command, process id, and user id. For example, in the
preceding output there are many disk accesses of 1024 bytes on the same disk block
4153884, which may indicate a possible optimization opportunity. It may be that the same
information is being accessed multiple times. Rather than re-reading the data from disk
each time, the application may be able to keep the data in memory, reuse it, and avoid re-
reading and experiencing an expensive disk read. If the same data is not being accessed,
it may be possible to read a larger block of data and reduce the number of disk accesses.

At a larger scale, if high disk I/O utilization is observed with an application, it may
be worthwhile to further analyze the performance of your system’s disk I/O subsys-
tem by looking more closely at its expected workload, disk service times, seek times,
and the time spent servicing I/O events. If improved disk utilization is required,
several strategies may help. At the hardware and operating system level any of the
following may improve disk I/O utilization:

� A faster storage device
� Spreading file systems across multiple disks
� Tuning the operating system to cache larger amounts of file system data

structures

At the application level any strategy to minimize disk activity will help such as
reducing the number of read and write operations using buffered input and output
streams or integrating a caching data structure into the application to reduce or
eliminate disk interaction. The use of buffered streams reduces the number of sys-
tem calls to the operating system and consequently reduces system or kernel CPU
utilization. It may not improve disk I/O performance, but it will make more CPU
cycles available for other parts of the application or other applications running on the
system. Buffered data structures are available in the JDK that can easily be utilized,
such as java.io.BufferedOutputStream and java.io.BufferedInputStream.

An often overlooked item with disk performance is checking whether the disk
cache is enabled. Some systems are configured and installed with the disk cache
disabled. An enabled disk cache improves an application’s performance that heavily
relies on disk I/O. However, you should use caution if you discover the default set-
ting of a system has the disk cache disabled. Enabling the disk cache may result in
corrupted data in the event of an unexpected power failure.

ptg6882136

Additional Command Line Tools 49

Additional Command Line Tools

When monitoring applications for an extended period of time such as several hours
or several days, or in a production environment, many performance engineers and
system administrators of Solaris or Linux systems use sar to collect performance
statistics. With sar, you can select which data to collect such as user CPU utilization,
system or kernel CPU utilization, number of system calls, memory paging, and disk
I/O statistics. Data collected from sar is usually looked at after-the-fact, as opposed
to while it is being collected. Observing data collected over a longer period of time
can help identify trends that may provide early indications of pending performance
concerns. Additional information on what performance data can be collected and
reported with sar can be found in the Solaris and Linux sar man pages.

Another tool that can be useful on Solaris is kstat, which reports kernel statistics.
Its use can be powerful for applications in need of every bit of performance they can
get. There are many kernel statistics kstat can report on. A kstat -l command
lists all the possible kernel statistics that can be monitored with kstat. The most
important thing to understand about using kstat is that it reports the number of
events since the system was last powered on. So, to monitor an application with
kstat, running kstat before and after some interval of interest and then taking
the difference between reported values is required. In addition, the application of
monitoring interest should be the only application running when using kstat since
kstat does not report on which application is correlated to the statistics, or the
values reported. If more than one application is running on the system when using
kstat, you will have no way of identifying which application is producing the values
reported by kstat.

On Solaris, processor specific CPU performance counters can be monitored using
Solaris bundled commands cpustat or cputrack. Use of these specific CPU perfor-
mance counters is usually left to performance specialists looking for specific tuning
optimizations but are mentioned in this section since there may be some performance
specialists among the readers of this chapter.

Both cpustat and cputrack commands require a set of event counters that are
specific to a processor such as AMD, Intel, or SPARC. The set of CPU performance

Tip

On Solaris and Solaris 11 Express, the disk cache can be enabled when the disk is formatted
using the format -e command. However, do not run the format -e command on a disk or
partition where it is desirable to preserve the data. The format -e command destroys all data
on the disk or partition where the format command is executed. Disk performance on Solaris
can also be improved by configuring and using Oracle Solaris ZFS file systems. See the Solaris
man pages for tips on how to configure and use Oracle Solaris ZFS file systems.

ptg6882136

50 Chapter 2 � Operating System Performance Monitoring

counters may also vary within a processor family. To obtain a list of available perfor-
mance counters, you can use the -h option. Additionally, CPU performance counters
can also be found in the processor manufacturer’s documentation. In contrast to
cpustat, which gathers information from CPU performance counters for all appli-
cations on the system and tends to be more intrusive, cputrack collects CPU per-
formance counter statistics for individual applications with little or no interference
to other activities on the system. Additional details on the usage of cpustat and
cputrack can be found in the Solaris man pages.

Monitoring CPU Utilization on SPARC T-Series Systems

The SPARC T-series processor from Oracle combines both chip multiprocessing and
chip multithreading. Its architecture differs enough from traditional chip architec-
tures that monitoring its CPU utilization deserves its own section. To understand
CPU utilization of a SPARC T-series based system it is important to understand some
of the basics of the SPARC T-series chip architecture, how it differs from traditional
processor architectures, and why conventional Unix monitoring tools such as vmstat
and mpstat do not truly show SPARC T-series CPU utilization.

The SPARC T-series processors have not only multiple cores, but also multiple hard-
ware threads per core. It is easiest to explain the first generation SPARC T-series first
and then extend it to its later generations. The UltraSPARC T1 is the first generation
SPARC T-series processor. It has eight cores with four hardware threads per core and
one pipeline per core. The UltraSPARC T2, the second generation SPARC T-series pro-
cessor, consists of eight cores with eight hardware threads per core and two pipelines
per core. On an UltraSPARC T1, only one hardware thread per core executes in a given
clock cycle. On an UltraSPARC T2, since there are two pipelines per core, two hardware
threads per core execute per clock cycle. However, what makes the SPARC T-series
processors unique is the capability to switch to a different hardware thread within a
core when the one that had been executing becomes stalled. Stalled is defined as a CPU
state such as a CPU cache miss where the processor must wait for a memory data fetch.

Applications with a large number of concurrent software threads that tend to
experience stalls tend to perform very well on a SPARC T-series processor since the
amount of time spent on CPU stalls tends to be much longer than the time it takes for
a SPARC T-series processor core to switch to a different runnable hardware thread.
In contrast, applications with a small number of concurrent threads, especially ones
that do not experience many CPU stalls, tend not to perform as well as they would
on a faster clock rate traditional processor. For example, consider an application that
has eight concurrent software threads that are runnable at all times with few or a
very small number of CPU stalls. Such an application would utilize one hardware
thread per core on an UltraSPARC T1 since there are eight cores on an UltraSPARC

ptg6882136

Monitoring CPU Utilization on SPARC T-Series Systems 51

T1 and only one of those four hardware threads per core can execute per clock cycle.
Additionally, since only one of those four hardware threads per core can execute per
clock cycle, those eight concurrent software threads will execute at a clock rate of
one-fourth the clock frequency. For example, a 1.2GHz UltraSPARC T1 on such a
workload would be executing each of those eight concurrent software threads at an
effective clock rate of 300MHz, 1.2GHz/4 = 300MHz. In contrast, a dual CPU socket
quad core Intel or AMD based system, a system with eight cores, which has a clock
rate of 2.33GHz, for example, would execute each of those eight concurrent software
threads at 2.33GHz since each concurrent software thread can execute on a single
core and each core is a single hardware thread executing at 2.33GHz. However, in
practice, few workloads operate with few memory stalls. On workloads with a much
larger number of runnable threads, especially threads that experience CPU stalls,
the SPARC T-series will likely perform better than an x86/x64 quad core processor
since the time it takes to switch between hardware threads on a SPARC T-series is
faster than the time it takes for a thread context switch on a single hardware thread
per core architecture because the thread context switch may require CPU caches to
be primed with data, which means the switched-to-thread will waste clock cycles
waiting for data to be loaded from memory.

With a better understanding of SPARC T-series architecture and its differences
from traditional single hardware thread per core processor architecture, it becomes
easier to understand how to monitor a SPARC T-series based system. It is also impor-
tant to realize that the Solaris operating system treats each hardware thread of a
SPARC T-series as a virtual processor. This means monitoring tools such as mpstat
report 32 virtual processors for an UltraSPARC T1 (8 cores * 4 hardware threads per
core) and 64 processors for an UltraSPARC T2 (8 cores * 8 hardware threads per core).
Remember that not all virtual processors in a SPARC T-series can execute on the same
clock cycle. When reporting CPU utilization for a virtual processor, both mpstat
and vmstat commands assume a virtual processor that is not idle, is a busy virtual
processor that is making progress on processing a workload. In other words, both
mpstat and vmstat will report a virtual processor as busy, or as being utilized,
even when that virtual processor is stalled. Recall that on a SPARC T-series proces-
sor, a stalled software thread, which is running on a virtual processor (hardware
thread), does not necessarily mean the pipeline is stalled or the entire processor core
is stalled. Since the SPARC T-series processors have hardware threads reported as
virtual processors, vmstat and mpstat actually report the percentage of pipeline
occupancy of software threads.

Tip

More detailed information about the SPARC T-series processors can be found on the Solaris
Internals wiki at http://www.solarisinternals.com/wiki/index.php/CMT_Utilization.

http://www.solarisinternals.com/wiki/index.php/CMT_Utilization

ptg6882136

52 Chapter 2 � Operating System Performance Monitoring

On systems running processors that do not have multiple hardware threads per
core, idle time reported by mpstat or vmstat can be used to decide whether the sys-
tem can take on additional load. On a SPARC T-series, a hardware thread being idle,
which is reported as a virtual processor by mpstat, and a SPARC T-series processor
core being idle are two different things. Remember that mpstat reports statistics on
each hardware thread since each hardware thread is seen as a virtual processor. To
understand CPU utilization of a SPARC T-series processor, both processor core utili-
zation and core hardware thread utilization need to be observed. Processor core utili-
zation of a SPARC T-series can be observed by monitoring the number of instructions
executed by a given processor core. The Solaris cpustat command can monitor the
number of instructions executed per hardware thread within a core. But it does
not have the capability to report on the number of instructions executed per core.
However, the cpustat data reporting the number of instructions executed per
hardware thread could be aggregated to show the number of instructions executed
per core. A utility called corestat aggregates the instruction count per hardware
thread reported by cpustat to derive a SPARC T-series core CPU utilization. The
corestat command is not included in Solaris distributions. But, corestat can be
downloaded from Oracle’s cool tools Web site, http://cooltools.sunsource.net/corestat/
index.html. Additional information and instructions on how to use corestat can
also be found on Oracle’s cool tools Web site.

Looking at vmstat, mpstat, and corestat data collected on a SPARC T-series
based system provides information about how the system is performing. For example,
suppose vmstat or mpstat is reporting the system is 35% busy and corestat is
reporting core utilization is 50%. Since core utilization is higher than the CPU utili-
zation reported by vmstat or mpstat, if the system continues to take on additional
similar load by adding more application threads, the system may reach core satura-
tion before it reaches CPU saturation. As a result, this application may reach peak
scalability prior to vmstat or mpstat reporting the system is 100% busy. Consider
a different scenario: vmstat and mpstat are reporting the system is 100% busy
and corestat is reporting core utilization is 40%. This indicates the system will
not be able to take on additional work unless you are able to improve core utiliza-
tion. Improving core utilization requires improving pipeline performance. To realize
improved pipeline performance you have to focus on reducing CPU stalls. Reducing
CPU stalls can be difficult and requires an in-depth understanding of the application
being run on the system so that the application can better utilize the CPU caches.
This usually means improving memory locality for the application. The skill nec-
essary to reduce CPU stalls usually requires special assistance from performance
engineers. These two example scenarios illustrate how important it is to monitor
both CPU utilization with vmstat or mpstat and also monitor core utilization on
SPARC T-series systems.

http://cooltools.sunsource.net/corestat/index.html
http://cooltools.sunsource.net/corestat/index.html

ptg6882136

Bibliography 53

Bibliography

Linux nicstat source code download. http://blogs.sun.com/roller/resources/timc/
nicstat/nicstat-1.22.tar.gz.

Microsoft Windows typeperf description. http://www.microsoft.com/resources/
documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true.

Oracle’s cool tools Web site. http://cooltools.sunsource.net/corestat/index.html.

Project Grizzly Web site. http://grizzly.java.net.

Solaris Internals wiki. http://www.solarisinternals.com/wiki/index.php/
CMT_Utilization.

Solaris K9 Toolkit and nicstat Web site and download. http://www.brendangregg.
com/k9toolkit.html.

Solaris Performance Tools CD 3.0 Web site. http://www.scalingbits.com/solaris/
performancetoolcd.

Tim Cook blog Web site. http://blogs.sun.com/timc/entry/nicstat_the_solaris_and_linux.

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true
http://www.solarisinternals.com/wiki/index.php/CMT_Utilization
http://www.solarisinternals.com/wiki/index.php/CMT_Utilization
http://www.brendangregg.com/k9toolkit.html
http://www.brendangregg.com/k9toolkit.html
http://www.scalingbits.com/solaris/performancetoolcd
http://www.scalingbits.com/solaris/performancetoolcd
http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz
http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz
http://cooltools.sunsource.net/corestat/index.html
http://grizzly.java.net
http://blogs.sun.com/timc/entry/nicstat_the_solaris_and_linux

ptg6882136

This page intentionally left blank

ptg6882136

55

3
JVM Overview

Since its introduction in 1995, Java has evolved substantially. So too have Java
Virtual Machines, (JVMs). In Java’s early days, Java performance was a challenge
for many applications despite its advantages of developer productivity and memory
management. The integration of JIT compilers, more sophisticated garbage collectors,
and improvements in the JVM runtime environment have allowed many Java appli-
cations to meet their performance requirements. Even with the many enhancements
added to modern JVMs, performance and scalability remain important to applica-
tion stakeholders. For example, many applications have increased their performance
requirements and performance service level agreements. Additionally, new families
or classes of applications are able to utilize Java technologies as a result of the per-
formance and scalability improvements available in modern JVMs.

One of challenges introduced by modern JVMs is many users of Java technology see
a JVM as a black box, which can make it a difficult task to improve the performance or
scalability of a Java application. Thus, having a basic, fundamental understanding of
a modern JVM is essential to the ability to improve a Java application’s performance.

This chapter provides an overview of the HotSpot Java Virtual Machine, (also
referred to as the HotSpot VM hereafter), architecture. Not all the information in this
chapter is required to tackle the task of improving all Java application performance
issues running in a HotSpot VM. Nor is this chapter an exhaustive description of the
Java HotSpot VM (also referred to as the HotSpot VM hereafter). But it does present
its major components and its architecture.

There are three major components of the HotSpot VM: VM Runtime, JIT compiler,
and a memory manager. This chapter begins with a high level architecture view of

ptg6882136

56 Chapter 3 � JVM Overview

the HotSpot VM followed by an overview of each of the three major components. In
addition, information on ergonomic decisions the HotSpot VM makes automatically
is included at the end of the chapter.

HotSpot VM High Level Architecture

The HotSpot VM possesses an architecture that supports a strong foundation of fea-
tures and capabilities. Its architecture supports the ability to realize high performance
and massive scalability. For example, the HotSpot VM JIT compilers generate dynamic
optimizations; in other words, it makes optimization decisions while the Java applica-
tion is running and generates high performing native machine instructions targeted
for the underlying system architecture. In addition, through its maturing evolution and
continuous engineering of its runtime environment and multithreaded garbage collector,
the HotSpot VM yields high scalability on even the largest computer systems available.

A high level view of the HotSpot VM architecture is shown in Figure 3-1.

Figure 3-1 HotSpot VM high level architecture.

Garbage Collector
[Serial | Throughput | Concurrent | G1]

JIT Compiler
[Client | Server]

HotSpot VM Runtime

HotSpot Java Virtual Machine

ptg6882136

HotSpot VM High Level Architecture 57

As shown in Figure 3-1, the JIT compiler, client or server, is pluggable as is the
choice of garbage collector: Serial GC, Throughput, Concurrent, or G1. At the time
of this writing, the G1 garbage collector is under development and expected to be
available in Java 7 HotSpot VMs. The HotSpot VM Runtime provides services and
common APIs to the HotSpot JIT compilers and HotSpot garbage collector. In addi-
tion the HotSpot VM Runtime provides basic functionality to the VM such as a
launcher, thread management, Java Native Interface, and so on. Further details on
VM Runtime’s components and their responsibilities are described in the next sec-
tion, “HotSpot VM Runtime.”

Early releases of the HotSpot VM were limited to 32-bit JVMs, which have a
memory address limitation of four gigabytes. It is important to note that the actual
Java heap space available for a 32-bit HotSpot VM may be further limited depending
on the underlying operating system. For instance, on Microsoft Windows operating
systems the maximum Java heap available to a HotSpot VM is around 1.5 gigabytes.
For Linux operating systems, the maximum Java heap available to the HotSpot VM
is around 2.5 to 3.0 gigabytes for very recent Linux kernels and about 2 gigabytes
for less recent Linux kernels. On Oracle Solaris, also referred to as Solaris hereafter,
operating systems the maximum Java heap available to the HotSpot VM is around
3.3 gigabytes. The actual maximums vary due to the memory address space con-
sumed by both a given Java application and a JVM version.

As server systems were introduced with much larger amounts of memory, a 64-bit
version of the HotSpot VM was introduced. A 64-bit HotSpot VM allows these sys-
tems to utilize additional memory through the use of increased Java heaps. There
are several classes of applications where using 64-bit addressing can be useful. How-
ever, with 64-bit VMs come a performance penalty due to an increase in size of the
internal HotSpot VM’s representation of Java objects, called ordinary object point-
ers, or oops, which have an increase in width from 32 bits to 64 bits. This increase
in width results in fewer oops being available on a CPU cache line and as a result
decreases CPU cache efficiency. The decrease in CPU cache efficiency on 64-bit JVMs
often results in about a 8% to 15% performance degradation compared to a 32-bit
JVM. However, beginning with more recent Java 6 HotSpot VMs, along with those
found in OpenJDK, a new feature called compressed oops, which is enabled with the
-XX:+UseCompressedOops VM command line option, can yield 32-bit JVM perfor-
mance with the benefit of larger 64-bit Java heaps. In fact, some Java applications
realize better performance with a 64-bit HotSpot VM using compressed oops than
they achieve with a 32-bit VM. The performance improvement realized from com-
pressed oops arises from being able to pack a 64-bit pointer into 32 bits by relying on
alignment and possibly having an offset. In other words, the increase in performance
comes from using smaller, more space efficient compressed pointers rather than full
width 64-bit pointers, which improves CPU cache utilization. An application expe-
riencing improved CPU cache utilization is one that executes faster. In addition, on

ptg6882136

58 Chapter 3 � JVM Overview

some platforms such as Intel or AMD x64, 64-bit JVMs can make use of additional
CPU registers, which can also improve application performance. Having additional
registers available helps avoid what is known as register spilling. Register spilling
occurs where there is more live state (i.e. variables) in the application than the CPU
has registers. When register spilling occurs, some of the live state must be “spilled”
from CPU registers to memory. Therefore, avoiding register spilling can result in a
faster executing application.

Today 32-bit and 64-bit HotSpot VMs are available for the following hardware plat-
forms and operating systems: Solaris SPARC, Solaris x86, Linux x86, and Windows
x86 for both Intel Xeon and AMD along with Solaris x64, Linux x64, and Windows
x64 for both Intel Xeon and AMD. Various ports of the HotSpot VM also exist for other
platforms, such as Apple x64, Apple PPC, Intel Itanium, HP-UX, MIPS, and ARM.

HotSpot VM Runtime

The VM Runtime is an often overlooked part of the HotSpot VM. The VM’s garbage
collectors and JIT compilers tend to get more attention than the VM Runtime. How-
ever, the VM Runtime provides the core functionality of the HotSpot VM. This section
provides an introduction to the HotSpot VM Runtime environment. The objective of
this section is to provide a better understanding of the responsibilities and roles the
Runtime plays in the VM. Having this understanding allows readers to take full per-
formance advantage of the services provided by the VM Runtime. Not all the details
presented in this section are necessary to realize a high performance Java applica-
tion. However, it can be beneficial to have a basic understanding of the HotSpot VM
Runtime since there may be cases where tuning a property of service provided by the
VM Runtime may yield significant improvement in Java application performance.

The HotSpot VM Runtime encompasses many responsibilities, including parsing
of command line arguments, VM life cycle, class loading, byte code interpreter, excep-
tion handling, synchronization, thread management, Java Native Interface, VM fatal
error handling, and C++ (non-Java) heap management. In the following subsections,
each of these areas of the VM Runtime is described in more detail.

Command Line Options

The HotSpot VM Runtime parses the many command line options and configures the
HotSpot VM based on those options. A number of command line options and environ-
ment variables can affect the performance characteristics of the HotSpot VM. Some
of these options are consumed by the HotSpot VM launcher such as the choice of JIT
compiler and choice of garbage collector; some are processed by the launcher and
passed to the launched HotSpot VM where they are consumed such as Java heap sizes.

ptg6882136

HotSpot VM Runtime 59

There are three main categories of command line options: standard options,
nonstandard options, and developer options. Standard command line options are
expected to be accepted by all Java Virtual Machine implementations as required by
the Java Virtual Machine Specification. [1] Standard command line options are sta-
ble between releases. However, it is possible for standard command line options to be
deprecated in subsequent releases after the release in which it was first introduced.
Nonstandard command line options begin with a -X prefix. Nonstandard command
line options are not guaranteed to be supported in all JVM implementations, nor are
they required to be supported in all JVM implementations. Nonstandard command
line options are also subject to change without notice between subsequent releases of
the Java SDK. Developer command line options in the HotSpot VM begin with a -XX
prefix. Developer command line options often have specific system requirements for
correct operation and may require privileged access to system configuration param-
eters. Like nonstandard command line options, developer command line options are
also subject to change between releases without notice.

Command line options control the values of internal variables in the HotSpot
VM, all of which have a type and a default value. For boolean values, the mere
presence or lack of presence of an option on the HotSpot VM command line can con-
trol the value of these variables. For developer command line options (-XX options)
with boolean flags, a + or - before the name of the options indicates a true or false
value, respectively, to enable or disable a given HotSpot VM feature or option. For
example, -XX:+AggressiveOpts sets a HotSpot internal boolean variable to true to
enable additional performance optimizations. In contrast, -XX:-AggressiveOpts
sets the same internal variable to false to disable additional performance optimiza-
tions. Developer command line options (the -XX options) that take an additional
argument, those that are nonboolean, tend to be of the form, -XX:OptionName=<N>
where <N> is some numeric value. Almost all developer command line options that
take an additional argument, accept an integer value along with a suffix of k, m, or
g, which are used as kilo-, mega-, or giga- multipliers for the integer value specified.
There is also a small set of developer command line options that accept data passed
in directly after the name of the flag without any delineation. The approach depends
on the particular command line option and its parsing mechanism.

VM Life Cycle

The HotSpot VM Runtime is responsible for launching the HotSpot VM and the shut-
down of the HotSpot VM. This section provides an overview of what occurs within the
HotSpot VM prior to it executing a Java program and what it does when a Java pro-
gram terminates or exits. A large amount of detail is presented in this section, perhaps
more than necessary for purposes of performance tuning. But it is included to give you
sense of the complexity involved in the starting and stopping of a Java application.

ptg6882136

60 Chapter 3 � JVM Overview

The component that starts the HotSpot VM is called the launcher. There are
several HotSpot VM launchers. The most commonly used launcher is the java
command on Unix/Linux and on Windows the java and javaw commands. It is
also possible to launch an embedded JVM through the JNI interface, JNI_Cre-
ateJavaVM. In addition, there is also a network-based launcher called javaws,
which is used by Web browsers to launch applets. The trailing “ws” on the javaws
is often referred to as “web start.” Hence the term “Java web start” for the javaws
launcher.

The launcher executes a sequence of operations to start the HotSpot VM. These
steps are summarized here:

 1. Parse command line options.
Some of the command line options are consumed immediately by the launcher
such as -client or – server, which determines the JIT compiler to load.
Other command line options are passed to the launched HotSpot VM.

 2. Establish the Java heap sizes and the JIT compiler type (client or server) if
these options are not explicitly specified on the command line.
 If Java heap sizes and JIT compiler are not explicitly specified as a com-
mand line option, these are ergonomically established by the launcher. Ergo-
nomic defaults vary depending on the underlying system configuration and
operating system. Ergonomic choices made by the HotSpot VM are described
in more detail in the “HotSpot VM Adaptive Tuning” section later in this
chapter.

 3. Establish environment variables such as LD_LIBRARY_PATH and CLASSPATH.

 4. If the Java Main-Class is not specified on the command line, the launcher
fetches the Main-Class name from the JAR’s manifest.

 5. Create the HotSpot VM using the standard Java Native Interface method JNI_
CreateJavaVM in a newly created nonprimordial thread.
 In contrast to a nonprimordial thread, a primordial thread is the first thread
allocated by an operating system kernel when a new process is launched. Hence,
when a HotSpot VM is launched, the primordial thread is the first thread allocated
by the operating system kernel running in the newly created HotSpot VM process.
Creating the HotSpot VM in a nonprimordial thread provides the ability to cus-
tomize the HotSpot VM such as changing the stack size on Windows. More details
of what happens in the HotSpot VM’s implementation of JNI_CreateJavaVM are
provided in the “JNI_CreateJavaVM Details” sidebar.

 6. Once the HotSpot VM is created and initialized, the Java Main-Class is
loaded and the launcher gets the Java main method’s attributes from the Java
Main-Class.

ptg6882136

HotSpot VM Runtime 61

 7. The Java main method is invoked in the HotSpot VM using the Java Native
Interface method CallStaticVoidMethod passing it the marshaled arguments
from the command line.

At this point the HotSpot VM is executing the Java program specified on the com-
mand line.

Once a Java program, or Java main method completes its execution, the HotSpot
VM must check and clear any pending exceptions that may have occurred during
the program’s or method’s execution. Additionally, both the method’s exit status
and program’s exit status must be passed back to their caller’s. The Java main
method is detached from the HotSpot VM using the Java Native Interface method
DetachCurrentThread. When the HotSpot VM calls DetachCurrentThread, it
decrements the thread count so the Java Native Interface knows when to safely
shut down the HotSpot VM and to ensure a thread is not performing operations in
the HotSpot VM along with there being no active Java frames on its stack. Specific
details of the operations performed by the HotSpot VM’s Java Native Interface
method implementation of DestroyJavaVM is described in the “DestroyJavaVM
Details” sidebar.

JNI_CreateJavaVM Details

The HotSpot VM’s implementation of the JNI_CreateJavaVM method performs the
following sequence of operations when it is called during the launch of the HotSpot VM.

 1. Ensure no two threads call this method at the same time and only one HotSpot VM
instance is created in the process.

 Because the HotSpot VM creates static data structures that cannot be reinitialized,
only one HotSpot VM can be created in a process space once a certain point in
initialization is reached. To the engineers who develop the HotSpot VM this stage
of launching a HotSpot VM is referred to as the “point of no return.”

 2. Check to make sure the Java Native Interface version is supported, and the output
stream is initialized for garbage collection logging.

 3. The OS modules are initialized such as the random number generator, the current
process id, high-resolution timer, memory page sizes, and guard pages. Guard pages
are no-access memory pages used to bound memory region accesses. For example,
often operating systems put a guard page at the top of each thread stack to ensure
references off the end of the stack region are trapped.

 4. The command line arguments and properties passed in to the JNI_CreateJavaVM
method are parsed and stored for later use.

 5. The standard Java system properties are initialized, such as java.version, java.vendor,
os.name, and so on.

ptg6882136

62 Chapter 3 � JVM Overview

 6. The modules for supporting synchronization, stack, memory, and safepoint pages
are initialized.

 7. Libraries such as libzip, libhpi, libjava, and libthread are loaded.

 8. Signal handlers are initialized and set.

 9. The thread library is initialized.

 10. The output stream logger is initialized.

 11. Agent libraries (hprof, jdi), if any are being used, are initialized and started.

 12. The thread states and the thread local storage, which holds thread specific data
required for the operation of threads, are initialized.

 13. A portion of the HotSpot VM global data is initialized such as the event log, OS
synchronization primitives, perfMemory (performance statistics memory), and
chunkPool (memory allocator).

 14. At this point, the HotSpot VM can create threads. The Java version of the main
thread is created and attached to the current operating system thread. However,
this thread is not yet added to the known list of threads.

 15. Java level synchronization is initialized and enabled.

 16. bootclassloader, code cache, interpreter, JIT compiler, Java Native Interface, system
dictionary, and universe are initialized.

 17. The Java main thread is now added to the known list of threads. The universe, a
set of required global data structures, is sanity checked. The HotSpot VMThread,
which performs all the HotSpot VM’s critical functions, is created. At this point
the appropriate JVMTI events are posted to notify the current state of the
HotSpot VM.

 18. The following Java classes java.lang.String, java.lang.System, java.
lang.Thread, java.lang.ThreadGroup, java.lang.reflect.Method,
java.lang.ref.Finalizer, java.lang.Class, and the rest of the Java
System classes are loaded and initialized. At this point, the HotSpot VM is initialized
and operational, but not quite fully functional.

 19. The HotSpot VM’s signal handler thread is started, the JIT compiler is initialized, and
the HotSpot’s compile broker thread is started. Other HotSpot VM helper threads
such as watcher threads and stat sampler are started. At this time the HotSpot VM
is fully functional.

 20. Finally, the JNIEnv is populated and returned to the caller and the HotSpot VM is
ready to service new JNI requests.

DestroyJavaVM Details

The DestroyJavaVM method can be called from the HotSpot launcher to shut down
the HotSpot VM when errors occur during the HotSpot VM launch sequence. The
DestroyJavaVM method can also be called by the HotSpot VM during execution, after
the HotSpot VM has been launched, when a very serious error occurs.

ptg6882136

HotSpot VM Runtime 63

The shutdown of the HotSpot VM takes the following steps through the DestroyJavaVM
method:

 1. Wait until there is only one nondaemon thread executing noting that the HotSpot
VM is still functional.

 2. Call the Java method java.lang.Shutdown.shutdown(), which invokes the
Java level shutdown hooks and runs Java object finalizers if finalization-on-exit is
true.

 3. Prepare for HotSpot VM exit by running HotSpot VM level shutdown hooks (those
that were registered through JVM_OnExit()), stop the following HotSpot VM
threads: profiler, stat sampler, watcher, and garbage collector threads. Post status
events to JVMTI, disable JVMTI, and stop the Signal thread.

 4. Call the HotSpot method JavaThread::exit() to release Java Native
Interface handle blocks, remove guard pages, and remove the current thread
from known threads list. From this point on the HotSpot VM cannot execute
any Java code.

 5. Stop the HotSpot VM thread. This causes the HotSpot VM to bring the remaining
HotSpot VM threads to a safepoint and stop the JIT compiler threads.

 6. Disable tracing at the Java Native Interface, HotSpot VM, and JVMTI barriers.

 7. Set HotSpot “vm exited” flag for threads that may be running in native code.

 8. Delete the current thread.

 9. Delete or remove any input/output streams and release PerfMemory (performance
statistics memory) resources.

 10. Finally return to the caller.

VM Class Loading

The Hotspot VM supports class loading as defined by the Java Language Speci-
fication, Third Edition, [2] the Java Virtual Machine Specification, Second Edi-
tion, [1] and as amended by the updated Java Virtual Machine Specification,
Chapter 5, Loading, Linking and Initializing. [3] The HotSpot VM and Java SE
class loading libraries share the responsibility for class loading. The HotSpot VM
is responsible for resolving constant pool symbols, that require loading, linking,
and then initializing Java classes and Java interfaces. The term class loading
is used to describe the overall process of mapping a class or interface name to a
class object, and the more specific terms loading, linking, and initializing for the
phases of class loading as defined by the Java Virtual Machine Specification. The
most common reason for class loading is during bytecode resolution, when a con-
stant pool symbol in a Java classfile requires resolution. Java APIs such as Class.
forName(), ClassLoader.loadClass(), reflection APIs, and JNI_FindClass
can initiate class loading. The HotSpot VM itself can also initiate class loading.

ptg6882136

64 Chapter 3 � JVM Overview

The HotSpot VM loads core classes such as java.lang.Object and java.lang.
Thread along with many others at HotSpot VM startup time. Loading a class
requires loading all Java superclasses and all Java superinterfaces. And classfile
verification, which is part of the linking phase, can require loading additional
classes. The loading phase is a cooperative effort between the HotSpot VM and
specific class loaders such as java.lang.ClassLoader.

Class Loading Phases

For a given Java class or Java interface, the load class phase takes its name, finds
the binary in Java classfile format, defines the Java class, and creates a java.lang.
Class object to represent that given Java class or Java interface. The load class
phase can throw a NoClassDefFound error if a binary representation of a Java
class or Java interface cannot be found. In addition, the load class phase does format
checking on the syntax of the classfile, which can throw a ClassFormatError or
UnsupportedClassVersionError. Before completing the load of a Java class, the
HotSpot VM must load all its superclasses and superinterfaces. If the class hierarchy
has a problem such that a Java class is its own superclass or superinterface (recur-
sively), then the HotSpot VM throws a ClassCircularityError. The HotSpot VM
also throws an IncompatibleClassChangeError if the direct superinterface is not
an interface, or the direct superclass is an interface.

The link phase first does verification, which checks the classfile semantics,
checks the constant pool symbols, and does type checking. These checks can throw a
VerifyError. Linking then does what is called preparation, which creates and
initializes static fields to standard defaults and allocates method tables. It is
worth noting at this point of execution no Java code has yet been run. The link
class phase then optionally does resolution of symbolic references. Next, class
initialization runs the class static initializers, and initializers for static fields.
This is the first Java code that runs for this class. It is important to note that
class initialization requires superclass initialization, although not superinterface
initialization.

The Java Virtual Machine Specification specifies that class initialization occurs on
the first active use of a class. However, the Java Language Specification allows flex-
ibility in when the symbolic resolution step of linking occurs as long as the seman-
tics of the language are held; the JVM finishes each step of loading, linking, and
initializing before performing the next step; and throws errors when Java programs
would expect them to be thrown. As a performance optimization, the HotSpot VM
generally waits until class initialization to load and link a class. This means if class
A references class B, loading class A will not necessarily cause loading of class B
(unless class B is required for verification). Execution of the first instruction that
references class B causes the class initialization of B, which requires loading and
linking of class B.

ptg6882136

HotSpot VM Runtime 65

Class Loader Delegation

When a class loader is asked to find and load a class, it can ask another class loader
to do the loading. This is called class loader delegation. The first class loader is an
initiating class loader, and the class loading that ultimately defines the class is
called the defining class loader. In the case of bytecode resolution, the initiating
class loader is the class loader for the class whose constant pool symbol is being
resolved.

Class loaders are defined hierarchically and each class loader has a delegation
parent. The delegation defines a search order for binary class representations. The
Java SE class loader hierarchy searches the bootstrap class loader, the extension
class loader, and the system class loader in that order. The system class loader is
the default application class loader, which loads the main Java method and loads
classes from the classpath. The application class loader can be a class loader
from the Java SE class loader libraries, or it can be provided by an applica-
tion developer. The Java SE class loader libraries implement the extension class
loader, which loads classes from the lib/ext directory of the JRE (Java Runtime
Environment).

Bootstrap Class Loader

The HotSpot VM implements the bootstrap class loader. The bootstrap class loader
loads classes from the HotSpot VM’s BOOTCLASSPATH, including for example
rt.jar, which contains the Java SE class libraries. For faster startup, the Client
HotSpot VM can also process preloaded classes via a feature called class data shar-
ing, which is enabled by default. It can be explicitly enabled with the -Xshare:on
HotSpot VM command line switch. Likewise, it can be explicitly disabled with
-Xshare:off. As of this writing, the Server HotSpot VM, does not support the
class data sharing feature, and class data sharing is also not supported on the Cli-
ent HotSpot VM when a garbage collector other than the serial garbage collector is
in use. Class data sharing is described in more detail in the “Class Data Sharing”
section later in this chapter.

Type Safety

A Java class or Java interface name is defined as a fully qualified name, which
includes the package name. A Java class type is uniquely determined by that
fully qualified name and the class loader. In other words, a class loader defines a
namespace. This means the same fully qualified class name loaded by two distinctly
defined class loaders results in two distinct class types. Given the existence of custom
class loaders, the HotSpot VM is responsible for ensuring that non-well-behaved class
loaders cannot violate type safety. See Dynamic Class Loading in the Java Virtual
Machine, [4] and the Java Virtual Machine Specification 5.3.4 [3] for additional infor-
mation. The HotSpot VM ensures that when class A calls B.someMethodName(),

ptg6882136

66 Chapter 3 � JVM Overview

A’s class loader and B’s class loader agree on someMethodName()’s parameters and
return type by tracking and checking class loader constraints.

Class Metadata in HotSpot

Class loading in the HotSpot VM creates an internal representation of a class in
either an instanceKlass or an arrayKlass in the HotSpot VM’s permanent generation
space. The HotSpot VM’s permanent generation space is described in more detailed in
the “HotSpot VM Garbage Collectors” section later in this chapter. The instanceKlass
refers to a Java mirror, which is the instance of java.lang.Class mirroring this
class. The HotSpot VM internally accesses the instanceKlass using an internal
data structure called a klassOop. An “Oop” is an ordinary object pointer. Hence, a
klassOop is an internal HotSpot abstraction for a reference, an ordinary object
pointer, to a Klass representing or mirroring a Java class.

Internal Class Loading Data

The HotSpot VM maintains three hash tables to track class loading. The System-
Dictionary contains loaded classes, which maps a class name/class loader pair to
a klassOop. The SystemDictionary contains both class name/initiating loader
pairs and class name/defining loader pairs. Entries are currently only removed at a
safepoint. Safepoints are described in more detail in the “VM Operations and Safe-
points” section later in the chapter. The PlaceholderTable contains classes that
are currently being loaded. It is used for ClassCircularityError checking and
for parallel class loading for class loaders that support multithreaded class loading.
The LoaderConstraintTable tracks constraints for type safety checking. These
hash tables are all guarded by a lock; in the HotSpot VM it is called the System-
Dictionary_lock. In general, the load class phase in the HotSpot VM is serialized
using the Class loader object lock.

Byte Code Verification

The Java language is a type-safe language, and standard Java compilers (javac)
produce valid classfiles and type-safe code; but a Java Virtual Machine cannot guar-
antee that the code was produced by a trustworthy javac compiler. It must reestab-
lish type-safety through a process at link time called bytecode verification. Bytecode
verification is specified in section 4.8 of the Java Virtual Machine Specification.
The specification prescribes both static and dynamic constraints on the code that a
Java Virtual Machine verifies. If any violations are found, the Java Virtual Machine
throws a VerifyError and prevents the class from being linked.

Many of the constraints on bytecodes can be checked statically, such as the
operand of an “ldc” bytecode must be a valid constant pool index whose type

ptg6882136

HotSpot VM Runtime 67

is CONSTANT_Integer, CONSTANT_String, or CONSTANT_Float. Other con-
straints that check the type and number of arguments for other instructions
requires dynamic analysis of the code to determine which operands will be pres-
ent on the expression stack during execution. There are currently two methods of
analyzing bytecodes to determine the types and number of operands present for
each instruction. The traditional method is called type inference. It operates by
performing an abstract interpretation of each bytecode and merging type states
at branch targets or exception handles. The analysis iterates over the bytecode
until a steady state for the types is found. If a steady state cannot be found, or
if the resulting types violate some bytecode constraint, then a VerifyError is
thrown. The code for this verification step is present in the HotSpot VM’s libverify.
so external library, and uses JNI to gather whatever information is needed for
classes and types.

New in the Java 6 HotSpot VMs is a second method for verification called type
verification. In this approach the Java compiler provides the steady-state type infor-
mation for each branch target or exception target, via the code attribute, Stack-
MapTable. The StackMapTable consists of a number of stack map frames; each
indicates the types of the items on the expression stack and in the local variables at
some offset in the method. The Java Virtual Machine needs to then only perform one
pass through the bytecode to verify the correctness of the types to verify the bytecode.
This verification approach is faster and smaller than the traditional type inference
approach for bytecode verification approach.

For all classfiles with a version number less than 50, such as those created prior
to Java 6, the HotSpot VM uses the traditional type inference method to verify the
classfiles. For classfiles greater than or equal to 50, the StackMapTable attri-
butes are present and the new “type verification” verifier is used. Because of the
possibility of older external tools that might instrument the bytecode but neglect
to update the StackMapTable attribute, certain verification errors that occur dur-
ing type-checking verification may failover to the type inference method. Should
this type inference verification pass fail, only then will the HotSpot VM throw a
VerifyError.

Class Data Sharing

Class data sharing is a feature introduced in Java 5 that was intended to reduce
the startup time for Java applications, in particular small Java applications, as well
as reduce their memory footprint. When the Java Runtime Environment (JRE) is
installed on 32-bit platforms using the Java HotSpot JRE provided installer, the
installer loads a set of classes from the system jar file into a private internal rep-
resentation, and dumps that representation to a file, called a shared archive. If the

ptg6882136

68 Chapter 3 � JVM Overview

Java HotSpot JRE installer is not being used, this can be done manually. During
subsequent Java Virtual Machine invocations, the shared archive is memory-mapped
into the JVM, which saves the cost of loading those classes and allowing much of
the JVM’s metadata for these classes to be shared among multiple JVM processes.

Tip

As of the writing of this chapter (Java 6 Update 21), class data sharing is supported only with
the HotSpot Client VM, and only with the serial garbage collector.

The primary motivation for the class data sharing feature is the decrease in
startup time it provides. Class data sharing produces better results for smaller appli-
cations because it eliminates a fixed cost of loading certain Java SE core classes. The
smaller the application relative to the number of Java SE core classes it uses, the
larger the saved fraction of startup time.

With class data sharing, the memory footprint cost of new JVM instances is
reduced in two ways. First, a portion of the shared archive, currently between five
and six megabytes of space, is memory mapped read-only and therefore shared
among multiple JVM processes. Previously this data was replicated in each JVM
instance. Second, since the shared archive contains class data in the form in which
the Hotspot VM uses it, the memory that would otherwise be required to access the
original class information in the Java SE core libraries jar file, rt.jar, is not needed.
These savings allow more applications to be run concurrently on the same machine.
On Microsoft Windows, the footprint of a process, as measured by various tools, may
appear to increase, because a larger number of pages are being mapped into the pro-
cess address space. This is offset by the reduction in the amount of memory (inside
Windows) that is needed to hold portions of the Java SE library jar file rt.jar. Reduc-
ing memory footprint in the HotSpot VM remains a high priority.

In the HotSpot VM, the class data sharing implementation introduces new Java
subspaces into the permanent generation space that contains the shared data. The
classes.jsa shared archive is memory mapped into these spaces in permanent gen-
eration at HotSpot VM startup time. Subsequently, the shared region is managed by
the existing HotSpot VM memory management subsystem. Read-only shared data,
which is one of the new subspaces in permanent generation includes constant method
objects, symbol objects and arrays of primitives, mostly character arrays. Read-write
shared data, the other new Java heap space introduced in permanent generation,
consists of mutable method objects, constant pool objects, HotSpot VM internal rep-
resentation of Java classes and arrays, and various String, Class, and Exception
objects.

ptg6882136

HotSpot VM Runtime 69

Interpreter

The HotSpot VM interpreter is a template based interpreter. The HotSpot VM
Runtime generates the interpreter in memory at JVM startup using information
stored internally in a data structure called a TemplateTable. The TemplateTable
contains machine dependent code corresponding to each bytecode. A template is a
description of each bytecode. The HotSpot VM’s TemplateTable defines all the tem-
plates and provides accessor functions to get the template for a given bytecode. The
template table generated in memory can be viewed using what is called a HotSpot
“debug” VM and the nonproduct flag -XX:+PrintInterpreter.

Tip

A HotSpot debug VM is a version of the HotSpot VM that contains additional debugging
information and additional HotSpot VM command line options that can be used together to
debug, or further instrument the HotSpot VM. Its use is not recommended for production
environments.

The template design of the HotSpot VM interpreter performs better than a classic
switch statement loop approach. For example, a switch statement approach must per-
form repeated compare operations. In the worst case, the switch statement approach
may be required to compare a given command with all but one bytecodes to locate the
required one. Additionally, the switch statement approach must use a separate soft-
ware stack to pass Java arguments. The HotSpot VM uses the native C stack to pass
Java arguments. A number of HotSpot VM internal variables, such as the program
counter or the stack pointer for a Java thread, are stored in C variables, that are not
guaranteed to be always kept in underlying hardware registers. As a result, the man-
agement of these software interpreter data structures consumes a considerable share
of total execution time. [5] Overall, the performance gap between the HotSpot VM and
the real machine is significantly narrowed by the HotSpot interpreter, which makes
the interpretation speed considerably higher. However, this comes at a price of large
amounts of machine-specific code. For example, approximately 10,000 lines of code
are dedicated to Intel x86 platforms, and about 14,000 lines of code are dedicated to
SPARC platforms. The overall code size and complexity are also significantly higher,
since the code supporting dynamic code generation (JIT compilation) is needed. Obvi-
ously, debugging dynamically generated machine code (JIT compiled code) is much
more difficult than debugging static code. These properties certainly do not facilitate
implementation of runtime evolution, but they do not make it infeasible either. [5]

There are interpreter calls out to the HotSpot VM Runtime for complex opera-
tions, which are essentially anything too complex or complicated to do in assembly
language such as constant pool lookup.

ptg6882136

70 Chapter 3 � JVM Overview

The HotSpot VM interpreter is also a critical part of the overall HotSpot VM adap-
tive optimization story. Adaptive optimization solves the problems of JIT compila-
tion by taking advantage of an interesting program property. Virtually all programs
spend the vast majority of their time executing a minority of their code. Rather
than compiling method by method, “just in time” or “ahead of time,” the HotSpot
VM immediately runs the program using an interpreter, and analyzes the code as
it runs to detect the critical hot spots in the program. Then it focuses the attention
of a global machine code optimizer on those hot spots. By avoiding compilation of
infrequently executed code the HotSpot VM JIT compiler can devote more attention
to the performance-critical parts of the program, without necessarily increasing the
overall compilation time.

Tip

The term JIT compiler is not very descriptive for how the HotSpot VM utilizes a compiler to
generate optimized machine dependent code. The HotSpot VM actually generates machine
code dynamically as it observes a program’s behavior rather than compiling it “just in time”
or “ahead of time.”

This hot spot monitoring is continued dynamically as the program runs, so that it lit-
erally adapts its performance on the fly to the program’s execution and the user’s needs.

Exception Handling

Java Virtual Machines use exceptions to signal that a program has violated the
semantic constraints of the Java language. For example, an attempt to index outside
the bounds of an array causes an exception. An exception causes a nonlocal transfer
of control from the point where the exception occurred, or was thrown, to a point
specified by the programmer, or where the exception is caught. [6] The HotSpot VM
interpreter, its JIT compilers, and other HotSpot VM components all cooperate to
implement exception handling. There are two general cases of exception handling;
either the exception is thrown or caught in the same method, or it is caught by a
caller. The latter case is more complicated and requires stack unwinding to find the
appropriate handler. Exceptions can be initiated by the thrown bytecode, a return
from a VM-internal call, a return from a JNI call, or a return from a Java call. The
last case is simply just a later stage of the first three. When the VM recognizes that
an exception has been thrown, the HotSpot VM Runtime system is invoked to find
the nearest handler for that exception. Three pieces of information are used to find
the handler: the current method, the current bytecode, and the exception object. If
a handler is not found in the current method, as mentioned previously, the current

ptg6882136

HotSpot VM Runtime 71

activation stack frame is popped and the process is iteratively repeated for previous
frames. Once the correct handler is found, the HotSpot VM execution state is updated,
and the HotSpot VM jumps to the handler as Java code execution is resumed.

Synchronization

Broadly, synchronization is described as a mechanism that prevents, avoids, or
recovers from the inopportune interleavings, commonly called races, of concurrent
operations. In Java, concurrency is expressed through the thread construct. Mutual
exclusion is a special case of synchronization where at most a single thread is per-
mitted access to protected code or data. The HotSpot VM provides Java monitors by
which threads running application code can participate in a mutual exclusion pro-
tocol. A Java monitor is either locked or unlocked, and only one thread may own the
monitor at any one time. Only after acquiring ownership of a monitor may a thread
enter a critical section protected by the monitor. In Java, critical sections are referred
to as synchronized blocks and are delineated in code by the synchronized statement.

If a thread attempts to lock a monitor and the monitor is in an unlocked state,
the thread immediately gains ownership of the monitor. If a subsequent second
thread attempts to gain ownership of the monitor while the monitor is locked that
second thread will not be permitted to proceed into the critical section until the
owner releases the lock and the second thread manages to gain (or is granted)
exclusive ownership of the lock. For clarification, to enter a monitor means to
acquire exclusive ownership of the monitor and enter the associated critical section.
Likewise, to exit a monitor means to release ownership of the monitor and exit the
critical section. Additionally, a thread that has locked a monitor, owns that moni-
tor. Uncontended refers to synchronization operations on an otherwise unowned
monitor by only a single thread.

The HotSpot VM incorporates leading-edge techniques for both uncontended and
contended synchronization operations, which boost synchronization performance by a
large factor. Uncontended synchronization operations, which comprise the majority of
synchronizations, are implemented with constant time techniques. With biased lock-
ing, a feature introduced in Java 5 HotSpot VMs with the -XX:+UseBiasedLocking
command line option, in the best case these operations are essentially free of cost.
Since most objects are locked by at most one thread during their lifetime, enabling
-XX:+UseBiasedLocking allows that thread to bias the lock toward itself. Once
biased, that thread can subsequently lock and unlock the object without resorting to
expensive atomic instructions. [7]

Contended synchronization operations use advanced adaptive spinning techniques
to improve throughput even for applications with significant amounts of lock con-
tention. As a result, synchronization performance becomes so fast that it is not a
significant performance issue for the vast majority of real-world programs.

ptg6882136

72 Chapter 3 � JVM Overview

In the HotSpot VM, most synchronization is handled through what is called fast-
path code. The HotSpot VM has two JIT compilers and an interpreter, all of which
will emit fast-path code. To HotSpot engineers, the JIT compilers are known as “C1”
—the -client JIT compiler—and “C2”—the -server JIT compiler. C1 and C2 both
emit fast-path code directly at the synchronization site. In the normal case when
there is no contention, the synchronization operation will be completed entirely in
fast-path code. If, however, there is a need to block or wake a thread (in monitor-enter
or monitor-exit state, respectively), the fast-path code will call into the slow-path
code. The slow-path implementation is C++ code, while fast-path code is machine
dependent code emitted by the JIT compilers.

Java object synchronization state is encoded for every Java object internally within
the HotSpot VM’s object representation of that Java object in the first word, often
referred to as the mark word. For several states, the mark word is multiplexed to
point to additional synchronization metadata. The possible Java object synchroniza-
tion states stored in HotSpot VM’s mark word are

� Neutral. Unlocked.
� Biased. Locked/Unlocked + Unshared.
� Stack-Locked. Locked + Shared but uncontended. Shared means the mark

points to a displaced mark word on the owner thread’s stack.
� Inflated. Locked/Unlocked + Shared and contended. Threads are blocked

in monitorenter or wait(). The mark points to a heavyweight “objectmonitor”
structure.

As a side note, the mark word is also multiplexed to contain the garbage collector’s
object age data, and the object’s identity hash code value.

Thread Management

Thread management covers all aspects of the thread life cycle, from creation through
termination along with the coordination of threads within the HotSpot VM. This
involves management of threads created from Java code, regardless of whether they
are created from application code or library code, native threads that attach directly
to the HotSpot VM, or internal HotSpot VM threads created for other purposes. While
the broader aspects of thread management are platform independent, the details
vary depending on the underlying operating system.

Threading Model

The threading model in the Hotspot VM is a one-to-one mapping between Java
threads, an instance of java.lang.Thread, and native operating system threads.
A native operating system thread is created when a Java thread is started and is

ptg6882136

HotSpot VM Runtime 73

reclaimed once it terminates. The operating system is responsible for scheduling
all threads and dispatching them to an available CPU. The relationship between
Java thread priorities and operating system thread priorities is a complex one that
varies across systems.

Thread Creation and Destruction

There are two ways for a thread to be introduced in the HotSpot VM; either by exe-
cuting Java code that calls the start() method on a java.lang.Thread object,
or by attaching an existing native thread to the HotSpot VM using JNI. Other
threads created by the HotSpot VM for internal use are discussed later. Internally
to the HotSpot VM there are a number of objects, both C++ and Java, associated
with a given thread in the HotSpot VM. These objects, both Java and C++, are as
follows:

� A java.lang.Thread instance that represents a thread in Java code.
� A C++ JavaThread instance that represents the java.lang.Thread instance

internally within the HotSpot VM. It contains additional information to track
the state of the thread. A JavaThread holds a reference to its associated java.
lang.Thread object, as an ordinary object pointer, and the java.lang.Thread
object also stores a reference to its JavaThread as a raw int. A JavaThread
also holds a reference to its associated OSThread instance.

� An OSThread instance represents an operating system thread and contains
additional operating-system-level information needed to track thread state.
The OSThread also contains a platform specific “handle” to identify the actual
thread to the operating system.

When a java.lang.Thread is started the HotSpot VM creates the associated
JavaThread and OSThread objects, and ultimately the native thread. After prepar-
ing all the HotSpot VM state, such as thread-local storage and allocation buffers,
synchronization objects and so forth, the native thread is started. The native thread
completes initialization and then executes a startup method that leads to the execu-
tion of the java.lang.Thread object’s run() method, and then, upon its return,
terminates the thread after dealing with any uncaught exceptions, and interacting
with the HotSpot VM to check whether termination of this thread requires termina-
tion of the entire HotSpot VM. Thread termination releases all allocated resources,
removes the JavaThread from the set of known threads, invokes destructors for the
OSThread and JavaThread, and ultimately ceases execution when its initial startup
method completes.

A native thread attaches to the HotSpot VM using the JNI call AttachCurrent-
Thread. In response to this an associated OSThread and JavaThread instance is

ptg6882136

74 Chapter 3 � JVM Overview

created, and basic initialization is performed. Next a java.lang.Thread object
must be created for the attached thread; this is done by reflectively invoking the Java
code for the Thread class constructor, based on the arguments supplied when the
thread attached. Once attached, a thread can invoke whatever Java code it needs via
other JNI methods. Finally, when the native thread no longer wishes to be involved
with the HotSpot VM it can call the JNI DetachCurrentThread method to disas-
sociate it from the HotSpot VM by releasing resources, dropping the reference to the
java.lang.Thread instance, destructing the JavaThread and OSThread objects,
and so on.

A special case of attaching a native thread is the initial creation of the HotSpot
VM via the JNI CreateJavaVM call, which can be done by a native application or
by the HotSpot VM launcher. This causes a range of initialization operations to take
place and then acts effectively as if a call to AttachCurrentThread was made. The
thread can then invoke Java code as needed, such as reflective invocation of the Java
main method of an application. See the “Java Native Interface” section later in the
chapter for further details.

Thread States

The HotSpot VM uses a number of different internal thread states to characterize
what each thread is doing. This is necessary both for coordinating the interactions of
threads and for providing useful debugging information if things go wrong. A thread’s
state transitions as different actions are performed, and these transition points are
used to check that it is appropriate for a thread to proceed with the requested action
at that point in time; see the discussion of safepoints for details.

From the HotSpot VM perspective the possible states of the main thread are

� New thread. A new thread in the process of being initialized
� Thread in Java. A thread that is executing Java code
� Thread in vm. A thread that is executing inside the HotSpot VM
� Blocked thread. The thread is blocked for some reason (acquiring a lock,

waiting for a condition, sleeping, performing a blocking I/O operation, and so
on)

For debugging purposes additional state information is also maintained for report-
ing by tools, in thread dumps, stack traces, and so on. This is maintained in the
internal HotSpot C++ object OSThread. Thread states reported by tools, in thread
dumps, stack traces, and so on, include

� MONITOR_WAIT. A thread is waiting to acquire a contended monitor lock.
� CONDVAR_WAIT. A thread is waiting on an internal condition variable used

by the HotSpot VM (not associated with any Java object).

ptg6882136

HotSpot VM Runtime 75

� OBJECT_WAIT. A Java thread is performing a java.lang.Object.wait()
call.

Other HotSpot VM subsystems and libraries impose their own thread state informa-
tion, such as the JVMTI system and the thread state exposed by the java.lang.
Thread class itself. Such information is generally not accessible to, nor relevant to,
the management of threads inside the HotSpot VM.

Internal VM Threads

Much to the surprise of many, the executing of a trivial “Hello World” Java program
can result in the creation of a dozen or more threads in the HotSpot VM. These arise
from a combination of internal HotSpot VM threads and HotSpot VM library related
threads such as the reference handler and finalizer threads. The internal HotSpot
VM threads are

� VM thread. A singleton C++ object instance that is responsible for executing
VM operations. VM operations are further discussed in the next subsection.

� Periodic task thread. A singleton C++ object instance, also called the Watch-
erThread, simulates timer interrupts for executing periodic operations within
the HotSpot VM.

� Garbage collection threads. These threads, of different types, support the
serial, parallel, and concurrent garbage collection.

� JIT compiler threads. These threads perform runtime compilation of byte-
code to machine code.

� Signal dispatcher thread. This thread waits for process directed signals
and dispatches them to a Java level signal handling method.

All these threads are instances of the internal HotSpot C++ Thread class, and
all threads that execute Java code are internal HotSpot C++ JavaThread instances.
The HotSpot VM internally keeps track of all threads in a linked-list known as the
Threads_list and is protected by the Threads_lock—one of the key synchroni-
zation locks used within the HotSpot VM.

VM Operations and Safepoints

The internal HotSpot VM VMThread spends its time waiting for operations to appear
in a C++ object called VMOperationQueue and executing those operations. Typi-
cally these operations are passed on to the VMThread because they require that the
HotSpot VM reach what is called a safepoint before they can be executed. In simple
terms, when the HotSpot VM is at a safepoint all Java executing threads are blocked,
and any threads executing in native code are prevented from returning to Java code
while the safepoint is in progress. This means that a HotSpot VM operation can be

ptg6882136

76 Chapter 3 � JVM Overview

executed knowing that no thread can be in the middle of modifying the Java heap,
and all threads are in a state where their Java stacks are not changing and can be
examined.

The most familiar HotSpot VM safepoint operation is to support garbage collec-
tion, or more specifically stop-the-world phases of garbage collection.

Tip

“Stop-the-world” in the context of garbage collection means that all Java executing threads
are blocked or stopped from executing in Java code while the garbage collector frees up
memory as a result of finding Java objects no longer in use by the application. If an application
thread is executing in native code (i.e., JNI), it is allowed to continue, but will block if it
attempts to cross the native boundary into Java code.

There many other safepoints, such as biased locking revocation, thread stack
dumps, thread suspension or stopping (i.e., java.lang.Thread.stop() method),
and numerous inspection and modification operations requested through JVMTI.

Many HotSpot VM operations are synchronous, that is, the requester blocks until the
operation has completed, but some are asynchronous or concurrent, meaning that the
requester can proceed in parallel with the VMThread (assuming no safepoint is initiated).

Safepoints are initiated using a cooperative, polling-based mechanism. In simplis-
tic terms, every so often a thread asks “should I block for a safepoint?” Asking this
question efficiently is not so simple. One place where the question is often asked
is during a thread state transition. Not all state transitions do this, for example,
a thread leaving the HotSpot VM to go to native code, but many do. Another place
where a thread asks, “should I block for a safepoint?” is when JIT compiled code is
returning from a method or at certain stages during loop iteration. Threads executing
interpreted code do not usually ask whether they should block for a safepoint. Instead
the safepoint is requested when the interpreter switches to a different dispatch table.
Included as part of the switching operation is code that asks when the safepoint is
over. When the safepoint is over, the dispatch table is switched back again. Once a
safepoint has been requested, the VMThread must wait until all threads are known
to be in a safepoint-safe state before proceeding to execute a VM operation. During
a safepoint the Threads_lock is used to block any threads that are running. The
VMThread releases the Threads_lock after the VM operation has been performed.

C++ Heap Management

In addition to HotSpot VM’s Java heap, which is maintained by the HotSpot VM’s
memory manager and garbage collectors, the HotSpot VM also uses a C/C++ heap
for storage of HotSpot VM internal objects and data. Within the HotSpot VM and

ptg6882136

HotSpot VM Runtime 77

not exposed to a user of the HotSpot VM, a set of C++ classes derived from a base
class called Arena is used to manage the HotSpot VM C++ heap operations. The
Arena base class and its subclasses provide a rapid C/C++ allocation layer that
sits on top of the C/C++ malloc/free memory management routines. Each Arena
allocates memory blocks (internally the HotSpot VM refers to them as Chunks) from
three global ChunkPools. Each ChunkPool satisfies allocation requests for a dis-
tinct range of allocation sizes. For example, an allocation request for 1K of memory
is allocated from the “small” ChunkPool, while a 10K allocation request is made
from the “medium” ChunkPool. This is done to avoid wasteful memory fragmenta-
tion. The Arena approach for allocating memory provides better performance than
directly using the C/C++ malloc/free memory management routines. The latter
operations may require acquisition of global OS locks, which can affect scalability
and impact performance.
Arenas are thread-local objects that cache a certain amount of memory storage.

This allows for fast-path allocation where a global shared lock is not required.
Likewise, Arena free operations do not require a lock in the common uses of
releasing memory back to the Chunks. Arenas are also used for thread-local
resource management implemented internally within the HotSpot VM as a C++
object called ResourceArea. Arenas are additionally used for handle manage-
ment implemented internally within the HotSpot VM as a C++ HandleArea
object. Both the HotSpot client and server JIT compilers use Arenas during JIT
compilation.

Java Native Interface

The Java Native Interface, referred to as JNI hereafter, is a native programming
interface. It allows Java code that runs inside a Java Virtual Machine to interoper-
ate with applications and libraries written in other programming languages, such
as C, C++, and assembly language. Although applications can be written entirely in
Java, there are circumstances where Java alone does not meet the requirements of
an application. Programmers can use JNI to write native methods to handle those
situations when an application cannot be written entirely in Java.

JNI native methods can be used to create, inspect, and update Java objects, call
Java methods, catch and throw exceptions, load classes and obtain class information,
and perform runtime type checking. JNI may also be used with the Invocation API to
enable an arbitrary native application to embed the Java VM. This allows program-
mers to easily make their existing applications Java-enabled without having to link
with the VM source code. [8]

It is important to remember that once an application uses JNI, it risks losing
two benefits of the Java platform. First, Java applications that depend on JNI can
no longer readily run on multiple heterogeneous hardware platforms. Even though

ptg6882136

78 Chapter 3 � JVM Overview

the part of an application written in the Java programming language is portable to
multiple heterogeneous hardware platforms, it is necessary to recompile the part
of the application written in native programming languages. In other words, using
JNI loses one of the Java promises, “write once, run anywhere.” Second, the Java
programming language is type-safe and secure; native languages such as C or C++
are not. As a result, Java developers must use extra care when writing applications
using JNI. A misbehaving native method can corrupt an entire application. For this
reason, Java applications are subject to security checks before invoking JNI meth-
ods. The additional security checks and the copying of data between the Java layer
and JNI layer within the HotSpot VM can infringe on an application’s performance.

Tip

As a general rule, developers should architect their application so that native methods are
defined in as few classes as possible. This entails a cleaner isolation between native code and
the rest of the application. [9]

The HotSpot VM provides a command line option to aid in debugging problems with
native methods using JNI called -Xcheck:jni. Specifying -Xcheck:jni causes
an alternate set of debugging interfaces to be used by an application’s JNI calls.
The alternate interface verifies arguments to JNI calls more stringently, as well as
performing additional internal consistency checks.

Internally to the HotSpot VM, the implementation of JNI functions is straightfor-
ward. It uses various HotSpot VM internal primitives to perform activities such as
object creation, method invocation, and so on. In general, these are the same runtime
primitives used by other HotSpot VM subsystems such as the interpreter described
earlier in this chapter.

The HotSpot VM must take special care to keep track of which threads are cur-
rently executing in native methods. During some HotSpot VM activities, most notably
some phases of garbage collection, one or more threads must be halted at a safepoint
to guarantee that the Java memory heap is not modified to ensure garbage collection
accuracy. When the HotSpot VM wants to bring a thread executing in native code
to a safepoint, that thread is allowed to continue executing in native code until it
attempts to either return into Java code or makes a JNI call.

VM Fatal Error Handling

The designers of the HotSpot VM believe it is important to provide sufficient informa-
tion to its users and developers to diagnose and fix VM fatal errors. A common VM
fatal error is an OutOfMemoryError. Another common fatal error on Solaris and
Linux platforms is a segmentation fault. The equivalent error on Windows is called

ptg6882136

HotSpot VM Runtime 79

Access Violation error. When these fatal errors occur, it is critical to understand the
root cause to fix them. Sometimes the resolution to the root cause requires a change
in a Java application, and sometimes the root cause is within the HotSpot VM. When
the HotSpot VM crashes on a fatal error, it dumps a HotSpot error log file called
hs_err_pid<pid>.log where <pid> is replaced with the process id of the crashed
HotSpot VM. The hs_err_pid<pid>.log file is created in the directory where HotSpot
VM was launched. Since this feature’s initial introduction in HotSpot VM 1.4.2 version,
many enhancements have been made to improve the diagnosability of the root cause
of a fatal error. These additional enhancements include

� A memory map is included in the hs_err_pid<pid>.log error log file to make it
is easy to see how memory is laid out during the VM crash.

� A -XX:ErrorFile command line option is provided so you can set the path
name of the hs_err_pid<pid>.log error log file.

� An OutOfMemoryError also triggers the hs_err_pid<pid>.log file to be
generated.

An additional popular feature often used to diagnose the root cause of a VM fatal
error is using the HotSpot VM command line option -XX:OnError=cmd1 args...;
com2 This HotSpot VM command line option executes the list of commands
given to -XX:OnError whenever the HotSpot VM crashes. A common use of this fea-
ture is invoking a debugger such as Linux/Solaris dbx or Windows Winddbg to imme-
diately examine the crash. For releases that do not have support for -XX:OnError,
an alternative HotSpot VM command line option can be used called -XX:+Show
MessageBoxOnError. This option stops the VM before it exits by displaying a dia-
log box saying the VM has experienced a fatal error. This provides an opportunity
to attach to the HotSpot VM with a debugger prior to it exiting.

When the HotSpot VM experiences a fatal error, it internally uses a class called
VMError to aggregate and dump the hs_err_pid<pid>.log file. The VMError class is
invoked by operating specific code when an unrecognized signal or exception is observed.

Tip

The HotSpot VM uses signals internally for communication. The fatal error handler in the
HotSpot VM is invoked when a signal is not recognized. This unrecognized case may originate
from a fault in application JNI code, OS native libraries, JRE native libraries, or the HotSpot
VM itself.

The HotSpot VM’s fatal error handler had to be carefully written to avoid causing
faults itself as a result of fatal errors such as StackOverflow or fatal errors when
critical locks are held such as a malloc lock.

ptg6882136

80 Chapter 3 � JVM Overview

Since an OutOfMemoryError is possible to experience, especially on some large
scale applications, it is critical to provide useful diagnostic information to users so a
resolution can be quickly identified. Often it can be resolved by just simply specifying
a larger Java heap size. When an OutOfMemoryError happens, the error message
indicates which type of memory is problematic. For example, it could be a result of a
Java heap space or permanent generation space being specified as too small. Begin-
ning with Java 6, a stack trace is included in the error message produced by the
HotSpot VM. Also, the -XX:OnOutOfMemoryError=<cmd> option was introduced so
a command can be run when the first OutOfMemoryError is thrown. An additional
useful feature worth mentioning is being able to generate a heap dump on an Out
OfMemoryError. This can be enabled by specifying -XX:+HeapDumpOnOutOfMemory
Error HotSpot VM command line option. There is an additional HotSpot VM com-
mand line option that allows a user to specify a path where the heap dump will be
placed, -XX:HeapDumpPath=<pathname>.

Although applications are written with the intent to avoid thread deadlocks, devel-
opers sometimes make mistakes and deadlocks occur. When a deadlock occurs, doing
a Ctrl + Break on Windows forces a Java level thread stack trace to print to standard
output. On Solaris and Linux, sending a SIGQUIT signal to the Java process id does
the same. With a thread stack trace, the source of the deadlock can be analyzed.
Beginning with Java 6, the bundled JConsole tool added the capability to attach to
a hung Java process and analyze the root cause of the deadlock. Most of the time, a
deadlock is caused by acquiring locks in the wrong order.

Tip

The “Trouble-Shooting and Diagnostic Guide” [10] for Java 5 contains a lot of information
that may be useful to diagnosing fatal errors.

HotSpot VM Garbage Collectors

“Heap storage for objects is reclaimed by an automatic storage management system
(typically a garbage collector); objects are never explicitly de-allocated.”

—Java Virtual Machine Specification [1]

The Java Virtual Machine (JVM) specification dictates that any JVM implementa-
tion must include a garbage collector to reclaim unused memory (i.e., unreachable
objects).[1] The behavior and efficiency of the garbage collector used can heavily influ-
ence the performance and responsiveness of an application that’s taking advantage of

ptg6882136

HotSpot VM Garbage Collectors 81

it. This section gives an introduction to the garbage collectors included in the HotSpot
VM. The aim is to gain a better understanding of how garbage collection works in
the HotSpot VM and, as a result, be able to take full advantage of it when designing,
developing, and deploying applications.

Generational Garbage Collection

The HotSpot VM uses a generational garbage collector, [11] a well-known garbage
collection approach that relies on the following two observations:

� Most allocated objects become unreachable quickly.
� Few references from older to younger objects exist.

These two observations are collectively known as the weak generational hypoth-
esis, which generally holds true for Java applications. To take advantage of this
hypothesis, the HotSpot VM splits the heap into two physical areas (also called
spaces), which are referred to as generations:

� The young generation. Most newly allocated objects are allocated in the
young generation (see Figure 3-2), which, relatively to the Java heap, is typi-
cally small and collected frequently. Since most objects in it are expected to
become unreachable quickly, the number of objects that survive a young gen-
eration collection (also referred to as a minor garbage collection) is expected to
be low. In general, minor garbage collections are efficient because they concen-
trate on a space that is usually small and is likely to contain a lot of garbage
objects.

� The old generation. Objects that are longer-lived are eventually promoted,
or tenured, to the old generation (see Figure 3-2). This generation is typically
larger than the young generation, and its occupancy grows more slowly. As a
result, old generation collections (also referred to as major garbage collections,
or full garbage collections) are infrequent, but when they do occur they can be
quite lengthy.

� The permanent generation. This is a third area in the HotSpot VM’s mem-
ory layout, and it is also shown in Figure 3-2. Even though it is also referred to
as a generation, it should not be seen as part of the generation hierarchy (i.e.,
user-allocated objects do not eventually move from the old generation to the
permanent generation). Instead, it is only used by the HotSpot VM itself to hold
metadata, such as class data structures, interned strings, and so on.

ptg6882136

82 Chapter 3 � JVM Overview

Figure 3-2 HotSpot VM generational spaces

Young Generation

Old Generation

Permanent Generation

Allocation

Promotion

To keep minor garbage collections short, the garbage collector must be able to
identify live objects in the young generation without having to scan the entire (and
potentially larger) old generation. To achieve this, the garbage collectors in the Hot-
Spot VM use a data structure called a card table. [11] The old generation is split into
512-byte chunks called cards. The card table is an array with one byte entry per card
in the heap. Every update to a reference field of an object must also ensure that the
card containing the updated reference field is marked dirty by setting its entry in
the card table to the appropriate value. During a minor garbage collection, only the
areas that correspond to dirty cards are scanned to potentially discover old-to-young
generation references (see Figure 3-3).

Figure 3-3 Garbage collector interaction with the card table

Young Generation

Old Generation

Card Table

ptg6882136

HotSpot VM Garbage Collectors 83

In cooperation with the bytecode interpreter and the JIT compiler, the HotSpot VM
uses a write barrier [11] to maintain the card table. This barrier is a small fragment
of code that sets an entry of the card table to the dirty value. The interpreter executes
a write barrier every time it executes a bytecode that updates a reference field. Addi-
tionally, the JIT compiler emits the write barrier after emitting the code that updates
a reference field. Although write barriers do impose a small performance overhead on
the application threads, their use allows for much faster minor garbage collections,
and much higher overall garbage collector efficiency, which typically improves the
throughput of an application.

Tip

The bytecode interpreter is considered part of the HotSpot VM Runtime. Additional
information on the HotSpot VM Runtime can be found in the “HotSpot VM Runtime” section
earlier in this chapter. Likewise, additional information on the HotSpot JIT compiler can be
found in the “HotSpot VM JIT Compilers” section later in this chapter.

A big advantage of generational garbage collection is that each generation can be
managed by the garbage collection algorithm most appropriate for its characteristics.
A fast garbage collector usually manages the young generation, as minor garbage
collections are frequent. This garbage collector might be a little space wasteful, but
since the young generation typically is a small portion of the Java heap, this is not
a big problem. On the other hand, a garbage collector that is space efficient usually
manages the old generation, as the old generation takes up most of the Java heap.
This garbage collector might not be quite as fast, but because full garbage collections
are infrequent, it doesn’t have a big performance impact.

To take full advantage of generational garbage collection, applications should
conform to the weak generational hypothesis, as it is what generational garbage col-
lection exploits. For the Java applications that do not do so, a generational garbage
collector might add more overhead. In practice, however, such applications are rare.

The Young Generation

Figure 3-4 illustrates the layout of the young generation of the HotSpot VM (the
spaces are not drawn to proportion). It is split into three separate areas (or spaces):

� The eden. This is where most new objects are allocated (not all, as large
objects may be allocated directly into the old generation). The eden is almost
always empty after a minor garbage collection. A case where it may not be
empty is described in Chapter 7, “Tuning the JVM, Step By Step.”

ptg6882136

84 Chapter 3 � JVM Overview

Figure 3-4 Eden and survivor spaces of young generation

Eden

Survivor Spaces

Young Generation

Old Generation

From To

Unused

� The two survivor spaces. These hold objects that have survived at least
one minor garbage collection but have been given another chance to become
unreachable before being promoted to the old generation. As illustrated in
Figure 3-4, only one of them holds objects, while the other is most of the time
unused.

Figure 3-5 illustrates the operation of a minor garbage collection. Objects that
have been found to be garbage are marked with a gray X. As seen in Figure 3-5a,
live objects in the eden that survive the collection are copied to the unused survivor
space. Live objects in the survivor space that is in use, which will be given another
chance to be reclaimed in the young generation, are also copied to the unused survi-
vor space. Finally, live objects in the survivor space that is in use, that are deemed
“old enough,” are promoted to the old generation.

Figure 3-5 Minor garbage collection illustration

Eden

(a) (b)

Survivor Spaces

Young Generation

Old Generation

From To

Unused

EdenYoung Generation

Old Generation

To From Survivor Spaces

Unused

Empty

ptg6882136

HotSpot VM Garbage Collectors 85

At the end of the minor garbage collection, the two survivor spaces swap roles (see
Figure 3-5b). The eden is entirely empty; only one survivor space is in use; and the
occupancy of the old generation has grown slightly. Because live objects are copied dur-
ing its operation, this type of garbage collector is called a copying garbage collector. [11]

It should be pointed out that, during a minor garbage collection, there is no guar-
antee that the allocating survivor space will always be large enough to accommodate
the surviving objects from both the eden and the other survivor space. If it overflows,
the rest of the objects that need to be evacuated will be moved to the old generation.
This is referred to as premature promotion. It causes the old generation to grow with
potentially short-lived objects, and it can potentially be a serious performance issue.
Further, if during a minor garbage collection the old generation becomes full and it is
not possible to copy more objects into it, that minor garbage collection is typically fol-
lowed by a full garbage collection, which collects the entire Java heap. This is referred
to as promotion failure. Careful user-tuning, as well as some self-tuning done by the
garbage collectors, typically makes the likelihood of either those two undesirable
events very low. Tuning the HotSpot VM is the subject matter found in Chapter 7.

Fast Allocation

The operation of the object allocator is tightly coupled with the operation of the gar-
bage collector. The garbage collector has to record where in the heap the free space
it reclaims is located. In turn, the allocator needs to discover where the free space in
the heap is before it can reuse it to satisfy allocation requests. The copying garbage
collector that collects the young generation of the HotSpot VM has the advantage of
always leaving the eden empty. That allows allocations into the eden to be efficient
by using what’s referred to as the bump-the-pointer technique. According to this
technique, the end of the last allocated object is tracked (this is usually referred to
as top), and when a new allocation request needs to be satisfied, the allocator needs
only to check whether it will fit between top and the end of the eden. If it does, top
is bumped to the end of the newly allocated object.

Additionally, most interesting Java applications are multithreaded, and their alloca-
tion operations need to be multithreaded safe. If they simply used global locks to ensure
this, then allocation into eden would become a bottleneck and degrade performance.
Instead, the HotSpot VM has adopted a technique called Thread-Local Allocation Buf-
fers (TLABs), which improves multithreaded allocation throughput by giving each
thread its own buffer (i.e., a small chunk of the eden) from which to allocate. Since only
one thread can be allocating into each TLAB, allocation can take place quickly with
the bump-the-pointer technique and without any locking. However, when a thread fills
up its TLAB and needs to get a new one (an infrequent operation), it needs to do so in
a multithreaded safe way. In the HotSpot VM, the new Object() operation is, most
of the time, around ten assembly code instructions. It is the operation of the garbage
collector, which empties the eden space, that enables this fast allocation.

ptg6882136

86 Chapter 3 � JVM Overview

Garbage Collectors: Spoiled for Choice

“The Java Virtual Machine assumes no particular type of automatic storage
management system, and the storage management technique may be chosen

according to the implementor’s system requirements.”

—Java Virtual Machine Specification [1]

The HotSpot VM has three different garbage collectors, as well as a fourth one that
at the time of this writing is under development. Each garbage collector is targeted
to a different set of applications. The next four sections describe them.

The Serial GC

The configuration of the Serial GC is a young generation that operates as described
earlier, over an old generation managed by a sliding compacting mark-sweep, also
known as a mark-compact garbage collector. [11] Both minor and full garbage col-
lections take place in a stop-the-world fashion (i.e., the application is stopped while
a collection is taking place). Only after the garbage collection has finished is the
application restarted (see Figure 3-6a).

The mark-compact garbage collector first identifies which objects are still live in
the old generation. It then slides them toward the beginning of the heap, leaving
any free space in a single contiguous chunk at the end of the heap. This allows any
future allocations into the old generation, which will most likely take place as objects
are being promoted from the young generation, to use the fast bump-the-pointer
technique. Figure 3-7a illustrates the operation of such a garbage collector. Objects
marked with a gray X are assumed to be garbage. The shaded area at the end of the
compacted space denotes reclaimed (e.g., free) space.

Figure 3-6 Stop-the-world garbage collection

GC

(a)

Serial GC Parallel GC

(b)

Application

ptg6882136

HotSpot VM Garbage Collectors 87

Figure 3-7 Garbage collection sequences

(a) (b)

Start of Compaction

End of Compaction

Start of Sweeping

End of Sweeping

The Serial GC is the garbage collector of choice for most applications that do not
have low pause time requirements and run on client-style machines. It takes advan-
tage of only a single virtual processor for garbage collection work (hence, its name).
Still, on today’s hardware, the Serial GC can efficiently manage a lot of nontrivial
applications with a few 100MBs of Java heap, with relatively short worst-case pauses
(around a couple of seconds for full garbage collections). Another popular use for the
Serial GC is in environments where a high number of JVMs are run on the same
machine (in some cases, more JVMs than available processors!). In such environ-
ments when a JVM does a garbage collection it is better to use only one processor
to minimize the interference on the remaining JVMs, even if the garbage collection
might last longer. And the Serial GC fits this trade-off nicely.

The Parallel GC: Throughput Matters!

These days, a lot of important Java applications run on (sometimes dedicated) servers
with a lot of physical memory and multiple processors. Ideally, the garbage collector
should take advantage of all available processing resources and not leave most of
them idle while it is doing garbage collection work.

To decrease garbage collection overhead and hence increase application through-
put on server-style machines, the HotSpot VM includes the Parallel GC, also called
the Throughput GC. Its operation is similar to that of the Serial GC (i.e., it is a stop-
the-world GC with a copying young generation over a mark-compact old generation).
However, both the minor and full garbage collections take place in parallel, using
all available processing resources, as illustrated in Figure 3-6b. Note that earlier
version of this garbage collector actually performed old collections serially. This has
been rectified since the introduction of the Parallel Old GC.

Applications that can benefit from the Parallel GC are those that require high
throughput and have pause time requirements that can be met by the worst-case
stop-the-world induced full garbage collection durations along with being run on
machines with more than one processor. Applications such as batch processing

ptg6882136

88 Chapter 3 � JVM Overview

engines, scientific computing, and so on are well suited for Parallel GC. The Parallel
GC, compared to the Serial GC, improves overall garbage collection efficiency, and
as a result also improves application throughput.

The Mostly-Concurrent GC: Latency Matters!

For a number of applications, end-to-end throughput is not as important as rapid
response time. In the stop-the-world garbage collection model, when a garbage collec-
tion is taking place, the application threads are not running, and external requests
will not be satisfied until the application threads are restarted at the end of a garbage
collection. Minor garbage collections do not typically cause long pauses. However, full
garbage collections or compacting garbage collections, even though infrequent, can
impose long pauses, especially when large Java heaps are involved.

To deal with this, the HotSpot VM includes the Mostly-Concurrent GC, also known
as the Concurrent Mark-Sweep GC (CMS). It manages its young generation the
same way the Parallel and Serial GCs do. Its old generation, however, is managed by
an algorithm that performs most of its work concurrently, imposing only two short
pauses per garbage collection cycle.

Figure 3-8a illustrates how a garbage collection cycle works in CMS. It starts
with a short pause, called the initial mark, that identifies the set of objects that are
immediately reachable from outside the old generation. Then, during the concurrent
marking phase, it marks all live objects that are transitively reachable from this set.
Because the application is running and it might be updating reference fields (hence,
modifying the object graph) while the marking phase is taking place, not all live
objects are guaranteed to be marked at the end of the concurrent marking phase.
To deal with this, the application is stopped again for a second pause, called the

Figure 3-8 Comparison of CMS GC versus garbage first GC

Marking / Pre-cleaning

Initial Mark Remark GC GC GC

(a)

Mostly-Concurrent GC Garbage-First GC

(b)

Sweeping Marking

ptg6882136

HotSpot VM Garbage Collectors 89

remark pause, which finalizes the marking information by revisiting any objects that
were modified during the concurrent marking phase. The card table data structure
is reused to also keep track of modified objects. Because the remark pause is more
substantial than the initial mark, it is parallelized to increase its efficiency.

To reduce further the amount of work the remark pause has to do, the concurrent
pre-cleaning phase was introduced. As Figure 3-8a shows, it takes place after the
concurrent marking phase and before the remark pause and does some of the work
that would have been done during the remark pause, i.e., revisiting objects that were
modified concurrently with the marking phase. Even though there is still a need for
the remark pause to finalize marking (given that the application might update more
objects during the pre-cleaning phase), the use of pre-cleaning can reduce, sometimes
dramatically, the number of objects that need to be visited during the remark pause,
and, as a result, it is very effective in reducing the duration of the remark pause.

At the end of the remark pause, all live objects in the Java heap are guaranteed
to have been marked. Since revisiting objects during the pre-cleaning and remark
phases increases the amount of work the garbage collector has to do (as compared to,
say, the Parallel GC that only visits objects once during marking), the overall over-
head of CMS also increases accordingly. This is a typical trade-off for most garbage
collectors that attempt to reduce pause times.

Having identified all live objects in the old generation, the final phase of the
garbage collection cycle is the concurrent sweeping phase, which sweeps over the
Java heap, deallocating garbage objects without relocating the live ones. Figure 3-7b
illustrates the operation of the sweeping phase. Again, objects marked with a gray X
are assumed to be garbage, and the shaded areas in the post-sweep space denote free
space. In this case, free space is not contiguous (unlike in the previous two garbage
collectors, as illustrated in Figure 3-7a), and the garbage collector needs to employ
a data structure (free lists, in the case of the HotSpot VM) that records which parts
of the heap contain free space. As a result, allocation into the old generation is more
expensive, as allocation from free lists is not as efficient as the bump-the-pointer
approach. This imposes extra overhead to minor garbage collections, as most allo-
cations in the old generation take place when objects are promoted during minor
garbage collections.

Another disadvantage that CMS has, that the previous two don’t, is that it typi-
cally has larger Java heap requirements. There are a few reasons for this. First, a
concurrent marking cycle lasts much longer than that of a stop-the-world garbage
collection. And it is only during the sweeping phase that space is actually reclaimed.
Given that the application is allowed to run during the marking phase, it is also
allowed to allocate memory, hence the occupancy of the old generation potentially
increases during the marking phase and decreases only during the sweeping phase.
Additionally, despite the garbage collector’s guarantee to identify all live objects dur-
ing the marking phase, it doesn’t actually guarantee that it will identify all objects

ptg6882136

90 Chapter 3 � JVM Overview

that are garbage. Objects that become garbage during the marking phase may or may
not be reclaimed during the cycle. If they are not, then they will be reclaimed during
the next cycle. Garbage objects that are not identified during a garbage collection are
usually referred to as floating garbage.

Finally, fragmentation issues [11] due to the lack of compaction might also prevent
the garbage collector from using all the available free space as efficiently as pos-
sible. If the old generation is full before the collection cycle in progress has actually
reclaimed sufficient space, CMS reverts to an expensive stop-the-world compacting
phase, similar to that of the Parallel and Serial GCs.

It should be noted that, in the latest versions of the HotSpot VM, both the concur-
rent phases of CMS (marking and sweeping) are parallelized, as demonstrated in
Figure 3-8a. This is a useful feature when running on machines with high hardware
parallelism (which are becoming more and more common). Otherwise, one concurrent
CMS thread would not have been able to keep up with the work the many application
threads would generate.

Compared to the Parallel GC, CMS decreases old-generation pauses—sometimes
dramatically—at the expense of slightly longer young generation pauses, some reduc-
tion in throughput, and extra heap size requirements. Due to its concurrency, it also
takes CPU cycles away from the application during a garbage collection cycle. Appli-
cations that can benefit from it are ones that require rapid response times (such as
data-tracking servers, Web servers, and so on), and it is in fact widely used in this
context.

The Garbage-First GC: CMS Replacement

The Garbage-First GC (aka G1) is a parallel, concurrent, and incrementally com-
pacting low-pause garbage collector intended to be the long-term replacement of
CMS. G1 uses a drastically different Java heap layout to the other garbage collectors
in the HotSpot VM. It splits the Java heap into equal-sized chunks called regions.
Even though G1 is generational, it does not have physically separate spaces for the
young and old generations. Instead, each generation is a set of (maybe noncontigu-
ous) regions. This allows G1 to resize the young generation in a flexible way.

All space reclamation in G1 takes place by evacuating the surviving objects from
one set of regions to another and then reclaiming the initial (and typically larger) set
of regions. Most of the time such garbage collections collect only young regions (which
make up G1’s young generation), and they are the equivalent of minor garbage col-
lections. G1 also periodically performs concurrent marking cycles that identify which
non-young regions are either empty or mostly empty. These are the regions that
are the most efficient to collect (i.e., G1 gets back the most free space for the least
amount of work), and they are scheduled for garbage collection in favor to the rest of

ptg6882136

HotSpot VM Garbage Collectors 91

the regions. This is where G1 gets its name from: It goes after regions with the most
garbage objects in them.

Figure 3-8b shows the parallelism and concurrency in G1. Note that, apart from
the concurrent marking phase, G1 also has additional short concurrent tasks. For
more information on G1, please listen to the talk located at http://developers.sun.com/
learning/javaoneonline/j1sessn.jsp?sessn=TS-5419&yr=2008&track=javase]. [12]

Comparisons

Table 3-1 summarizes the trade-offs between the garbage collectors that are covered
in this section.

Creating Work for the Garbage Collector

This section includes a brief overview of how an application can create work for the
garbage collector. Generally, there are three ways of doing so:

� Allocation. Garbage collections are triggered when a generation occupancy
reaches a certain limit (e.g., a minor garbage collection takes place when the
eden is full, a CMS cycle starts when the old generation occupancy goes over the
CMS initiating limit). As a result, the higher the allocation rate of an applica-
tion, the more often garbage collections are triggered.

� Live data size. All garbage collectors in the HotSpot VM do work propor-
tional to the amount of live data that exists in each generation (a minor gar-
bage collection copies all live objects as shown in Figure 3-5, a mark-compact
garbage collector first needs to mark all live objects before moving them, etc.).
As a result, the more live objects there are in the Java heap, the more work the
garbage collector needs to do.

� Reference updates in the old generation. An update of a reference field in
the old generation might create an old-to-young reference (which, as shown in

Serial GC Parallel GC CMS GC G1 GC

Parallelism No Yes Yes Yes

Concurrency No No Yes Yes

Young GCs Serial Parallel Parallel Parallel

Old GCs Serial Parallel Parallel & Conc Parallel & Conc

Table 3-1 Comparison of Garbage Collectors

http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-5419&yr=2008&track=javase
http://developers.sun.com/learning/javaoneonline/j1sessn.jsp?sessn=TS-5419&yr=2008&track=javase

ptg6882136

92 Chapter 3 � JVM Overview

Figure 3-3, will have to be processed during the next minor garbage collection)
or might cause an object to be revisited at the pre-cleaning or the remark phase
(if it takes place during a CMS marking cycle).

Typically garbage collection overhead can be reduced by reducing one or more of
the preceding metrics. However, sometimes this is either impossible (e.g., it might not
be possible to compress further the data that needs to be loaded into the Java heap;
or it is difficult to write a useful application that does not update references at all),
or even undesirable (reusing objects can reduce the allocation rate, but it is also more
time-consuming to implement and maybe more error-prone too). But by avoiding
some bad programming practices, it is possible to find a good balance between having
low garbage collection overhead, as well as well-written, easily maintained code. Bad
programming practices to avoid include object pooling (pooled objects are long-lived,
hence they increase the live data size of the old generation and initializing writes
to them can also increase the number of reference updates in the old generation),
sloppy sizing of array-based data structures (e.g., if an ArrayList is initially sized
too small, its backing array might subsequently need to be resized several times,
causing unnecessary allocation), and so on. Expanding on this goes beyond the scope
of this book, but you can find some more information in this talk. [13]

A Historical Perspective

The Serial GC was the first garbage collector included in the HotSpot VM (introduced
in Java 1.3), as well as another incremental garbage collector called the Train GC.
The latter, however, was not used very widely and was end-of-lifed in Java 6. Java
1.4.2 saw the introduction of both the Parallel GC (which only had a parallel young
generation garbage collector, but a serial old generation garbage collector), as well as
CMS (which also had a parallel young generation garbage collector, whereas its con-
current phases were serial). The Parallel Old GC, which parallelized the old genera-
tion of the Parallel GC, was introduced in Java 5 Update 6. The concurrent marking
and sweeping phases of CMS were parallelized in Java 5 Update 6 and Java 5 Update
7, respectively. Finally, at the time of this writing, G1 GC was included in Java 6
Update 20 (and available in later Java 6 releases). Java 7 will also have G1 GC.

HotSpot VM JIT Compilers

Before diving into the details of the JITs used in the HotSpot VM it is useful to
digress a bit and talk about code generation in general and the particular trade-offs
of JIT compilation. This will help frame the differences between the HotSpot VM
Client and Server JIT compilers when they are discussed.

ptg6882136

HotSpot VM JIT Compilers 93

Compilation is the generation of machine-dependent code from some high level
language. Traditionally compilers have started from a source language like C or
C++, compiling each of the individual source files into object files and then finally
linking those objects into a library or executable that can then be run. Since this
is a relatively infrequent task, compilation time isn’t a huge constraint on static
compilers, though obviously developers won’t wait forever. Java on the other hand
uses a compiler, javac, which takes the high level sources and converts them into
class files. These class files are then collected into jar files for use by a Java Virtual
Machine. So the Java Virtual Machine always starts with the bytecode representa-
tion of the original program and is required to convert that dynamically into machine
dependent code.

All compilers have a roughly similar structure, and it is useful to describe this
first. They must have a front end to take the source representation and convert it
into an intermediate representation or IR. There are many different kinds of inter-
mediate representations used in compilers, and a compiler might in fact use several
since different representations can be useful for different stages of compilation. One
common style of IR is called SSA, which stands for static single assignment. This is
a representation that has the property that a variable is only assigned to once, and
instructions directly use those values. This has the advantage that the values used by
an instruction are directly visible to it. The other common style is a named form that
is conceptually similar to a source language in that values are assigned to variables,
or names, and instructions use the names. This gives a certain amount of flexibility
and can simplify some operations such as cloning of code, but there’s a less direct
relationship between an instruction and the values it uses.

The IR produced by the front end is generally the focus of most optimizations in a
compiler. What optimizations are supported can cover a large range and will often be
driven by the time required for the optimization. The most basic classes of optimiza-
tions are simple identity transformations, constant folding, common subexpression
elimination, and inlining of functions. More complicated optimizations are commonly
focused around improving the execution of loops and include range check elimination,
unrolling, and loop invariant code motion. Illustrating how the HotSpot VM performs
each of these optimizations is outside the scope of this book and is a topic worthy to
expanding upon in an entire book.

Once these high level optimizations are performed there’s a back end that takes
the IR and converts it into some machine representation. This stage includes instruc-
tion selection and assignment of values to machine registers. Instruction selection
can be done in many ways. It can be handled in an explicit manner where the com-
piler writer manages all the cases directly or by using a machine description with
associated rules to drive automatic instruction selection. The automated approach
can be somewhat complicated to build and maintain but can often take better advan-
tage of the details of a machine.

ptg6882136

94 Chapter 3 � JVM Overview

Once the instructions are selected registers must be assigned to all the values in
the program, and code must be emitted to deal with the calling conventions of the
machine. For most functions the number of values live will be greater than the num-
ber of registers on the machine. The generated code will deal with this by assigning
some values to registers and moving values between the registers and the stack to
free them up for other values. Moving values to the stack is referred to as spilling
the value or register spilling. Again there are several approaches to this problem. For
simple code generators, a round robin style local allocator will execute quickly but is
only suitable for the most simple code generators.

The classic strategy for register allocation is called graph coloring and generally
results in the best usage of the machine registers and the fewest spills of extra values
onto the stack. A graph is built that represents which values are in use simultane-
ously and which registers those values can live in. If there are more values live simul-
taneously than there are registers available, then the least important of those values
are moved to the stack so the other values can use registers. Assigning every value
to a register commonly requires several rounds of graph construction and coloring.
This leads to the downside of graph coloring, which is that it can be expensive both
in terms of time spent and the space required for the data structures.

A simpler strategy is called linear scan register allocation. The goal in linear scan
is to assign registers in a single pass over all the instructions while still producing
a good register assignment. It constructs lists of ranges where a value must be in a
register and then in a single pass walks over that list assigning registers to values
or spilling them to the stack. This can operate quickly but isn’t as good at keeping
values in the same register for their whole lifetime.

Class Hierarchy Analysis

In an object-oriented language, intelligent inlining can be critical to getting good
performance since code is often broken up into small methods. Java presents some
interesting difficulties in this regard since by default any instance method could be
overridden by a subclass, so just seeing the local type often isn’t enough to know
what method to inline. One way the HotSpot VM addresses this is by something
called Class Hierarchy Analysis. This is an on-demand analysis that can be used by
the compiler to determine whether any loaded subclass has overridden a particular
method. The important part of this trick is that the HotSpot VM is only considering
the subclasses that are loaded and does not worry about any other subclasses that
it hasn’t seen yet. When the compiler takes advantage of Class Hierarchy Analysis,
often referred to as CHA, it records that fact in the compiled code. If later on in the
execution of the program a subclass that overrides that method is requested to be
loaded, then as part of the loading process the compiled code that assumed there was
only one implementor is thrown out. If that compiled code is currently being executed

ptg6882136

HotSpot VM JIT Compilers 95

somewhere, then a process called deoptimization is used to convert that compiled
frame into an equivalent set of interpreter frames. This allows complete recovery
from the assumptions of the CHA result. CHA is also used to identify cases where
an interface or abstract class only has a single loaded implementation.

Compilation Policy

Since the JIT does not have time to compile every single method in an application, all
code starts out initially running in the interpreter, and once it becomes hot enough it
gets scheduled for compilation. In the HotSpot VM this is controlled through the use
of counters associated with each method. Every method has two counters: the invoca-
tion counter that is incremented every time a method is entered and the backedge
counter that is incremented every time control flow moves from a higher bytecode
index to a lower one. The backedge counter is used to detect methods that contain
loops and to cause them to get compiled earlier than they would with just an invoca-
tion counter. Whenever either counter is incremented by the interpreter it checks
them against a threshold, and if they cross this threshold the interpreter requests
a compile of that method. The threshold used for the invocation count is called the
CompileThreshold, and the backedge counter uses a more complex formula of Com-
pileThreshold * OnStackReplacePercentage / 100.

When a compilation is requested it is enqueued in a list that is monitored by one
or more compiler threads. If a compiler thread is not busy it removes the compilation
request from the queue and begins to compile it. Normally the interpreter doesn’t
wait for the compilation to complete. Instead it resets the invocation counter and
resumes executing the method in the interpreter. Once the compile completes and
the compiled code is associated with the method, then the next caller of the method
begins using the compiled code. Normally this behavior of not waiting for the compile
to complete is a good idea since the execution and compilation can continue in paral-
lel. If you want the interpreter to wait for the compile to complete, then the HotSpot
VM command line option -Xbatch or -XX:-BackgroundCompilation can be used
to make it block waiting for the compile.

The HotSpot VM can also perform special compiles called On Stack Replacement
compiles, or OSRs as they are commonly known. These are used when Java code
contains a long-running loop that started executing in the interpreter. Normally the
way Java code ends up in compiled code is that when invoking a method the inter-
preter detects that there’s compiled code for it, and it dispatches to that instead of
staying in the interpreter. This does not help long-running loops that started in the
interpreter since they are not being invoked again.

When the backedge counter overflows, the interpreter requests a compile that
starts its execution at the bytecode of backedge instead of starting at the first byte-
code in the method. The resulting generated code takes an interpreter frame as its

ptg6882136

96 Chapter 3 � JVM Overview

input and uses that state to begin its execution. In this way long-running loops are
able to take advantage of compiled code. The act of the generated code taking an
interpreter frame as its input to be its execution is called On Stack Replacement.

Deoptimization

Deoptimization is the term used in the HotSpot VM for the process of taking a com-
piled frame, which may be the result of several levels of inlining, and converting that
compiled frame into an equivalent set of interpreter frames. This is used to recover
from various kinds of optimistic optimizations that compiled code can perform. In
particular it is used to recover from the assumptions of class hierarchy analysis.
The server compiler also uses it for something it refers to as uncommon traps. These
are special points in the generated code where the compiler has chosen to use the
interpreter to deal with some execution path. Most commonly this is either because
at compilation time some class was unloaded, or a path appeared to have never been
executed. Some kinds of exceptions are handled in this way as well.

The HotSpot VM’s JIT compilers support deoptimization by recording some meta-
data at every potential safepoint that describes what the state of the bytecode execu-
tion was at that point. Every safepoint already has to include the chain of methods
and bytecode indexes that describe the current execution state so that things like
exception stack traces and the stack walking required by security checks can be
implemented. For deoptimizations the compiler additionally records the location of
every value referenced by the locals and expression stack of the method, along with
which lock(s) are held. This is an abstract representation of the state of the inter-
preter frame at that point and is sufficient to build a set of interpreter frames that
resume execution in the interpreter.

At first glance it may appear as though a lot of extra values are kept alive to sup-
port this, but there are a few tricks used to reduce this. The HotSpot VM’s JIT com-
pilers use a bytecode analysis called Method Liveness that computes for every Java
local field whether there’s a bytecode later in the method that might use its value.
These locals are considered live, and only locals that are live need to have values in
the debug info state. In practice this means that the JIT compilers are not keeping
many values alive solely for the purposes of deoptimization.

Once compiled code has been generated it may be invalidated for several reasons,
such as class loading that invalidates a CHA optimization or because classes refer-
enced by the code have been unloaded. In this case the space for the compiled code
is returned to the code cache for use by later compiles. In the absence of explicit
invalidation of compiled code it is normally never freed.

JIT compiled code has several kinds of metadata associated with it that’s required
to support various features of the runtime. In particular because the HotSpot VM
uses precise garbage collection, compiled code has to be able to describe which

ptg6882136

HotSpot VM JIT Compilers 97

locations in a compiled frame contain references to Java objects. This is accomplished
using OopMaps, which are tables listing registers and stack locations that must be
visited by the garbage collector. These are required at any location in compiled code
where the system might have to stop for a safepoint. This includes all call sites and
places where allocation might occur. Additionally because there are VM operations
such as garbage collection, biased lock revocation, and so on that require code be
able to come to a halt in a reasonable amount of time for a safepoint, every loop that
does not contain calls also requires an explicit safepoint check inside it. Otherwise
a long-running loop could stop the entire system from performing a garbage collec-
tion and cause it to hang. Each of these safepoints also contains all the information
describing the chain of methods that were inlined and the description of the Java
frame required for support of deoptimization.

Client JIT Compiler Overview

The HotSpot VM’s Client JIT compiler targets applications desiring rapid startup
time and quick compilation so as to not introduce jitter in responsiveness such as
client GUI applications. The Client JIT compiler started life as a fast, simple code
generator intended to give Java reasonable startup performance without a lot of
complexity. It was conceptually similar to the interpreter in that it generated a kind
of template for each kind of bytecode and maintained a stack layout that was similar
to an interpreter frame. It also only inlined field accessors. In Java 1.4, the HotSpot
VM’s Client JIT compiler was upgraded to support full method inlining and added
support for Class Hierarchy Analysis and deoptimization both of which provided a
substantial improvement. The Java 5 Client JIT compiler saw few changes because
a more substantial set of changes was being worked on for the Java 6 Client JIT
compiler.

Java 6’s Client JIT Compiler included many changes intended to improve per-
formance across the board. The Client compiler’s intermediate representation was
changed to an SSA style representation, and the simple local register allocator
was replaced by a linear scan register allocator. Additionally value numbering was
improved by extending it across multiple blocks, and some minor improvements
to memory optimizations were made. On x86 platforms, support for using SSE for
floating point operations was added, which significantly improved floating point
performance.

Server JIT Compiler Overview

The HotSpot VM Server JIT compiler targets peak performance and high throughput
for Java applications, so its design tends to focus on using the most powerful opti-
mizations it can. This often means that compiles can require much more space or

ptg6882136

98 Chapter 3 � JVM Overview

time than an equivalent compile by the Client JIT compiler. It tends to aggressively
inline as well, which often leads to large methods, and larger methods take longer
to compile. It also has an extensive set of optimizations covering a large number of
corner cases, which is needed to generate optimal code for any bytecodes it might see.

SSA—Program Dependence Graph

The Server JIT compiler’s intermediate representation (IR) is internally called “ideal”
and is an SSA style IR, but it uses a different way of representing control flow called
the program dependence graph. The representation tries to capture the minimal set
of constraints on the execution of each operation, which allows for aggressive reorder-
ing of operations and global value numbering, which reduces redundant computa-
tions. It has a rich type system that captures all the details of the Java type system
and feeds that knowledge back into the optimizations.

The Server JIT compiler also takes advantage of profile information collected by
execution in the interpreter. During execution of bytecodes, if a method is executed
enough times, the interpreter created an object known as a methodDataOop, which
is a container for profile information about an individual method. It has entries for
recording information about the types seen at call sites along with counts of how
often they are seen. All the control flow bytecodes also record how often they are
taken and which direction they go. All this information is used by the Server JIT
compiler to find opportunities to inline based on common types and to compute fre-
quencies for the control flow, which drives the block layout and register allocation.

All JIT compilers of Java bytecodes have to deal with the possibility of unloaded
or uninitialized classes, and the Server JIT compiler handles this by treating the
path as unreached when it contains unresolved constant pool entries. In this case it
emits what is called an uncommon trap for that bytecode and stops parsing that path
through the method. An uncommon trap is a request to the HotSpot VM Runtime
to deoptimize the current compiled method and resume execution in the interpreter
where the constant pool entry that was unresolved can be processed and properly
resolved. The compiled code for that method is thrown out, and executions continue
in the interpreter until a new compile is triggered. Since that path has been properly
resolved the new compile will compile that path normally, and future execution will
use the compiled version of that path.

Uncommon traps are also used to deal with unreached paths so that the compiler
does not generate code for parts of the method that are never used, resulting in
smaller code and more straight-line sections of code that are generally more optimiz-
able. The Server JIT compiler additionally uses uncommon traps to implement some
kinds of optimistic optimizations. These are cases where the Server JIT compiler has
decided that some behavior is likely so it proceeds as if that was the only behavior but
puts in a dynamic check that it is true. If the dynamic check fails the code heads to

ptg6882136

HotSpot VM JIT Compilers 99

an uncommon trap, which handles that case in the interpreter. If the uncommon trap
happens often enough the HotSpot VM Runtime decides that it is really not uncom-
mon so the code should be thrown out and regenerated without the assumption that it
is uncommon. This is done for some things like predicated call sites where it appears
from profile information that call site only ever sees one receiver type, so the Server
JIT compiler inlines assuming that it will see this type but puts in a guard checking
that the type is really the expected one. If a call site mostly sees one type but some-
times sees others, instead of emitting an uncommon trap for the other case the Server
JIT compiler emits a regular call. The advantage of emitting that uncommon trap is
that later code will see just the effects of the inlined version, which can result in bet-
ter final generated code since a call has unknown side effects on the state of memory.

The Server JIT compiler performs a large set of optimizations on loops in the
generated code, including loop unswitching, loop unrolling, and range check elimi-
nation through iteration splitting. Iteration splitting is the process of taking a loop
and converting it into three loops: the preloop, the main loop, and the post loop. The
idea is to compute bounds on each of the loops such that it is provable that the main
loop does not need any range checks. The preloop and the post loop deal with the
boundary conditions of the iteration where range checks are needed. In most cases
the preloop and the post loop run a small number of times, and in many cases the
post loop can be eliminated completely. This allows the main loop to run without any
range checks at all.

Once a loop has had its range checks removed it is possible that it can be unrolled.
Loop unrolling takes relatively simple loop bodies and creates multiple copies of the
body inside the loop, while reducing the number of iterations that the loop runs.
This helps amortize the cost of the loop control flow and often allows the loop body to
simplify more, allowing the loop to do more work in less time. In some cases repeated
unrolling can cause a loop to go away completely.

Loop unrolling enables another optimization called superword, which is a form of
vectorization. Unrolling creates a parallel set of operations in the body, and if those
operations are on sequential memory locations they can be collected into operations
on a vector such that a single instruction performs multiple operations in the same
amount of time. As of Java 6, HotSpot VMs, this is mainly focused on copying or ini-
tialization patterns, but eventually it will fully support all available SIMD (single
instruction, multiple data) arithmetic operations.

Once all the high level optimizations are performed the IR (intermediate repre-
sentation) is converted into a machine dependent form that is able to take advan-
tage of all the special instructions and address modes available on the processor.
The machine dependent nodes are scheduled into basic blocks based on the require-
ments of their inputs and the expected frequency of the blocks. The graph coloring
register allocator then assigns registers to all the instructions and inserts any
needed register spills. Finally the code is turned into an nmethod, which is the

ptg6882136

100 Chapter 3 � JVM Overview

HotSpot VM’s internal representation of compiled bytecodes and contains all the
code along with the metadata required to use the code within the HotSpot VM
Runtime.

Future Enhancements

The HotSpot VM currently supports two JIT compilers, Client and Server. At the
time of this writing development is underway to introduce a hybrid HotSpot JIT
compiler that combines the major attributes of the Client JIT compiler and the
Server JIT compiler called tiered compilation. The promise offered by tiered com-
pilation is the rapid startup features of the Client JIT compiler and continuing
to improve the performance of an application through the use of the Server JIT
compiler’s more advanced optimization techniques. For the adventurous or curi-
ous, tiered compilation can be enabled on recent Java 6 HotSpot VMs using the
-server-XX: +TieredCompilation command line options. However, tiered com-
pilation as of this writing, is not recommended as the HotSpot JIT compiler of choice
for production or critical systems if using Java 6 Update 24 or earlier. If you are
using Java 6 Update 25, Java 7, or later, using -server -XX: +TieredCompila-
tion may be an alternative for applications typically using the Client JIT compiler.
As tiered compilation improves in its optimization capabilities and matures, it is
likely to be the recommended JIT compiler for both client and server families of
Java applications.

HotSpot VM Adaptive Tuning

The Java 5 HotSpot VMs introduced a new feature that evaluates the underlying
platform and system configuration at JVM launch time and then automatically
selects the garbage collector, configures Java heap size, and chooses a runtime
JIT compiler to use. In addition, this feature also introduced an adaptive means
for tuning the Java heap for the throughput garbage collector. This new adaptive
Java heap tuning allowed the garbage collector to dynamically tune the sizes of
the Java heap to meet application behavior and object allocation rates. This com-
bination of automatic platform dependent selection of default values and adaptive
Java heap sizing to lessen the burden of manual garbage collection tuning is called
ergonomics.

The ergonomics feature has been further enhanced in Java 6 Update 18 to improve
the performance of rich client applications. In this section, the initial default values
for heap sizes, garbage collector, and JIT compilers found in Java 1.4.2 HotSpot VMs
are presented, followed by the default values chosen via the ergonomics feature and
the Java 6 Update 18 ergonomics enhancements.

ptg6882136

HotSpot VM Adaptive Tuning 101

Java 1.4.2 Defaults

In the Java 1.4.2 HotSpot VM the following defaults were chosen for garbage collec-
tor, JIT compiler, and Java heap sizes:

� Serial garbage collector, i.e., -XX:+UseSerialGC
� Client JIT compiler, i.e., -client
� 4 megabyte initial and minimum Java heap size along with a 64 megabyte

maximum Java heap size, i.e., -Xms4m and -Xmx64m

Java 5 Ergonomic Defaults

In the Java 5 HotSpot VMs, a category called “server-class machine” was introduced that
allowed the HotSpot VM to choose a different set of default values for garbage collector,
JIT compiler, and Java heap sizes. A server-class machine in the HotSpot VM is defined
as a system with an underlying configuration that has two or more gigabytes of physical
memory and two or more virtual processors. The number of virtual processors identified
by the HotSpot VM when determining whether a system is a server-class machine is
also the same value returned by the Java API Runtime.availableProcessors(),
and generally is the same number of processors reported by operating system tools such
as mpstat for Linux and Solaris. Also note when running a HotSpot VM in an operating
system configured with a processor set, the value returned by the Java API Runtime.
availableProcessors() is the number of virtual processors observed within the
processor set, not the number of virtual processors observed system wide.

Tip

The definition of server-class machine does not apply to systems running a 32-bit version of
the Windows operating system. These systems default to using the Serial garbage collector
(-XX: +UseSerialGC), Client JIT compiler (-client), and 4 megabyte initial and minimum
heap size (-Xms4m) along with a 64-megabyte maximum Java heap size (-Xmx64m).

1. On recent Java 6 HotSpot VMs, or where the following switch is available, ergo-
nomics may also automatically select -XX:+UseParallelOldGC, which also enables
-XX:+UseParallelGC.

When the HotSpot VM identifies a system as a server class machine, it selects the
following defaults for garbage collector, JIT compiler, and Java heap sizes:

� Throughput garbage collector, also known as Parallel GC, i.e.,
-XX:+UseParallelGC1

� Server JIT compiler, i.e., -server

ptg6882136

102 Chapter 3 � JVM Overview

� 1/64 of the physical memory up to a maximum of 1GB as the initial and minimum
Java heap size along with a 1/4 the total physical memory up to a maximum of
1GB as the maximum Java heap size

Table 3-2 summarizes the choices made by a Java 5 and later HotSpot VM.
Serial GC means the Serial garbage collector is chosen. Parallel GC means the

Throughput garbage collector is chosen. Client means the client JIT compiler is cho-
sen. Server means the server JIT compiler is chosen. Under (If Server Class) Default
GC, JIT, and Java Heap Sizes, Client means the Client JIT compiler is chosen for a
32-bit Windows platform where other criteria for a server-class machine matched.
This choice is deliberately made on 32-bit Windows platforms because historically
client applications (i.e., interactive applications) are run more often on this combi-
nation of platform and operating system. Where Server is indicated, the Server JIT
compiler is the only JIT compiler available in the HotSpot VM.

To print the ergonomic choices the HotSpot VM has made, the -XX: +PrintCom-
mandLineFlags command line option can be used. For instance, doing a simple java

Platform Operating
System

(If Not Server Class)
Default GC, JIT and Heap
Sizes -Xms & -Xmx

(If Server Class) Default
GC, JIT and Java Heap Sizes
-Xms & -Xmx

SPARC (32-bit) Solaris Serial GC, Client, 4MB,
64MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Solaris Serial GC, Client, 4MB,
64MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Linux Serial GC, Client, 4MB,
64MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Windows Serial GC, Client, 4MB,
64MB

Serial GC, Client, 1/64 RAM,
max of 1/4 RAM or 1GB

SPARC (64-bit) Solaris Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64
RAM, max of 1/4 RAM or 1GB

x64 (64-bit) Linux Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64th
RAM, max of 1/4 RAM or 1GB

x64 (64-bit) Windows Parallel GC, Server, 1/64
RAM, 1/4t RAM or 1GB max

Parallel GC, Server, 1/64
RAM, max of 1/4 RAM or 1GB

IA-64 Linux Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64
RAM, max 1/4 RAM or 1GB

IA-64 Windows Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64
RAM, max of 1/4 RAM or 1GB

Table 3-2 Summary of Choices Made by a Java 5 and Later HotSpot VM

ptg6882136

HotSpot VM Adaptive Tuning 103

-XX:+PrintCommandLineFlags -version on any system with a Java 5 or Java
6 HotSpot VM prints the default ergonomic values. The following is an example of
the output produced from a Java 5 HotSpot VM on a Sun UltraSPARC 5440 system
configured with 128GB of RAM and 256 virtual processors running the Oracle 11
Express 2010.11 operating system:

$ java -XX: +PrintCommandLineFlags -version
-XX:MaxHeapSize=1073741824 -XX:ParallelGCThreads=85
-XX: +PrintCommandLineFlags -XX: +UseParallelGC
java version "1.6.0_14"
Java(TM) SE Runtime Environment (build 1.6.0_14-b07)
Java HotSpot(TM) Server VM (build 14.0-b15, mixed mode)

From the preceding output, the Java 6 HotSpot VM’s launcher chose the Server JIT com-
piler, as shown in the last line of the output, a maximum Java heap size of 1073741824
bytes, or 1024 megabytes or 1 gigabyte along with selecting the throughput collector
(-XX:+UseParallelGC) with 85 parallel gc threads (-XX:ParallelGCThreads=85).
Note, -XX:MaxHeapSize is the same as the command line option -Xmx.

Java 6 Update 18 Updated Ergonomic Defaults

Java 6 Update 18 further updated the ergonomics feature to better adapt to rich client
applications. The enhancements apply to when a system is identified as a non-server
class machine. Remember that a server class machine is defined as a system with an
underlying configuration that has 2 or more gigabytes of physical memory and two or
more virtual processors. Hence these are enhancements made to systems identified as
having less than 2 gigabytes of physical memory and less than two virtual processors.

For systems identified as non-server class machines, the client JIT compiler remains
as the automatically selected JIT compiler. However, its Java heap sizing defaults have
changed, and the settings for garbage collection are better tuned. The maximum heap
size for Java 6 Update 18 is now one-half of physical memory up to a physical memory
size of 192MB. Otherwise, the maximum heap size is one-fourth of physical memory up
to a physical memory size of 1GB. For systems with 1GB or more of physical memory, the
default maximum heap size is 256m. The initial heap size for non-server class machines
is 8MB up to a physical memory size of 512MB. Otherwise, the initial and minimum
heap size is 1/64 of the physical memory size between 512MB and 1GB of physical
memory. At 1GB and larger physical memory, the default initial and minimum heap size
is explicitly 16MB. In addition, Java 6 Update 18 sizes the young generation space at
one-third of the Java heap size. However, if the concurrent collector happens to be speci-
fied explicitly with no additional Java heap sizing, initial, minimum, maximum, or young
generation space sizing, Java 6 Update 18 reverts to the Java 5 ergonomic defaults.

ptg6882136

104 Chapter 3 � JVM Overview

Platform Operating
System

(If Not Server Class)
Default GC, JIT, and Heap
Sizes -Xms & -Xmx

(If Server Class) Default GC,
JIT, and Java Heap Sizes -Xms
& -Xmx

SPARC (32-bit) Solaris Serial GC, Client, 8MB or
1/64 RAM or 16MB, 1/2 RAM
or 1/4 RAM or 256MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Solaris Serial GC, Client, 8MB or
1/64 RAM or 16MB, 1/2 RAM
or 1/4 RAM or 256MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Linux Serial GC, Client, 8MB or
1/64 RAM or 16MB, 1/2 RAM
or 1/4 RAM or 256MB

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Windows Serial GC, Client, 8MB or
1/64 RAM or 16MB, 1/2 RAM
or 1/4 RAM or 256MB

Serial GC, Client, 1/64 RAM,
max of 1/4 RAM or 1GB

SPARC (64-bit) Solaris Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64 RAM,
max of 1/4 RAM or 1GB

x64 (64-bit) Linux Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64 RAM,
max of 1/4 RAM or 1GB

x64 (64-bit) Windows Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64 RAM,
max of 1/4 RAM or 1GB

IA-64 Linux Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/4 RAM
or 1GB max 4MB, 64MB

IA-64 Windows Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64 RAM,
max of 1/4 RAM or 1GB

Table 3-3 Summary of Choices Made by Java 6 Update 18 and Later

Table 3-3 summarizes the updated ergonomic choices made by Java 6 Update 18
when no command line options are specified. The values in the cells within Table 3-3
that have changed from the Java 5 ergonomics in Table 3-2 are in italic.

Young generation space size is also sized at 1/3 of the Java heap size for those
configurations listed in the table that are in italic.

Adaptive Java Heap Sizing

An artifact of the ergonomics feature enabling the throughput collector is the enabling of
an additional feature called adaptive heap sizing. Adaptive heap sizing attempts to opti-
mally size the young generation and old generation spaces of the HotSpot VM by evaluat-
ing application object allocation rates and their lifetimes. The HotSpot VM monitors the

ptg6882136

HotSpot VM Adaptive Tuning 105

Java application’s object allocation rate and their object lifetimes and then makes sizing
decisions that attempt to size the young generation space such that short-lived objects
are collected prior to getting promoted to old generation along with allowing longer lived
objects to be promoted in a timely manner to avoid them unnecessarily being copied
between survivor spaces. The HotSpot VM initially uses explicit young generation sizing
such as those specified with -Xmn, -XX:NewSize, -XX:MaxNewSize, -XX:NewRatio,
and -XX:SurvivorRatio as a starting point for young generation sizing. Adaptive siz-
ing automatically adjusts young generation space sizes from those initial settings.

Tip

Adaptive heap sizing is available only with the throughput collectors -XX:+UseParallelGC
or -XX:+UseParallelOldGC. It is not available with the concurrent collector or serial
collector.

Although there exists HotSpot VM command line options that can fine-tune the
policies adaptive heap sizing uses in making its dynamic heap sizing decisions,
these options are rarely used outside the guidance of HotSpot VM engineers. It is much
more common to disable adaptive heap sizing and explicitly size the young generation
space including eden and survivor spaces. On most Java applications using the through-
put collector, enabled via -XX: +UseParallelGC or -XX: +UseParallelOldGC, adap-
tive sizing does a good job at optimally sizing the young generation space. The family of
applications that adaptive heap sizing finds the most challenging are those that have
frequent fluctuations, or rapidly changing periods of object allocation rates and experi-
ence frequent phases where object lifetimes vary dramatically. Applications that fall
into this category may realize better performance by disabling adaptive heap sizing
using the -XX:-UseAdaptiveSizePolicy HotSpot VM command line option. Note,
the “-” character after the “-XX:”. The “-” character tells the HotSpot VM to disable
the adaptive sizing policy. In contrast, a “+” character following the “-XX:” tells the
HotSpot VM to enable the feature.

Beyond Ergonomics

Performance demanding applications often find tuning the HotSpot VM beyond its
ergonomic defaults results in improved performance. The one exception to this is
adaptive sizing, which is enabled automatically when using the throughput collector.
Adaptive sizing tends to do well at automatically sizing the young generation space
for most Java applications.

More information on tuning the HotSpot VM can be found in Chapter 7 of this
book. Ergonomics is a feature that continues to evolve with each release of the

ptg6882136

106 Chapter 3 � JVM Overview

HotSpot VM with the goal of being able to meet or exceed the performance realized
by specialized command line option tuning.

References

[1] Lindholm, Tim, and Frank Yellin. Java Virtual Machine Specification, Second
Edition. Addison-Wesley, Reading, MA, 1999.

[2] Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specifica-
tion, Third Edition. Chapter 12.2: Loading of Classes and Interfaces. Addison-Wesley,
Boston, MA, 2005.

[3] Amendment to Java Virtual Machine Specification, Second Edition. Chapter 5:
Linking and Initializing. http://java.sun.com/docs/books/vmspec/2nd-edition/Con-
stantPool.pdf.

[4] Liang, Shen, and Gilad Bracha. Dynamic Class Loading in the Java Virtual
Machine. Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Lan-
guages and Applications. 1998.

[5] Dmitriev, Mikhail. Safe Class and Data Evolution in Large and Long-Lived Java
Applications. SML Technical Report Series, Palo Alto, CA, 2001.

[6] Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specifica-
tion, Third Edition. Addison-Wesley, Reading, MA, 2005,

[7] Dice, Dave. Biased Locking in HotSpot. blog. http://blogs.sun.com/dave/entry/
biased_locking_in_hotspot, 2006.

[8] Java Native Interface Specification. http://java.sun.com/javase/6/docs/technotes/
guides/jni/spec.

[9] Liang, Sheng. The Java Native Interface. Addison-Wesley, Reading, MA, 1999.

[10] Trouble-Shooting and Diagnostic Guide. http://java.sun.com/j2se/1.5/pdf/jdk50_
ts_guide.pdf, 2007.

[11] Jones, Richard, and Rafael Lins. Garbage Collection. John Wiley & Sons, Ltd.,
West Sussex, PO19 IUD, England, 1996.

[12] Printezis, Tony, and Paul Ciciora. The Garbage First Garbage Collector presenta-
tion. JavaOne Conference. San Francisco, CA, 2008. http://www.oracle.com/technet-
work/java/j1sessn-jsp-155531.html

[13] Printezis, Tony, and John Coomes. GC Friendly Programming presentation. Java-
One Conference. San Francisco, CA, 2007. http://www.oracle.com/technetwork/java/
index-jsp-156726.html

http://www.oracle.com/technetwork/java/j1sessn-jsp-155531.html
http://www.oracle.com/technetwork/java/j1sessn-jsp-155531.html
http://www.oracle.com/technetwork/java/index-jsp-156726.html
http://www.oracle.com/technetwork/java/index-jsp-156726.html
http://java.sun.com/docs/books/vmspec/2nd-edition/ConstantPool.pdf
http://java.sun.com/docs/books/vmspec/2nd-edition/ConstantPool.pdf
http://blogs.sun.com/dave/entry/biased_locking_in_hotspot
http://blogs.sun.com/dave/entry/biased_locking_in_hotspot
http://java.sun.com/javase/6/docs/technotes/guides/jni/spec
http://java.sun.com/javase/6/docs/technotes/guides/jni/spec
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf

ptg6882136

107

4
JVM Performance
Monitoring

This chapter describes the information to monitor at the Java Virtual Machine (JVM)
level of the software stack. In addition, it shows tools that can be used to monitor a
JVM and what to watch for as common patterns. The details of how to make JVM
tuning decisions based on the information observed can be found in Chapter 7, “Tun-
ing the JVM, Step By Step.” There is also a small section at the end of the chapter
covering application monitoring.

Monitoring a JVM is an activity that should be done all the time with a production
application. Since the JVM is a critical component in the software stack, it should
be monitored as much as the application itself and the operating system. Analysis
of JVM monitoring information indicates when JVM tuning is needed. JVM tuning
should be expected anytime there is a JVM version change, operating system change
(configuration or version), application version or update, or a major change in appli-
cation input. A change in application input is something that can occur frequently
with many Java applications that can alter the performance of a JVM. Hence, moni-
toring a JVM is an important activity.

There are several areas of the JVM to monitor including garbage collection, JIT
compiler activity, and class loading. Many tools are available to monitor a JVM.
Some monitoring tools are distributed with a JDK, some tools are free, and others
are commercial. The monitoring tools covered in this chapter are either distributed
with the Oracle JDK, free, or open source. Additionally, all the tools presented in
this chapter are available for Windows, Linux, and Oracle Solaris (also referred to
as Solaris hereafter) operating systems.

ptg6882136

108 Chapter 4 � JVM Performance Monitoring

To understand the material presented in this chapter, it is helpful to understand the
major components and the general operations of a modern JVM. An overview of the
Java HotSpot VM and its major components is given in Chapter 3, “JVM Overview.”

Definitions

Before delving into the details of what to monitor, a revisit of the definitions of
performance monitoring and performance profiling presented at the beginning
of Chapter 2, “Operating System Performance Monitoring,” is useful. Performance
monitoring is an act of nonintrusively collecting or observing performance data from
an operating or running application. Performance monitoring is usually a preventa-
tive or proactive type of action and can be performed in a production environment,
qualification environment, or development environment. Performance monitoring
can also be a first step in a reactive situation where an application stakeholder has
reported a performance issue but has not provided sufficient information or clues to
a potential root cause. In this case, performance profiling likely follows the act of per-
formance monitoring. Performance monitoring also helps identify or isolate potential
issues without having a severe impact on application responsiveness or throughput.

In contrast, performance profiling is an act of collecting performance data from an
operating or running application that may be intrusive on application throughput
or responsiveness. Performance profiling tends to be a reactive type of activity, or an
activity in response to a stakeholder reporting a performance issue. It usually has a
narrower focus than performance monitoring. Profiling is rarely done in production
environments. It is typically done in qualification, testing, or development environ-
ments and is often an act that follows a monitoring activity.

Performance tuning, in contrast to performance monitoring and performance pro-
filing, is an act of changing tunables, source code, or configuration attribute(s) for
the purposes of improving throughput or responsiveness. Performance tuning often
follows monitoring or performance profiling activities.

Garbage Collection

Monitoring JVM garbage collection is important since it can have a profound effect
on an application’s throughput and latency. Modern JVMs, such as the Java HotSpot
VM (also referred to as HotSpot VM hereafter), provide the ability to observe garbage
collection statistics per garbage collection in either a textual form, directed to a log
file, or by publishing the garbage collection statistics to a monitoring GUI.

This section begins by listing the garbage collection data of interest. Then a list-
ing of HotSpot VM command line options to report garbage collection statistics is
presented along with an explanation of the reported data. In addition, graphical

ptg6882136

Garbage Collection 109

tools that can be used to analyze garbage collection data is presented. And, most
importantly, patterns to look for are given along with suggestions as to when JVM
garbage collection tuning is advisable.

Garbage Collection Data of Interest

The data of interest in garbage collection statistics are

� The garbage collector in use
� The size of the Java heap
� The size of the young generation and old generation spaces
� The size of the permanent generation space
� The duration of minor garbage collections
� The frequency of minor garbage collections
� The amount of space reclaimed in minor garbage collections
� The duration of full garbage collections
� The frequency of full garbage collections
� The amount of space reclaimed in a concurrent garbage collection cycle
� The occupancy of the Java heap before and after garbage collections
� The occupancy of the young generation and old generation spaces before and

after garbage collections
� The occupancy of the permanent generation space before and after garbage

collections
� Whether it is the occupancy of the old generation space or the occupancy of the

permanent generation space that triggers a full garbage collection
� Whether the application is making use of explicit calls to System.gc()

Garbage Collection Reporting

There is little additional overhead in the HotSpot VM to report garbage collection
data. In fact, the overhead is so small it is recommended to collect garbage collection
data in production environments. This section describes several different HotSpot
VM command line options that produce garbage collection statistics along with an
explanation of the statistics.

There are generally two different types of garbage collections: a minor garbage
collection, also called a young generation garbage collection, and a full garbage col-
lection, also called a major garbage collection. A minor garbage collection collects

ptg6882136

110 Chapter 4 � JVM Performance Monitoring

the young generation space. A full garbage collection generally expresses the notion
of garbage collecting and compacting the old generation and permanent generation
spaces. There are some exceptions to this. In the HotSpot VM, the default behavior
on a full garbage collection is to garbage collect the young generation, old generation,
and permanent generation spaces. In addition, the old generation and permanent
generation spaces are compacted along with any live objects in young generation
space being promoted to the old generation space. Hence, at the end of a full garbage
collection, young generation space is empty, and old generation and permanent gen-
eration spaces are compacted and hold only live objects. The behavior of each of the
HotSpot garbage collectors is described in detail in Chapter 3.

As mentioned earlier, a minor garbage collection frees memory occupied by
unreachable objects in the young generation space. In contrast, the default behav-
ior for the HotSpot VM on a full garbage collection is to free memory occupied by
unreachable objects in the young generation, old generation, and permanent gen-
eration spaces. It is possible to configure the HotSpot VM to not garbage collect the
young generation space on a full garbage collection prior to garbage collecting the old
generation space using the command line option -XX:-ScavengeBeforeFullGC.
The “–” character preceding the ScavengeBeforeFullGC disables the garbage col-
lection of the young generation space on a full garbage collection. In contrast, a “+”
character in front of ScavengeBeforeFullGC enables the garbage collection of the
young generation space on a full garbage collection. As just mentioned, the default
behavior for the HotSpot VM is to enable garbage collection of the young generation
space on full garbage collections. It is advisable to use the default behavior and not
disable garbage collection of young generation on a full garbage collection. Garbage
collecting the young generation space prior to garbage collecting the old generation
space usually results in less work for the garbage collector and more objects being
garbage collected since objects in the old generation space may be holding object
references to objects in the young generation space. If the young generation space is
not garbage collected, any object in old generation space that holds a reference to an
object in young generation space cannot be garbage collected.

Although -verbose:gc is probably the most commonly used garbage collection
reporting command line option, -XX:+PrintGCDetails prints additional and more
valuable garbage collection information. This subsection presents example output
from -XX:+PrintGCDetails for the throughput and concurrent garbage collectors
along with providing an explanation of data. Also, patterns to watch for in the output
are also presented.

It is important to note the additional information produced with -XX:+
PrintGCDetails can change between versions of the HotSpot VM.

-XX:+PrintGCDetails

ptg6882136

Garbage Collection 111

An example of -XX:+PrintGCDetails output from Java 6 Update 25’s throughput
garbage collector, enabled via -XX:+UseParallelGC or -XX:+UseParallelOldGC,
is shown in the following example. The output is spread across several lines for easier
reading.

[GC
 [PSYoungGen: 99952K->14688K(109312K)]
 422212K->341136K(764672K), 0.0631991 secs]
 [Times: user=0.83 sys=0.00, real=0.06 secs]

The GC label indicates this is minor garbage collection. [PSYoungGen:
99952K->14688K(109312K)] provides information about the young generation
space. PSYoungGen indicates the young generation garbage collector in use is the
multithreaded young generation garbage collector used with the throughput collec-
tor, enabled with the command line option –XX:+UseParallelGC, or auto enabled
with –XX:+UseParallelOldGC. Other possible young generation garbage collec-
tors are ParNew, which is the multithreaded young generation garbage collector
used with the concurrent old generation garbage collector known as CMS, and Def-
New which is the single-threaded young generation garbage collector used with the
serial garbage collector, enabled with the command line option –XX:+UseSerialGC.
-XX:+UseSerialGC, (DefNew), can also be used in combination with the old genera-
tion concurrent garbage collector, CMS, to indicate the use of a single-threaded young
generation collector. At the time of this writing the G1 garbage collector, currently
under development, does not use an identifier in the same way as the other three
garbage collectors to identify the output as G1 GC.

The value to the left of the ->, 99952K, is the occupancy of the young genera-
tion space prior to the garbage collection. The value to the right of the ->, 14688K,
is the occupancy of the young generation space after the garbage collection. Young
generation space is further divided into an eden space and two survivor spaces. Since
the eden space is empty after a minor garbage collection, the value to the right of
the ->, 14688K, is the survivor space occupancy. The value inside the parentheses,
(109312K), is the size, not the occupancy, of the young generation space, that is, the
total size of eden and the two survivor spaces.

On the next line of output, 422212K->341136K(764672K) provides the Java
heap utilization (the total occupancy of both young generation and old generation
spaces), before and after the garbage collection. In addition, it provides the Java heap
size, which is the total size of young generation and old generation spaces. The value
to the left of the ->, 422212K, is the occupancy of the Java heap before the garbage
collection. The value to the right of the ->, 341136K, is the occupancy of the Java

ptg6882136

112 Chapter 4 � JVM Performance Monitoring

heap after the garbage collection. The value inside the parentheses, (764672K), is
the total size of the Java heap.

Using the reported young generation size and the reported Java heap size, you
can calculate the size of the old generation space. For example, the Java heap size is
764672K, and the young generation size is 109312K. Hence, the old generation size
is 764672K - 109312K = 655360K.
0.0631991 secs indicates the elapsed time for the garbage collection.
[Times: user=0.06 sys=0.00, real=0.06 secs] provides CPU usage and

elapsed time information. The value to the right of user is the CPU time used by
the garbage collection executing instructions outside the operating system. In this
example, the garbage collector used 0.06 seconds of user CPU time. The value to the
right of sys is the CPU time used by the operating system on behalf of the garbage
collector. In this example, the garbage collector did not use any CPU time execut-
ing operating system instructions on behalf of the garbage collection. The value to
the right of real is the elapsed wall clock time in seconds of the garbage collection.
In this example, it took 0.06 seconds to complete the garbage collection. The times
reported for user, sys, and real are rounded to the nearest 100th of a second.

An example of a full garbage collection with -XX:+PrintGCDetails follows. (The
output is spread across several lines for easier reading.)

[Full GC
 [PSYoungGen: 11456K->0K(110400K)]
 [PSOldGen: 651536K->58466K(655360K)]
 662992K->58466K(765760K)
 [PSPermGen: 10191K->10191K(22528K)],
 1.1178951 secs]
 [Times: user=1.01 sys=0.00, real=1.12 secs]

The Full GC label indicates it is a full garbage collection. [PSYoungGen:
11456K->0K(110400K)] has the same meaning as in a minor garbage collection
(explained previously).
[PSOldGen: 651536K->58466K(655360K)] provides information about the

old generation space. PSOldGen indicates the old generation garbage collector in
use is the multithreaded old generation garbage collector used with the throughput
collector enabled via the XX:+UseParallelOldGC command line option. In the
PSOldGen row of output, the value to the left of the ->, 651536K, is the occupancy of
the old generation space prior to the garbage collection. The value to the right of the
->, 58466K, is the occupancy of the old generation space after the garbage collection.
The value inside the parentheses, (655360K), is the size of the old generation space.
662992K->58466K(765760K) provides the Java heap utilization. It is the cumu-

lative occupancy of both young generation and old generation spaces before and after

ptg6882136

Garbage Collection 113

the garbage collection. The value to the right of the -> can also be thought of as the
amount of live data in the application at the time of the full garbage collection. Know-
ing the amount of live data in the application, especially while the application is in
steady state is important information to have when sizing the JVM’s Java heap and
fine-tuning the JVM’s garbage collector.
[PSPermGen: 10191K->10191K(22528K)] provides information about the

permanent generation space. PSPermGen indicates the permanent generation
garbage collector in use is the multithreaded permanent generation garbage col-
lector used with the throughput collector enabled via the -XX:+UseParallelGC
or -XX:+UseParallelOldGC command line options. In the PSPermGen row of
data, the value to the left of the ->, 10191K, is the occupancy of the permanent
generation space prior to the garbage collection. The value to the right of the ->,
10191K, is the occupancy of the permanent generation space after the garbage
collection. The value inside the parentheses (22528K), is the size of the perma-
nent generation space.

An important observation to take notice of in a full garbage collection is the heap
occupancies of the old generation and permanent generation spaces before the gar-
bage collection. This is because a full garbage collection may be triggered by either
the occupancy of the old generation or permanent generation space nearing its capac-
ity. In the output, the occupancy of the old generation space before the garbage
collection (651536K), is very near the size of the old generation space (655360K).
In contrast, the occupancy of the permanent generation space before the garbage
collection (10191K), is nowhere near the size of the permanent generation space
(22528K). Therefore, this full garbage collection was caused by the old generation
space filling up.
1.1178951 secs indicates the elapsed time for the garbage collection.
[Times: user=1.01 sys=0.00, real=1.12 secs] provides CPU and elapsed

time information. Its meaning is the same as described earlier for minor garbage
collections.

When using the concurrent garbage collector, CMS, the output produced by
-XX:+PrintGCDetails is different, especially the data reporting what is happen-
ing during a mostly concurrent garbage collection of the old generation space. The
concurrent garbage collector, CMS, is enabled with the -XX:+UseConcMarkSweepGC
command line option. It also auto-enables -XX:+UseParNewGC, a multithreaded
young generation garbage collector. An example of a minor garbage collection using
the concurrent garbage collector, CMS, follows:

[GC
 [ParNew: 2112K->64K(2112K), 0.0837052 secs]
 16103K->15476K(773376K), 0.0838519 secs]
 [Times: user=0.02 sys=0.00, real=0.08 secs]

ptg6882136

114 Chapter 4 � JVM Performance Monitoring

The minor garbage collection output from the concurrent garbage collector is simi-
lar to the minor garbage collection output for the throughput garbage collector. It is
explained here for completeness.

The GC label indicates this is minor garbage collection. [ParNew:
2112K->64K(2112K)] provides information about the young generation space.
ParNew indicates the young generation garbage collector in use is the multithreaded
young generation garbage collector used with the CMS concurrent garbage collector.
If the serial young generation garbage collector is specified to be used with CMS, the
label here will be DefNew.

The value to the left of the ->, 2112K, and to the right of the ParNew label, is the
occupancy of the young generation space prior to the garbage collection. The value
to the right of the ->, 64K, is the occupancy of the young generation space after the
garbage collection. The young generation space is further divided into an eden space
and two survivor spaces. Since the eden space is empty after a minor garbage collec-
tion, the value to the right of the ->, 64K, is the survivor space occupancy. The value
inside the parentheses (2112K), is the size, not the occupancy, of the young genera-
tion space, that is, the total size of eden and the two survivor spaces. The 0.0837052
secs output is the amount of time it took to garbage collect unreachable objects in
the young generation space.

On the next line of output, 16103K->15476K(773376K) provides the Java heap
utilization (the total occupancy of both young generation and old generation spaces),
before and after the garbage collection. In addition, it provides the Java heap size,
which is the total size of young generation and old generation spaces. The value to
the left of the ->, 16103K, is the occupancy of the Java heap before the garbage col-
lection. The value to the right of the ->, 15476K, is the occupancy of the Java heap
after the garbage collection. The value inside the parentheses (773376K), is the
total size of the Java heap.

Using the reported young generation size and the reported Java heap size, you
can calculate the size of the old generation space. For example, the Java heap size is
773376K and the young generation size is 2112K. Hence, the old generation size is
773376K - 2112K = 771264K.

0.0838519 secs indicates the elapsed time for the minor garbage collection
including the time it took to garbage collect the young generation space and promote
any objects to old generation along with any remaining final cleanup work.
[Times: user=0.02 sys=0.00, real=0.08 secs] provides CPU usage and

elapsed time information. The value to the right of user is the CPU time used by
the garbage collection executing instructions outside the operating system. In this
example, the garbage collector used 0.02 seconds of user CPU time. The value to the
right of sys is the CPU time used by the operating system on behalf of the garbage
collector. In this example, the garbage collector did not use any CPU time executing
operating system instructions on behalf of the garbage collection. The value to the

ptg6882136

Garbage Collection 115

right of real is the elapsed wall clock time in seconds of the garbage collection. In
this example, it took 0.08 seconds to complete the garbage collection. The times
reported for user, sys, and real are rounded to the nearest 100th of a second.

Recall from the description of CMS in Chapter 3 there is a mostly concurrent garbage
collection cycle that can execute in the old generation space. -XX:+PrintGCDetails
also reports garbage collection activity on each concurrent garbage collection cycle.
The following example shows garbage collection output that reports an entire con-
current garbage collection cycle. The concurrent garbage collection activity is inter-
spersed with minor garbage collections to illustrate that minor garbage collections
can occur during a concurrent garbage collection cycle. The output is reformatted for
easier reading, and the concurrent garbage collection data is in bold. It should also
be noted that the output reported from -XX:+PrintGCDetails when using CMS is
subject to change between releases.

[GC
 [1 CMS-initial-mark: 13991K(773376K)]
 14103K(773376K), 0.0023781 secs]
 [Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-mark-start]
[GC
 [ParNew: 2077K->63K(2112K), 0.0126205 secs]
 17552K->15855K(773376K), 0.0127482 secs]
 [Times: user=0.01 sys=0.00, real=0.01 secs]
[CMS-concurrent-mark: 0.267/0.374 secs]
 [Times: user=4.72 sys=0.01, real=0.37 secs]
[GC
 [ParNew: 2111K->64K(2112K), 0.0190851 secs]
 17903K->16154K(773376K), 0.0191903 secs]
 [Times: user=0.01 sys=0.00, real=0.02 secs]
[CMS-concurrent-preclean-start]
[CMS-concurrent-preclean: 0.044/0.064 secs]
 [Times: user=0.11 sys=0.00, real=0.06 secs]
[CMS-concurrent-abortable-preclean-start]
[CMS-concurrent-abortable-clean] 0.031/0.044 secs]
 [Times: user=0.09 sys=0.00, real=0.04 secs]
[GC
 [YG occupancy: 1515 K (2112K)
 [Rescan (parallel) , 0.0108373 secs]
 [weak refs processing, 0.0000186 secs]
 [1 CMS-remark: 16090K(20288K)]
 17242K(773376K), 0.0210460 secs]
 [Times: user=0.01 sys=0.00, real=0.02 secs]
[GC
 [ParNew: 2112K->63K(2112K), 0.0716116 secs]
 18177K->17382K(773376K), 0.0718204 secs]
 [Times: user=0.02 sys=0.00, real=0.07 secs]
[CMS-concurrent-sweep-start]

Continued

ptg6882136

116 Chapter 4 � JVM Performance Monitoring

A CMS cycle begins with the initial mark pause and ends at the completion of
the concurrent reset phase. Each of the CMS cycle phases is in bold in the preced-
ing output beginning with the CMS-initial-mark and ending with the CMS-
concurrent-reset. The CMS-concurrent-mark entry indicates the end of the
concurrent marking phase. The CMS-concurrent-sweep label marks the end
of the concurrent sweeping phase. The CMS-concurrent-preclean and CMS-
concurrent-abortable-preclean entries identify work that can be done
concurrently and is in preparation for the remark phase, denoted with the CMS-
remark label. The sweeping phase, noted with the CMS-concurrent-sweep entry,
is the phase that frees the space consumed by objects marked as unreachable. The
final phase is indicated by the CMS-concurrent-reset, which prepares for the
next concurrent gar bage collection cycle.

The initial mark is usually a short pause relative to the time it takes for a minor
garbage collection. The time it takes to execute the concurrent phases (concurrent
mark, concurrent precleaning, and concurrent sweep) may be relatively long (as in
the preceding example) when compared to a minor garbage collection pause, but
Java application threads are not stopped for the duration of the concurrent phases.
The remark pause is affected by the specifics of the application (e.g., a higher rate
of modifying objects can increase this pause time) and the time since the last minor
garbage collection (i.e., a larger number of objects in the young generation space may
increase the duration of this pause).

A pattern to pay particular attention to in the output is the amount in the
reduction of old generation space occupancy during the CMS cycle. In particular,
how much the Java heap occupancy drops between the start and end of the CMS

[GC
 [ParNew: 2111K->63K(2112K), 0.0830392 secs]
 19363K->18757K(773376K), 0.0832943 secs]
 [Times: user=0.02 sys=0.00, real=0.08 secs]
[GC
 [ParNew: 2111K->0K(2112K), 0.0035190 secs]
 17527K->15479K(773376K), 0.0036052 secs]
 [Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-sweep: 0.291/0.662 secs]
 [Times: user=0.28 sys=0.01, real=0.66 secs]
[GC
 [ParNew: 2048K->0K(2112K), 0.0013347 secs]
 17527K->15479K(773376K), 0.0014231 secs]
 [Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-reset-start]
[CMS-concurrent-reset: 0.016/0.016 secs]
 [Times: user=0.01 sys=0.00, real=0.02 secs]
[GC
 [ParNew: 2048K->1K(2112K), 0.0013936 secs]
 17527K->15479K(773376K), 0.0014814 secs]
 [Times: user=0.00 sys=0.00, real=0.00 secs]

ptg6882136

Garbage Collection 117

concurrent sweep denoted in the output as CMS-concurrent-sweep-start and
CMS-concurrent-sweep. The Java heap occupancy can be observed by looking at
the minor garbage collections. Hence, pay attention to the minor garbage collections
between the start and end of the CMS concurrent sweep phase. If there is little drop
in the Java heap occupancy between the start and end of the CMS concurrent sweep
phase, then either few objects are being garbage collected, meaning the CMS garbage
collection cycles are finding few unreachable objects to garbage collect and as a result
are wasting CPU, or objects are being promoted into the old generation space at a
rate that is equal to or greater than the rate at which the CMS concurrent sweep
phase is able to garbage collect them. Either of these two observations is a strong
indicator the JVM is in need of tuning. See Chapter 7 for information on tuning the
CMS garbage collector.

Another artifact to monitor when using the CMS garbage collector is the tenur-
ing distribution enabled via the -XX:+PrintTenuringDistribution command
line option. The tenuring distribution is a histogram showing the ages of objects in
the young generation’s survivor spaces. When an object’s age exceeds the tenuring
threshold it is promoted from the young generation space to the old generation space.
The tenuring threshold and how to monitor the tenuring distribution along with why
it is important to monitor is explained in the “Tenuring Threshold Explained” and
“Monitoring the Tenuring Threshold” sections of Chapter 7.

If objects are promoted too quickly to the old generation space and the CMS gar-
bage collector cannot keep free enough available space to meet the rate that objects
are promoted from young generation to old generation, it leads to the old genera-
tion running out of available space, a situation known as a concurrent mode fail-
ure. A concurrent mode failure can also occur if the old generation space becomes
fragmented to a point where there is no longer a hole in the old generation space
large enough to handle an object promotion from the young generation space.
-XX:+PrintGCDetails reports a concurrent mode failure in the garbage collec-
tion output with the text (concurrent mode failure). When a concurrent mode
failure occurs, the old generation space is garbage collected to free available space,
and it is compacted to eliminate fragmentation. This operation requires all Java
application threads be stopped, and it can take a noticeably lengthy duration of
time to execute. Therefore, if you observe concurrent mode failures, you should tune
the JVM using the guidance in Chapter 7, especially the section on fine-tuning the
application for low latency.

Including Date and Time Stamps

The HotSpot VM includes command line options to include a date or time stamp on
each reported garbage collection. The -XX:+PrintGCTimeStamps command line
option prints a time stamp that is the number of elapsed seconds since the JVM
started. It is printed at each garbage collection. The following is example minor

ptg6882136

118 Chapter 4 � JVM Performance Monitoring

garbage collection output from -XX:+PrintGCTimeStamps being used in combina-
tion with -XX:+PrintGCDetails and the throughput garbage collector. (The output
is spread across several lines for easier reading.)

77.233: [GC
 [PSYoungGen: 99952K->14688K(109312K)]
 422212K->341136K(764672K), 0.0631991 secs]
 [Times: user=0.83 sys=0.00, real=0.06 secs]

Notice the -XX:+PrintGCDetails output is prefixed with a time stamp represent-
ing the number of seconds since the JVM started. The output for full garbage collec-
tions also prefixes the output with a time stamp. In addition, a time stamp is also
printed when using the concurrent garbage collector.

Java 6 Update 4 and later include a -XX:+PrintGCDateStamps command line
option. It produces an ISO 8601 date and time stamp. The date and time stamp have
the following form; YYYY-MM-DD-T-HH-MM-SS.mmm-TZ, where:

� YYYY is the four-digit year.
� MM is the two-digit month; single-digit months are prefixed with 0.
� DD is the two-digit day of the month; single-digit days are prefixed with 0.
� T is a literal that denotes a date to the left of the literal and a time of day to the

right.
� HH is the two-digit hour; single-digit hours are prefixed with 0.
� MM is the two-digit minute; single-digit minutes are prefixed with 0.
� SS is the two-digit second; single-digit seconds are prefixed with 0.
� mmm is the three-digit milliseconds; single- and two-digit milliseconds are pre-

fixed with 00 and 0, respectively.
� TZ is the time zone offset from GMT.

Although the time zone offset from GMT is included in the output, the date and
time of day are not printed as GMT time. The date and time of day are adjusted to
local time. The following example output uses -XX:+PrintGCDateStamps together
with -XX:+PrintGCDetails when using the throughput garbage collector. The out-
put is spread across several lines for easier reading.

2010-11-21T09:57:10.518-0500:[GC
 [PSYoungGen: 99952K->14688K(109312K)]
 422212K->341136K(764672K), 0.0631991 secs]
 [Times: user=0.83 sys=0.00, real=0.06 secs]

ptg6882136

Garbage Collection 119

The full garbage collections with the throughput garbage collector also prefixes a
date and time stamp when using -XX:+PrintGCDateStamps. In addition, a date
and time stamp are printed when using the concurrent garbage collector.

The use of date and/or time stamps allows you to measure both the duration of
minor and full garbage collections along with the frequency of minor and full gar-
bage collections. With the inclusion of date and/or time stamps, you can calculate an
expected frequency that minor and full garbage collections occur. If the garbage col-
lection durations or frequency exceed the application’s requirements, consider tuning
the JVM as described in Chapter 7.

77.233: [GC
 [PSYoungGen: 99952K->14688K(109312K)]
 422212K->341136K(764672K), 0.0631991 secs]
 [Times: user=0.83 sys=0.00, real=0.06 secs]

Since -Xloggc includes a time stamp automatically in its output, it is easy to deter-
mine when minor and full garbage collections occur. In addition, you can also calcu-
late the frequency of minor and full garbage collections. With the time stamps, you
can calculate the expected frequency that minor and full garbage collections occur. If
the garbage collection durations or frequency exceed the application’s requirements,
consider tuning the JVM as described in Chapter 7.

Application Stopped Time and Application Concurrent Time

The HotSpot VM can report the amount of time an application runs between safepoint
operations and the amount of time the HotSpot VM blocks executing Java threads

To facilitate offline analysis of garbage collection statistics and to direct garbage
collection output to a file, the -Xloggc:<filename> HotSpot VM command line
option can be used. <filename>is the name of the file where you want the garbage
collection data to be stored. Offline analysis of garbage collection data can represent
a wider span of time and the ability to identify patterns without having to observe
the data as the application is running.

When -XX:+PrintGCDetails is used in combination with -Xloggc:<filename>,
the output is automatically prefixed with a time stamp even without specify-
ing -XX:+PrintGCTimeStamps. The time stamp is printed in the same way as
-XX:+PrintGCTimeStamps is printed. Following is an example of -Xloggc:<filename>
being used in combination with -XX:+PrintGCDetails with the throughput garbage
collector. (The output is spread across several lines for easier reading.)

-Xloggc

ptg6882136

120 Chapter 4 � JVM Performance Monitoring

using the command line options -XX:+PrintGCApplicationConcurrentTime
and -XX:+PrintGCApplicationStoppedTime. Observing safepoint operations
using these two command line options can provide useful information in understand-
ing and quantifying the impact of JVM induced latency events. It can also be used
to identify whether a latency event of interest is the result of a JVM induced latency
from a safepoint operation, or if the latency event occurred as a result of something
in the application.

Tip

Chapter 3, “JVM Overview,” describes safepoint operations in more detail.

An example using -XX:+PrintGCApplicationConcurrentTime and
-XX:+PrintGCApplicationStoppedTime in addition to -XX:+PrintGCDetails
is shown in the following:

Application time: 0.5291524 seconds
[GC
 [ParNew: 3968K->64K(4032K), 0.0460948 secs]
 7451K->6186K(32704K), 0.0462350 secs]
 [Times: user=0.01 sys=0.00, real=0.05 secs]
Total time for which application threads were stopped: 0.0468229 seconds
Application time: 0.5279058 seconds
[GC
 [ParNew: 4032K->64K(4032K), 0.0447854 secs]
 10154K->8648K(32704K), 0.0449156 secs]
 [Times: user=0.01 sys=0.00, real=0.04 secs]
Total time for which application threads were stopped: 0.0453124 seconds
Application time: 0.9063706 seconds
[GC
 [ParNew: 4032K->64K(4032K), 0.0464574 secs]
 12616K->11187K(32704K), 0.0465921 secs]
 [Times: user=0.01 sys=0.00, real=0.05 secs]
Total time for which application threads were stopped: 0.0470484 seconds

The output shows the application ran for approximately .53 to .91 seconds with
minor garbage collection pauses of approximately .045 to .047 seconds. That equates
to about 5% to 8% overhead for minor garbage collections.

Also notice there are no additional safepoints between each of the minor garbage
collections. If there happens to be additional safepoints between garbage collections,
the output will show Application time: and Total time for which appli-
cation threads were stopped: messages for each safepoint that occurs between
garbage collections.

ptg6882136

Garbage Collection 121

Explicit Garbage Collections

Explicit garbage collections can be identified in garbage collection output easily. The
garbage collection output contains text indicating the full garbage collection is the
result of an explicit call to System.gc(). Following is an example of a full garbage col-
lection initiated with a call to System.gc() using the -XX:+PrintGCDetails com-
mand line option. Again, the output is spread across several lines for easier reading.

[Full GC (System)
 [PSYoungGen: 99608K->0K(114688K)]
 [PSOldGen: 317110K->191711K(655360K)]
 416718K->191711K(770048K)
 [PSPermGen: 15639K->15639K(22528K)],
 0.0279619 secs]
 [Times: user=0.02 sys=0.00, real=0.02 secs]

Notice the (System) label following the Full GC text. This indicates this is a System.gc()
induced full garbage collection. If you observe an explicit full garbage collection in the
garbage collection logs, investigate the reason why it is being used and then decide
whether the call to System.gc() should be removed from the source code, or whether it
should be disabled.

Recommended Command Line Options for Monitoring Garbage Collection

A minimum set of HotSpot VM garbage collection command line options to
monitor garbage collection are -XX:+PrintGCDetails along with either
-XX:+PrintGCTimeStamps or -XX:+PrintGCDateStamps. It may also be useful
to use -Xloggc:<filename> to save the data to a file so the data can be further
analyzed offline.

Offline Analysis of Garbage Collection Data

The purpose of doing offline analysis is to summarize garbage collection data and
look for patterns of interest in the data. Offline analysis of garbage collection data
can be done in a variety of different ways such as loading the data into a spreadsheet
or using a charting tool to plot the data. GCHisto is a tool designed to do offline
analysis. GCHisto is a free tool that can be downloaded at http://gchisto.dev.java.net.
GCHisto reads garbage collection data saved in a file and presents both a tabular
and graphical view of the data. Figure 4-1 shows a tabular summary from its GC
Pause Stats tab.

http://gchisto.dev.java.net

ptg6882136

122 Chapter 4 � JVM Performance Monitoring

The GC Pause Stats subtab provides information such as the number of, the over-
head of, and duration of garbage collections. The additional GC Pause Stats subtabs
narrow the focus to one of the aforementioned categories.

All garbage collections or phases of garbage collections that induce stop-the-
world pauses have a row in the table in addition to a total on the top row. Figure 4-1
shows data from the concurrent garbage collector. Recall from Chapter 3 that the
concurrent garbage collector, in addition to minor (young) and major garbage col-
lections, also has two stop-the-world garbage collection pauses: the CMS initial
mark and CMS remark. If you observe initial mark or remark pauses greater than
minor garbage collection pauses, it suggests the JVM requires tuning. Initial mark
and remark phases are expected to be shorter in duration than minor garbage
collections.

When viewing statistics from the throughput garbage collector, since it has only
two stop-the-world garbage collection pauses, only minor and full garbage collections
are shown in the GC Pause Stats tab of GCHisto.

The number of minor versus full garbage collections provides a sense of the fre-
quency of full garbage collections. This information along with the full garbage col-
lection pause times can be evaluated against the application’s requirements for
frequency and duration of full garbage collections.

The garbage collection overhead (the Overhead % column) is an indicator of how
well the garbage collector is tuned. As a general guideline, concurrent garbage collec-
tion overhead should be less than 10%. It may be possible to achieve 1% to 3%. For
the throughput garbage collector, garbage collection overhead near 1% is considered
as having a well-tuned garbage collector. 3% or higher can be an indication that tun-
ing the garbage collector may improve the application’s performance. It is important
to understand there is a relationship between garbage collection overhead and the
size of the Java heap. The larger the Java heap, the better the opportunity for lower

Figure 4-1 GC Pause Stats in GCHisto

ptg6882136

Garbage Collection 123

garbage collection overhead. Achieving the lowest overhead for a given Java heap
size requires JVM tuning.

In Figure 4-1, the garbage collection overhead is a little over 14%. Applying the
general guidelines just mentioned, JVM tuning will likely reduce its overhead.

The maximum pause times, the far right column, can be evaluated against the
application’s worst case garbage collection induced latency requirements. If any of
the maximum pause times exceed the application’s requirements, tuning the JVM
may be a consideration. The degree and how many pause times exceed the applica-
tion’s requirements dictate whether JVM tuning is a necessity.

The minimum, maximum, average, and standard deviation provide information
about the distribution of pause times. The distribution of pause times can be viewed
by clicking on the GC Pause Distribution tab as shown in Figure 4-2.

The default view for the GC Pause Distribution shows the distribution of all
garbage collection pauses. Which pause type is included in the view is controlled
by selecting or deselecting the appropriate check box. The y-axis is the count of
pauses and the x-axis is the pause time duration of the garbage collection event.
It is generally more useful to look at full garbage collections separately since they
usually have the longest duration. Looking at only minor garbage collections offers
the possibility to see wide variations in pause times. A wide distribution in pause
times can be an indication of wide swings in object allocation rates or promotion
rates. If you observe a wide distribution of pause times, you should look at the GC
Timeline tab to identify peaks in garbage collection activity. An example is shown
in Figure 4-3.

The default view for the GC Timeline shows all garbage collection pauses
through the entire time line. To see time stamps at the bottom of the graph
(the x-axis), you must have garbage collection statistics that include either
-XX:+PrintGCTimeStamps, -XX:+PrintGCDateStamps, or used -Xloggc. For

Figure 4-2 GC Pause Distribution

ptg6882136

124 Chapter 4 � JVM Performance Monitoring

every garbage collection pause that occurred, a tick is put on the graph illustrating
the duration of the pause (y-axis) and when the pause occurred relative to the start
of the JVM (the x-axis).

There are several patterns to look for in a time line. For example, you should take
notice of when full garbage collections occur and how frequently. Selecting only full
garbage collections as the pause type is useful for this analysis. With the time line
you can observe when the full garbage collections occur relative to the start of the
JVM to get a sense of when they occurred.

Selecting only minor garbage collections as the pause type to show allows you to
observe peaks, or possibly repeating peaks, in garbage collection duration over time.
Any observed peaks or repeating patterns can be mapped back to application logs to
get a sense of what is happening in the system at that time when the peaks occur. The
use cases being executed at those time periods can be candidates to further explore
for object allocation and object retention reduction opportunities. Reducing object
allocation and object retention during these busiest garbage collection activity time
periods reduces the frequency of minor garbage collections and potentially reduces
the frequency of full garbage collections.

An area of the time line can be zoomed in on by selecting an area of interest with
the mouse, as illustrated in Figure 4-4.

Zooming in allows you to narrow the focus of the time line to a specific area to see
each garbage collection pause. You can zoom back out by pressing the right mouse
button anywhere in the graph and selecting Auto Range > Both Axes from the context
sensitive menu.

GCHisto also provides the capability to load more than one garbage collection log
at a time via the Trace Management tab. When multiple garbage collection logs are
loaded, there is a separate tab for each garbage collection log, which allows you to

Figure 4-3 GC Timeline tab

ptg6882136

Garbage Collection 125

easily switch between logs. This can be useful when you want to compare garbage
collection logs between different Java heap configurations or between different appli-
cation loads.

Graphical Tools

Garbage collection can also be monitored with graphical tools, which can make the
identification of trends or patterns a little easier than traversing textual output. The
following graphical tools can be used to monitor the HotSpot VM: JConsole, Visu-
alGC, and VisualVM. JConsole is distributed with Java 5 and later JDKs.

VisualGC was originally developed and packaged with jvmstat. It is available as
a free download at http://java.sun.com/performance/jvmstat.

VisualVM is an open source project that brings together several existing light-
weight Java application monitoring and profiling capabilities into a single tool.
VisualVM is included in Java 6 Update 6 and later JDKs. It is also available as a
free download from http://visualvm.dev.java.net.

JConsole

JConsole is a JMX (Java Management Extensions) compliant GUI tool that con-
nects to a running Java 5 or later JVM. Java applications launched with a Java
5 JVM must add the -Dcom.sun.management.jmxremote property to allow the
JConsole to connect. Java applications launched using Java 6 and later JVMs do
not require this property. The following examples illustrate how to connect JCon-
sole to an example demo application shipped with the JDK called Java2Demo.
Using a Java 5 JDK, the Java2Demo application can be started using the following
command line.

Figure 4-4 GC Timeline zooming

http://java.sun.com/performance/jvmstat
http://visualvm.dev.java.net

ptg6882136

126 Chapter 4 � JVM Performance Monitoring

On Solaris or Linux:

$ <JDK install dir>/bin/java -Dcom.sun.management.jmxremote -jar <JDK
install dir>/demo/jfc/Java2D/Java2Demo.jar

<JDK install dir> is the path and directory where a Java 5 JDK is installed.

On Windows:

<JDK install dir>\bin\java -Dcom.sun.management.jmxremote -jar <JDK
install dir>\demo\jfc\Java2D\Java2Demo.jar

<JDK install dir> is the path and directory where a Java 5 JDK is installed.
To start JConsole on either with a Java 6 or later JVM the -Dcom.sun.management.
jmxremote property is not required as an argument to JConsole.

On Solaris or Linux:

$ <JDK install dir>/bin/jconsole

<JDK install dir> is the path and directory where Java 5 JDK is installed.

On Windows:

<JDK install dir>\bin\jconsole

<JDK install dir> is the path and directory where a Java 5 JDK is installed.
When JConsole is launched it automatically discovers and provides the oppor-

tunity to connect to Java applications running locally or remotely. The connection
dialogs differ slightly between the JConsole version shipped in Java 5 versus Java 6
as shown in Figure 4-5 and Figure 4-6, respectively.

Figure 4-5 Java 5 JConsole connection dialog

ptg6882136

Garbage Collection 127

In Java 5 JConsoles, the applications listed in the connection dialog that can be
monitored are applications that have been started with the -Dcom.sun.management.
jmxremote property and applications that share the same user credentials as those
of the user who has started JConsole.

With Java 6 JConsole, the applications listed in the connection dialog that can be
monitored are applications that are Java 6 applications and Java 5 applications that
have been started with the -Dcom.sun.management.jmxremote property, which
both share the same user credentials as those of the user who has started JConsole.
Java 5 applications that have not been started with the -Dcom.sun.management.
jmxremote property that share the same user credentials as those of JConsole are
listed but grayed out.

To monitor an application on a local system you select the Name and PID of the
application from the list and click the Connect button. Remote monitoring is advanta-
geous when you want to isolate the system resource consumption from the JConsole
application from the system being monitored. To monitor an application on a remote
system, the application to be monitored must be started with remote management
enabled. Enabling remote management involves identifying a port number to com-
municate with the monitored application and establishing password authentication
along with optionally using SSL for security. Information on how to enable remote
management can be found in the Java SE 5 and Java SE 6 monitoring and manage-
ment guides:

Figure 4-6 Java 6 JConsole connection dialog

ptg6882136

128 Chapter 4 � JVM Performance Monitoring

� Java SE 5 — http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
� Java SE 6 — http://java.sun.com/javase/6/docs/technotes/guides/management/toc.

html

Tip

More than one Java application can be monitored with JConsole at any time by selecting the
Connection > New Connection menu and selecting a different Name and PID pair.

Once a JConsole is connected to an application it will load six tabs. The default
JConsole display between Java 5 and Java 6 differs. Java 6’s JConsole displays a
graphical representation of heap memory, thread, classes, and CPU usage. In con-
trast, Java 5’s JConsole displays the same information but in a textual form. For the
purposes of monitoring JVM garbage collection, the Memory tab is the most useful.
The Memory tab in both Java 5 and Java 6 JConsole are the same. Figure 4-7 shows
the JConsole Memory tab.

Figure 4-7 JConsole Memory tab

http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html

ptg6882136

Garbage Collection 129

The Memory tab uses charts to graphically show the JVM’s use of memory con-
sumption over a period of time. Depending on the JVM being monitored and the gar-
bage collector being used, the spaces that make up the Java heap, or memory pools
as they are called in JConsole, may vary. But from their names it is straightforward
to map them to following HotSpot VM space names:

� Eden space. The memory pool where almost all Java objects are allocated.
� Survivor space. The memory pool containing objects that have survived at

least one garbage collection of the eden space.
� Old or tenured space. The memory pool containing objects that have sur-

vived some garbage collection age threshold.
� Permanent generation space. The memory pool containing all the reflec-

tive data of the JVM such as class and method objects. If the monitored JVM
supports class data sharing, this space will be divided into read-only and read-
write areas.

� Code cache. Applies to the HotSpot VM and contains memory that is used
by the JIT compiler and for the storage of JIT compiled code.

JConsole defines heap memory as the combination of eden space, survivor space,
and old or tenured space. Non-heap memory is defined as the combination of perma-
nent generation space and code cache. You can display charts of heap memory usage
or non-heap memory usage by choosing one of the options in the Chart drop-down
menu. You can also view charts of specific spaces. Additionally, clicking on any of the
Heap or Non-Heap bar charts in the bottom right corner switches the chart to display
the selected Heap or Non-Heap space. If you hover the mouse over any of the Heap
or Non-Heap bar charts in the lower right corner, a tool tip displays text indicating
the memory pool or space name.

A pattern to watch for is whether the survivor space remains full for an extended
period of time. This is an indication that survivor spaces are overflowing and objects
are getting promoted into the old generation space before they have an opportunity
to age. Tuning the young generation space can address survivor spaces overflowing.

You can also change the time range over which memory usage is displayed by
selecting an option in the Time Range drop-down menu.

In the left-hand portion of the Details panel (the bottom left panel), several current
JVM memory metrics are displayed including

� Used. The amount of memory currently used, including the memory occupied
by all Java objects, both reachable and unreachable.

� Committed. The amount of memory guaranteed to be available for use by
the JVM. The amount of committed memory may change over time. The JVM

ptg6882136

130 Chapter 4 � JVM Performance Monitoring

may release memory to the system, and the amount of committed memory could
be less than the amount of memory initially allocated at startup. The amount of
committed memory will always be greater than or equal to the amount of used
memory.

� Max. The maximum amount of memory that can be used for memory manage-
ment. Its value may change or be undefined. A memory allocation may fail if
the JVM attempts to increase the used memory to be greater than committed
memory, even if the amount used is less than or equal to max (for example,
when the system is low on virtual memory).

� GC time. The cumulative time spent in stop-the-world garbage collections
and the total number of garbage collection invocations including concurrent
garbage collection cycles. Multiple rows may be shown, each of which represents
the garbage collector used in the JVM.

Additional garbage collection monitoring capabilities are possible with JCon-
sole. Many of these capabilities are described in the JConsole documentation
found at

� Java SE 5 — http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.
html

� Java SE 6 — http://java.sun.com/javase/6/docs/technotes/guides/management/
jconsole.html

VisualVM

VisualVM is an open source graphical tool that began development in 2007. VisualVM
was introduced in the Java 6 Update 7 JDK and is considered the second generation
of the JConsole tool. VisualVM integrates several existing JDK software tools and
lightweight memory monitoring tools such as JConsole along with adding profiling
capabilities found in the popular NetBeans Profiler. VisualVM is designed for both
production and development environments and further enhances the capabilities of
monitoring and performance analysis for the Java SE platform. It also utilizes the
NetBeans plug-in architecture, which allows the ability to easily add components,
add plug-ins, or extend VisualVM’s existing components or plug-ins to performance
monitor or profile any application.

VisualVM requires a Java 6 version to run, but it can monitor Java 1.4.2, Java
5, or Java 6 applications locally or remotely. However, there are some limitations to
VisualVM’s capabilities depending on the Java version used by the Java application
being monitored and whether the Java application is running locally or remotely to
VisualVM. Table 4-1 illustrates the VisualVM features available for a given Java
application running with a given version of a JDK.

http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

ptg6882136

Garbage Collection 131

VisualVM also includes profiling capabilities. Although profiling is covered in
detail in Chapter 5, “Java Application Profiling,” VisualVM’s remote profiling capa-
bilities are covered in this chapter since VisualVM’s remote profiling is lightweight
and fits well with monitoring activities.

VisualVM can be launched from Windows, Linux, or Solaris using the following
command line. (Note the command name is jvisualvm, not just visualvm.)

Table 4.1 VisualVM Feature Table

Feature JDK 1.4.2 Local
and Remote

JDK 5.0 Local
and Remote

JDK 6.0
(Remote)

JDK 6.0
(Local)

Overview • • • •

System Properties
(in Overview)

•

Monitor • • • •

Threads • • •

Profiler •

Thread Dump •

Heap Dump •

Enable Heap Dump
on OOME

•

MBean Browser
(plug-in)

•

Wrapper for JConsole
plug-ins (plug-in)

• • •

VisualGC (plug-in) • • • •

<JDK install dir>\bin\jvisualvm

<JDK install dir> is the path and directory where JDK 6 Update 6 or later
is installed.

If you have downloaded the standalone VisualVM from java.net, VisualVM can
be launched from Windows, Linux, or Solaris using the following command line.
(Note the open source version of VisualVM available on java.net is launched using
visualvm rather than jvisualvm as is done when VisualVM is launched from a
JDK distribution.)

ptg6882136

132 Chapter 4 � JVM Performance Monitoring

Alternatively, you can launch VisualVM from a directory window display such as
Windows Explorer by traversing to the VisualVM installation directory and double-
clicking on the VisualVM executable icon.

The initial VisualVM display shows an Applications window on the left and an
empty monitoring window on the right, as shown in Figure 4-8.

The Applications panel of VisualVM has three major nodes in an expandable
tree. The first major node, Local, contains a list of local Java applications VisualVM
can monitor. The second node, Remote, contains a list of remote hosts and Java
applications on each remote host VisualVM can monitor. The third node, Snapshots,
contains a list of snapshot files. With VisualVM you can take a snapshot of a Java
application’s state. When a snapshot is taken, the Java application’s state is saved
to a file and listed under the Snapshots node. Snapshots can be useful when you
want to capture some important state about the application or to compare it against
a different snapshot.

Local Java applications are automatically identified by VisualVM at Java applica-
tion launch time and at VisualVM launch time. For example, as shown in Figure 4-8,

<VisualVM install dir>\bin\visualvm

<VisualVM install dir> is the path and directory where VisualVM is
installed.

Figure 4-8 VisualVM

ptg6882136

Garbage Collection 133

VisualVM automatically discovered the Java applications shown on the Local node.
As additional Java applications are launched, VisualVM automatically detects them
and adds them to the local node’s list. As Java applications are shut down, VisualVM
automatically removes them.

To monitor remote Java applications, configuration must be done on the remote
system where you want to monitor the Java application. The remote system must
be configured to run the jstatd daemon. The jstatd daemon is shipped in Java 5 and
Java 6 JDKs. It is not included with Java 5 or Java 6 JREs. You can find the jstatd
daemon in the same directory as jvisualvm and the java launcher.

The jstatd daemon launches a Java RMI server application that watches for the
creation and termination of HotSpot VMs and provides an interface to allow remote
monitoring tools such as VisualVM to attach and monitor Java applications remotely.
The jstatd daemon must be run with the same user credentials as those of the Java
applications to be monitored. Since jstatd can expose instrumentation of JVMs, it
must employ a security manager and requires a security policy file. Consideration
should be given to the level of access granted via the security policy so that the
monitored JVM’s security is not compromised. The policy file used by jstatd must
conform to Java’s security policy specification. The following is an example policy file
that can be used with jstatd:

grant codebase ”file:${java.home}/../lib/tools.jar” {
 permission java.security.AllPermission;
};

To use the preceding example policy and start the jstatd daemon, assuming the
preceding policy is saved in a file called jstatd.policy, at the command line you would
execute the following command:

Tip

Note that the preceding example policy file allows jstatd to run without any security
exceptions. This policy is less liberal than granting all permissions to all codebases but is
more liberal than a policy that grants the minimal permissions to run the jstatd server.
More restrictive security than this example can be specified in a policy to further limit
access. However, if security concerns cannot be addressed with a policy file, the safest
approach is to not run jstatd and use the monitoring tools locally rather than connecting
remotely.

jstatd -J-Djava.security.policy=<path to policy file>/jstatd.policy

ptg6882136

134 Chapter 4 � JVM Performance Monitoring

Once the jstatd daemon is running on the remote system, you can verify the local
system can attach to the remote jstatd daemon by running the jps command and
providing the hostname of the remote system. jps is a command that lists the Java
applications that can be monitored. When jps is supplied a hostname, it attempts
to connect to the remote system’s jstatd daemon to discover which Java applications
can be monitored remotely. When no optional hostname is supplied to jps, it returns
a list of Java applications that can be monitored locally.

Suppose the remote system where you have configured and have the jstatd dae-
mon running is called halas. On the local system, you would execute the following
jps command to verify the connectivity to the remote system.

Tip

Additional details on how to configure jstatd can be found at http://java.sun.com/javase/6/
docs/technotes/tools/share/jstatd.html.

$ jps halas
2622 Jstatd

If the jps command returns a Jstatd in its output, you have successfully config-
ured the remote system’s jstatd daemon. The number preceding the Jstatd in the
output is the process id of the jstatd daemon process. For the purposes of verifying
remote connectivity, the process id is not important.

To use VisualVM to monitor a remote Java application, it needs to be configured
with the remote host’s name or IP address. This is done by right-clicking on the
Remote node in VisualVM’s Applications panel and adding the remote host informa-
tion. If you want to monitor Java applications on multiple remote hosts, you must
configure each remote host with a jstatd daemon, using the procedure described
earlier. Then, add each remote host’s information in VisualVM. VisualVM automati-
cally discovers and provides a list of Java applications that can be monitored. Again,
recall that the remote Java applications must match the user credentials of the user
running VisualVM and jstatd along with those that meet the permissions specified
in the jstatd policy file. Figure 4-9 shows VisualVM with a remote system configured
and the Java applications it can monitor.

To monitor an application, you can either double-click on an application name
or icon under the Local or Remote node. You can also right-click on the application
name or icon and select Open. Any of these actions opens a window tab in the right
panel of VisualVM. Local applications running with Java 6 or later have additional
subtabs.

http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html

ptg6882136

Garbage Collection 135

The number of subtab windows displayed in the right panel of VisualVM depends
on the application’s Java version, whether it is running locally or remotely, and
whether any additional plug-ins have been added to VisualVM. The minimum set
of window subtabs in the right panel is the Overview and Monitor subtabs. The
Overview window provides a high level overview of the monitored application by
showing the process id, host name where the application is running, main Java
class name, any arguments passed to the application, the JVM name, the path to the
JVM, any JVM flags used, whether heap dump on out of memory error is enabled or
disabled, number of thread dumps or heap dumps have been taken, and, if available,
the monitored application’s system properties. The Monitor window displays heap
usage, permanent generation space usage, classes loaded information, and number
of threads. An example of the Monitor window monitoring an application running
remotely under Java 6 is shown in Figure 4-10.

If a JMX connection is configured for use with the remote application, you can also
request a garbage collection or heap dump from the Monitor window. To configure a
JMX on the remote application, it must be started with at least the following system
properties:

� com.sun.management.jmxremote.port=<port number>

� com.sun.management.jmxremote.ssl=<true | false>

� com.sun.management.jmxremote.authenticate=<true | false>

Figure 4-9 VisualVM configured to monitor remote applications

ptg6882136

136 Chapter 4 � JVM Performance Monitoring

To configure VisualVM to connect to the remote application via JMX, use the File >
Add JMX Connection menu item. In the Add JMX Connection form, add the following
information for each of the fields:

� hostname:<port number> for the Connection field. For example, if the remote
application is running on a host named halas, and you configured the remote appli-
cation with com.sun.management.jmxremote.port=4433, you enter halas:4433
in the Connection field.

� Optionally enter a display name to be displayed in VisualVM to identify the
remote application via the JMX connection. By default, VisualVM uses what
you entered in the Connection field as the display name.

� If you set com.sun.management.jmxremote.authenticate=true, enter
the username and password in the Username and Password fields who are
authenticated to connect remotely.

Figure 4-10 VisualVM Monitor subtab

ptg6882136

Garbage Collection 137

See VisualVM JMX connection documentation for additional information on con-
figuring JMX for remote monitoring with VisualVM, http://download.oracle.com/
javase/6/docs/technotes/guides/visualvm/jmx_connections.html.

After a JMX connection is configured, an additional icon is displayed in VisualVM’s
Application’s panel representing that a remote JMX connection has been configured
to the remote application. Configuring a JMX connection for remote applications in
VisualVM increases the monitoring capabilities. For example, the Monitor window
also shows CPU usage by the application and the ability to induce a full garbage
collection or heap dump, as shown in Figure 4-11.

In addition to more capabilities in the Monitor window, an additional Threads
window is also available. The Threads window shows a view of threads in the applica-
tion along with a color indicating whether the thread is currently running, sleeping,
blocked, waiting, or contending on a monitor lock. The Threads window is available
as a view for all locally monitored applications.

The Threads window offers insight into which threads are most active, those that
are involved in acquiring and releasing locks. The Threads window can be useful

Figure 4-11 Remote monitoring via JMX

http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/jmx_connections.html
http://download.oracle.com/javase/6/docs/technotes/guides/visualvm/jmx_connections.html

ptg6882136

138 Chapter 4 � JVM Performance Monitoring

to observing specific thread behavior in an application, especially when operating
system monitoring suggests the application may be experiencing lock contention.

An additional option available in the Threads window is the ability to create a
thread dump by clicking the Thread Dump button. When a thread dump is requested,
VisualVM adds a window tab displaying the thread dump and also appends a thread
dump entry to the monitored application entry in the Application’s window below
the application being monitored. It is important to note that thread dumps are
not persisted or available once VisualVM has been closed unless they are saved.
Thread dumps can be saved by right-clicking on the thread dump icon or label below
the application listed in the Applications panel. Thread dumps can be reloaded in
VisualVM at a later time by selecting the File > Load menu item and traversing to
the directory where the thread dump was saved.

VisualVM also offers profiling capabilities to both local and remote applications.
Local profiling capabilities include both CPU and memory profiling for Java 6 appli-
cations. For monitoring purposes, the feature of monitoring CPU utilization or moni-
toring memory utilization as the application is running can be useful. However, care
should be taken when invoking either of these features on a production system as
they may heavily tax the running application. Being able to monitor CPU utiliza-
tion while an application is running can provide information as to which methods
are the busiest during times when specific events are occurring. For example, a GUI
application may exhibit performance issues only in a specific view. Hence, being able
to monitor the GUI application when it is in that view can be helpful in isolating
the root cause.

Remote profiling requires a JMX connection to be configured and is limited to CPU
profiling. It does not include memory profiling. But heap dumps can be generated
from the Sampler window. They can also be generated from the Threads window.
Heap dumps can be loaded into VisualVM to analyze memory usage.

To initiate remote profiling in VisualVM, first select and open a remote application
from the Application panel that is configured with a JMX connection. Then select the
Sampler window in the right panel. In the Sampler window click the CPU button
to initiate remote profiling. Figure 4-12 shows the Sampler window after clicking
the CPU button. The view of CPU utilization is presented with the method name
consuming the most time at the top. The second column, Self Time %, provides a his-
togram view of the method time spent per method relative to the time spent in other
methods. The Self Time column represents the amount of wall clock time the method
has consumed. The remaining column, Self Time (CPU), reports the amount of CPU
time the method has consumed. Any of the columns can be sorted in ascending or
descending order by clicking on the column name. A second click on a column causes
the ordering to toggle back and forth between ascending or descending.

Profiling can be stopped and resumed by clicking the Pause button. And a snap-
shot can be captured by clicking the Snapshot button. After a taking a snapshot,

ptg6882136

Garbage Collection 139

VisualVM displays the snapshot. The snapshot can be saved to disk. To save the
snapshot to share it with another developer, to be able to load the snapshot at a later
time or to compare it with another snapshot, you can export the snapshot to a file as
shown in Figure 4-13. A saved snapshot can be loaded by VisualVM or the NetBeans
Profiler. To load a saved snapshot with VisualVM, you select the File > Load from
the main menu; filter the files by Profiler Snapshots (*.nps) to find the saved profile
and have it loaded.

In the snapshot window, the call tree showing the call stacks for all threads in the
captured snapshot are displayed. Each call tree can be expanded to observe the call
stack and method consuming the most time and CPU. At the bottom of the snapshot
window you can also view Hot Spots, which is a listing of methods with the method
consuming the most Self Time at the top of the table. A combined view of the Call
Tree and Hot Spots is also available. In the combined view, as you click on a call stack
in the Call Tree, the table of Hot Spot methods is updated to show only the methods
in the selected call stack.

Additional details on profiling Java applications can be found in Chapter 5.

Figure 4-12 Remote CPU profiling

ptg6882136

140 Chapter 4 � JVM Performance Monitoring

VisualVM also has the capability to load binary heap dumps generated using
jmap, JConsole, or upon reaching an OutOfMemoryError and using the -XX:+Heap
DumpOnOutOfMemoryError HotSpot VM command line option. A binary heap dump
is a snapshot of all the objects in the JVM heap at the time when the heap dump is
taken. To generate a binary heap dump using the Java 6 jmap command, you use
jmap -dump:format=b,file=<filename> <jvm pid> where <filename> is
the path and filename of the binary heap dump file and <jvm pid> is the process
id of the JVM running the application. For Java 5, you use jmap -heap:format=b
<jvm pid> where <jvm pid> is the process id of the Java application. Java 5’s
jmap command places the heap dump in a file named heap.bin in the directory
where the jmap command was executed. Java 6’s JConsole can also generate a heap
dump using its HotSpotDiagnostics MBean. Once a binary heap dump has been
generated, it can be loaded in VisualVM using the File > Load menu where analysis
can be performed.

Figure 4-13 Saving a snapshot

ptg6882136

Garbage Collection 141

VisualGC

VisualGC is a plug-in for VisualVM. VisualGC can monitor garbage collection, class
loader, and JIT compilation activities. It was originally developed as a standalone
GUI program. It can be used as both a standalone GUI or as a plug-in for VisualVM
to monitor 1.4.2, Java 5, and Java 6 JVMs. When VisualGC was ported to a VisualVM
plug-in some additional enhancements were made to make it easier to discover and
connect to JVMs. The advantage of using the VisualGC plug-in over the standalone
GUI is JVMs that are monitor-able are automatically discovered and displayed in
VisualVM. With the standalone GUI, you have to identify the process id of the Java
application you want to monitor and pass that as an argument to program launcher.
The process id can be found using the jps command. An example use of the jps com-
mand is described in the previous section as part of the jstatd daemon configuration
setup.

The VisualGC plug-in for VisualVM can be found in VisualVM’s Plug-in Center.
The Plug-in Center is accessed in VisualVM via the Tools > Plugins menu. The Visu-
alGC plug-in can be found on the Available Plug-ins tab.

The standalone VisualGC GUI can be downloaded from http://java.sun.com/
performance/jvmstat/#Download.

Regardless of whether you are using the VisualGC plug-in for VisualVM or the
standalone VisualGC program, to monitor an application locally, both VisualGC and
the application to be monitored must share the same user credentials. When moni-
toring a remote application, the jstatd daemon must be configured and running with
the same user credentials as the Java application to be monitored. How to configure
and run the jstatd daemon is described in the previous section.

Using the VisualGC plug-in for VisualVM is covered in this section since it is
easier to use than the standalone GUI and VisualVM also offers other integrated
monitoring capabilities.

After the VisualGC plug-in has been added to VisualVM, when you monitor an
application listed in the Applications panel, an additional window tab is displayed
in the right panel labeled VisualGC (see Figure 4-14).

VisualGC displays two or three panels depending on the garbage collector being
used. When the throughput garbage collector is used, VisualGC shows two panels:
the Spaces and Graphs panels. When the concurrent or serial garbage collector is

Figure 4-14 Additional VisualGC window tab

http://java.sun.com/performance/jvmstat/#Download
http://java.sun.com/performance/jvmstat/#Download

ptg6882136

142 Chapter 4 � JVM Performance Monitoring

used a third panel is shown below the Spaces and Graphs panels called Histogram.
Figure 4-15 shows VisualGC with all panel spaces.

Any of the three panels can be added or removed from the VisualGC window by
selecting the appropriate check boxes in the upper-right corner.

The Spaces panel provides a graphical view of the garbage collection spaces and
their space utilization. This panel is divided into three vertical sections, one for
each of the garbage collection spaces: Perm (Permanent) space, Old (or Tenured)
space, and the young generation space consisting of eden, and two survivor spaces,
S0 and S1. The screen areas representing these garbage collection spaces are sized
proportionately to the maximum capacities of the spaces as they are allocated by
the JVM. Each space is filled with a unique color indicating the current utilization
of the space relative to its maximum capacity. The unique color is also consistently
used for each of the garbage collection spaces where they exist in both the Graphs
and Histogram panels.

Figure 4-15 VisualGC

ptg6882136

Garbage Collection 143

The memory management system within the HotSpot VM is capable of expand-
ing and shrinking the garbage collected heap if the values set for -Xmx and -Xms
differ. This is accomplished by reserving memory for the requested maximum Java
heap size but committing real memory to only the amount currently needed. The
relationship between committed and reserved memory is represented by the color of
the background grid in each space. Uncommitted memory is represented by a lighter
gray colored portion of the grid, whereas committed memory is represented by a
darker gray colored portion. In many cases, the utilization of a space may be nearly
identical to the committed amount of memory making it difficult to determine the
exact transition point between committed and uncommitted space in the grid.

The relationship between the sizes of the eden and survivor spaces in the young
generation portion of the Spaces panel is usually fixed in size. The two survivor
spaces are usually identical in size and its memory space fully committed. The eden
space may be only partially committed, especially earlier in an application’s life cycle.

When the throughput garbage collector, enabled via -XX:+UseParallelGC or
-XX:+UseParallelOldGC, is used along with the adaptive size policy feature, which
is enabled by default, the relationship or ratio between the sizes of the young gen-
eration spaces can vary over time. When adaptive size policy is enabled, the sizes of
the survivor spaces may not be identical and the space in young generation can be
dynamically redistributed among the three spaces. In this configuration, the screen
areas representing the survivor spaces and the colored region representing the uti-
lization of the space are sized relative to the current size of the space, not the maxi-
mum size of the space. When the JVM adaptively resizes the young generation space,
the screen area associated with the young generation spaces updates accordingly.

There are several things to watch for in the Spaces panel. For example, you should
watch how quickly the eden space fills. Every fill and drop in the eden space repre-
sents a minor garbage collection. The rate of the fill and drop represents the minor
garbage collection frequency. By watching the survivor spaces you can see how on
each minor garbage collection one of the survivor spaces is occupied and the other is
empty. This observation provides an understanding of how the garbage collector cop-
ies live objects from one survivor space to another at each minor garbage collection.
More importantly, though, you should watch for survivor spaces overflowing. Survivor
spaces overflowing can be identified by observing their occupancies at minor garbage
collections. If you observe full or nearly full survivor spaces after each minor garbage
collection and a growth in the space utilization in the Old generation space, survivor
spaces may be overflowing. Generally, though, this observation is an indication that
objects are being promoted from the young generation space to the old generation
space. If they are promoted too early, or too quickly, it may result in an eventual
full garbage collection. When a full garbage collection occurs, you observe the old
generation space utilization drop. The frequency at which you observe a drop in the
old generation space utilization is an indication of full garbage collection frequency.

ptg6882136

144 Chapter 4 � JVM Performance Monitoring

The Graphs panel, shown previously in Figure 4-15, is the right panel of the Visu-
alGC window. It plots performance statistics as a function of time for a historical
view. This panel displays garbage collection statistics along with JIT compiler and
class loader statistics. The latter two statistics are discussed later in this chapter. The
resolution of the horizontal axis in each display is determined by the selected Refresh
Rate, found just above the Spaces panel. Each sample in the Graphs panel historical
view occupies 2 pixels of screen real estate. The height of each display depends on
the statistic being plotted.

The Graphs panel has the following displays:

� Compile Time. Discussed later in this chapter.
� Class Loader Time. Discussed later in this chapter.
� GC Time. Displays the amount of time spent in garbage collection activities.

The height of this display is not scaled to any particular value. A nonzero value
in this graph indicates that garbage collection activity occurred during the last
interval. A narrow pulse indicates a relatively short duration, and a wide pulse
indicates a long duration. The title bar indicates the total number of garbage
collections and the accumulated garbage collection time since the start of the
application. If the monitored JVM maintains the garbage collection cause and
the last cause statistics, the cause of the most recent garbage collection is also
displayed in the title bar.

� Eden Space. Displays the utilization of the eden space over time. The height
of this display is fixed, and by default the data is scaled according to the current
capacity of the space. The current capacity of the space can change depending
on the garbage collector being used as the space shrinks and grows over time.
The title bar displays the name of the space and its maximum and current
capacity in parentheses followed by the current utilization of the space. In addi-
tion, the title also contains the number and accumulated time of minor garbage
collections.

� Survivor 0 and Survivor 1. Displays the utilization of the two survivor
spaces over time. The height of each of these two displays is fixed, and by default
the data is scaled according to the current capacity of the corresponding space.
The current capacity of these spaces can change over time depending on the
garbage collector. The title bar displays the name of the space and its maximum
and current capacity in parentheses followed by the current utilization of the
space.

� Old Gen. Displays the utilization of the old generation space over time. The
height of the display is fixed, and by default the data is scaled according to the
current capacity of the space. The current capacity of this space can change
depending on the garbage collector. The title bar displays the name of the space

ptg6882136

Garbage Collection 145

and its maximum and current capacity in parentheses followed by the current
utilization of the space. In addition, the title also contains the number and
accumulated time of full garbage collections.

� Perm Gen. Displays the utilization of the permanent generation space over
time. The height of the display is fixed, and by default the data is scaled accord-
ing to the current capacity of the space. The current capacity of this space can
change depending on the garbage collector. The title bar displays the name of
the space and its maximum and current capacity in parentheses followed by
the current utilization of the space.

The Histogram panel, shown previously in Figure 4-15, is displayed below the
Spaces and Graphs panels when the concurrent or serial garbage collector is used.
The throughput garbage collector does not maintain a survivor age since it uses a
different mechanism for maintaining objects in the survivor spaces. As a result, the
Histogram panel is not displayed when monitoring a JVM that is using the through-
put collector.

The Histogram panel displays surviving object and object aging statistics. The
Histogram panel contains a Parameters subpanel and a Histogram subpanel. The
Parameters subpanel displays the current size of the survivor spaces and the param-
eters that control the promotion of objects from young to old generation space. After
each minor garbage collection, if an object is still live, its age is incremented. If its
age exceeds a tenuring threshold age, which is calculated by the JVM at each minor
garbage collection, it is promoted to the old generation space. The tenuring threshold
calculated by the JVM is displayed as the Tenuring Threshold in the Parameters
panel. The maximum tenuring threshold displayed in the Parameters panel is the
maximum age at which an object is held in survivor spaces. An object is promoted
from young to old generation based on the tenuring threshold, not the maximum
tenuring threshold.

Observing a frequent tenuring threshold less than maximum tenuring threshold
is an indication objects are being promoted from young to old generation space too
quickly. This is usually caused by survivor spaces overflowing. If a survivor space
overflows, then objects with the highest ages are promoted to the old generation
space until the utilization of the survivor space does not exceed the value displayed
as the Desired Survivor Size in the Parameters panel. As mentioned earlier, survi-
vor space overflow can cause old generation space to fill and result in a full garbage
collection.

The Histogram subpanel displays a snapshot of the age distribution of objects in
the active survivor space after the last minor garbage collection. If the monitored
JVM is Java 5 Update 6 or later, this panel contains 16 identically sized regions,
one for each possible object age. If the monitored JVM is earlier than Java 5 Update
6, there are 32 identically sized regions. Each region represents 100% of the active

ptg6882136

146 Chapter 4 � JVM Performance Monitoring

survivor space and is filled with a colored area that indicates the percentage of the
survivor space occupied by objects of a given age.

As an application runs, you can observe long-lived objects traverse through each
of the age regions. The larger the space occupied by long-lived objects, the larger the
blip you will observe migrate through the age regions. When the tenuring threshold
is less than the maximum tenuring threshold you see no utilization in the regions
representing ages greater than the tenuring threshold since those objects have been
promoted to the old generation space.

JIT Compiler

There are several ways to monitor HotSpot JIT compilation activity. Although the
result of JIT compilation results in a faster running application, JIT compilation
requires computing resources such as CPU cycles and memory to do its work. Hence,
it is useful to observe JIT compiler behavior. Monitoring JIT compilation is also useful
when you want to identify methods that are being optimized or in some cases deopti-
mized and reoptimized. A method can be deoptimized and reoptimized when the JIT
compiler has made some initial assumptions in an optimization that later turned out
to be incorrect. To address this scenario, the JIT compiler discards the previous opti-
mization and reoptimizes the method based on the new information it has obtained.

To monitor the HotSpot JIT compiler, you can use the command line option
-XX:+PrintCompilation. The -XX:+PrintCompilation command line
option generates a line of output for every compilation performed. An example of this
output is shown here:

 7 java.lang.String::indexOf (151 bytes)
 8% ! sun.awt.image.PNGImageDecoder::produceImage @ 960 (1920 bytes)
 9 ! sun.awt.image.PNGImageDecoder::produceImage (1920 bytes)
 10 java.lang.AbstractStringBuilder::append (40 bytes)
 11 n java.lang.System::arraycopy (static)
 12 s java.util.Hashtable::get (69 bytes)
 13 b java.util.HashMap::indexFor (6 bytes)
 14 made zombie java.awt.geom.Path2D$Iterator::isDone (20 bytes)

See Appendix A, “HotSpot VM Command Line Options of Interest,” for a detailed
description of the output from -XX:+PrintCompilation.

There are graphical tools that can monitor JIT compilation activity. However,
they do not provide as much detail as the -XX:+PrintCompilation. At the time
of this writing, JConsole, VisualVM, or the VisualGC plug-in for VisualVM do not
provide information on which methods are being compiled by the JIT compiler. They
only provide information that JIT compilation is taking place. Of the graphical tools,

ptg6882136

Class Loading 147

VisualGC’s Graph window’s Compile Time panel, an example shown in Figure 4-16,
may be the most useful since it shows pulses as JIT compilation activity occurs. It is
easy to spot JIT compilation activity in VisualGC’s Graphs panel.

The Compile Time display of VisualGC’s Graphs panel shows the amount of time
spent compiling. The height of the panel is not scaled to any particular value. A pulse
in the display indicates JIT compilation activity. A narrow pulse implies a relatively
short duration of activity, and a wide pulse implies a long duration of activity. Areas
of the display where no pulse exists indicates no JIT compilation activity. The title
bar of the display shows the total number of JIT compilation tasks and the accumu-
lated amount of time spent performing compilation activity.

Class Loading

Many applications utilize user-defined class loaders, sometimes called custom class
loaders. A JVM loads classes from class loaders and may also decide to unload classes.
When classes are loaded or unloaded depends on the JVM runtime environment
and the usage of class loaders. Monitoring class loading activity can be useful, espe-
cially with applications that utilize user-defined class loaders. As of this writing,
the HotSpot VM loads all class metadata information in the permanent generation
space. The permanent generation space is subject to garbage collection as its space
becomes full. Hence, monitoring both class loading activity and permanent genera-
tion space utilization can be important to an application realizing its performance
requirements. Garbage collection statistics indicate when classes are unloaded from
the permanent generation space.

Unused classes are unloaded from the permanent generation space when addi-
tional space is required as a result of other classes needing to be loaded. To unload
classes from permanent generation, a full garbage collection is required. Therefore,
an application may suffer performance issues as a result of full garbage collections
trying to make space available for additional classes to be loaded. The following out-
put shows a full garbage collection where classes are unloaded.

Figure 4-16 VisualGC’s Graph window’s compile time panel

[Full GC[Unloading class sun.reflect.GeneratedConstructorAccessor3]
[Unloading class sun.reflect.GeneratedConstructorAccessor8]
[Unloading class sun.reflect.GeneratedConstructorAccessor11]
[Unloading class sun.reflect.GeneratedConstructorAccessor6]
 8566K->5871K(193856K), 0.0989123 secs]

ptg6882136

148 Chapter 4 � JVM Performance Monitoring

The garbage collection output indicates four classes were unloaded; sun.
reflect.GeneratedConstructorAccessor3, sun.reflect.Generated
ConstructorAccessor8, sun.reflect.GeneratedConstructorAccessor11,
and sun.reflect.GeneratedConstructorAccessor6. The reporting of classes
being unloaded during the full garbage collection provides evidence the permanent
generation space may need to be sized larger, or its initial size may need to be larger.
If you observe classes being unloaded during full garbage collections, you should use
-XX:PermSize and -XX:MaxPermSize command line options to size the perma-
nent generation space. To avoid full garbage collections that may expand or shrink
the committed size of the permanent generation space, set -XX:PermSize and
-XX:MaxPermSize to the same value. Note that if concurrent garbage collection
of the permanent generation space is enabled, you may see classes being unloaded
during a concurrent permanent generation garbage collection cycle. Since a concur-
rent permanent generation garbage collection cycle is not a stop-the-world garbage
collection, the application does not realize the impact of a garbage collection induced
pause. Concurrent permanent generation garbage collection can only be used with
the mostly concurrent garbage collector, CMS.

Tip

Additional guidelines and tips for tuning the permanent generation space including how
to enable concurrent garbage collection of the permanent generation space can be found
in Chapter 7.

The graphical tools JConsole, VisualVM, and the VisualGC plug-in for VisualVM
can monitor class loading. However, at the time of this writing, none of them display
the class names of the classes being loaded or unloaded. The JConsole Classes tab,
as shown in Figure 4-17, shows the number of classes currently loaded, number of
classes unloaded, and total number of classes that have been loaded.

VisualVM can also monitor class loading activity in the Monitor tab via the Classes
display. It shows total number of classes loaded and the number of shared classes
loaded. Observing whether class data sharing is enabled on a monitored JVM can be
confirmed by looking at this view. Class data sharing is a feature where classes are
shared across JVMs running on the same system to reduce their memory footprint.
If class sharing is being utilized by the monitored JVM, there will be a horizontal
line in the graph showing the number of shared classes loaded in addition to a hori-
zontal line showing the total number of classes loaded similar to what is shown in
Figure 4-18.

You can also monitor class loading activity in the VisualGC Graph window by
observing the Class Loader panel, as shown in Figure 4-19.

ptg6882136

Class Loading 149

Figure 4-17 Total loaded classes and current loaded classes

Figure 4-18 Observing class sharing in VisualVM

Figure 4-19 Observing class loading activity in VisualGC

ptg6882136

150 Chapter 4 � JVM Performance Monitoring

In the VisualGC Graphs window, a pulse in the Class Loader panel indicates class
loading or unloading activity. A narrow pulse indicates a short duration of class load-
ing activity, and a wide pulse indicates a long duration of class loading activity. No
pulse indicates no class loading activity. The title bar of the Class Loader panel shows
the number of classes loaded, the number of classes unloaded, and the accumulated
class loading time since the start of the application. Observing pulses in the class
loader panel and directly vertically below in the GC Time panel can be an indication
the garbage collection activity that is occurring at the same time could be the result
of the JVM’s permanent generation space being garbage collected.

Java Application Monitoring

Monitoring at the application level usually involves observing application logs that
contain events of interest or instrumentation that provides some level of informa-
tion about the application’s performance. Some applications also build-in monitoring
and management capabilities using MBeans via Java SE’s monitoring and manage-
ment APIs. These MBeans can be viewed and monitored using JMX compliant tools
such as JConsole or using the VisualVM-MBeans plug-in within VisualVM. The
VisualVM-MBeans plug-in can be found in the VisualVM plug-in center, via the
Tools > Plugins menu.

The GlassFish Server Open Source Edition (also referred to as GlassFish here-
after) has a large number of attributes that can be monitored via MBeans. Using
JConsole or VisualVM to monitor a GlassFish application server instance allows you
to view the MBeans including their attributes and operations. Figure 4-20 shows a
portion of the many GlassFish MBeans in the MBeans window in VisualVM using
the VisualVM-MBeans plug-in.

You can see on the left the expanded list of GlassFish MBeans in the com.sun.
appserv folder.

VisualVM can also be extended to monitor Java applications since it is built
on the NetBeans Platform plug-in architecture. Plug-ins for VisualVM can be
created as if they are NetBeans plug-ins. For example, a custom VisualVM plug-
in to monitor a Java application can take advantage of the many rich features
of NetBeans including its Visual Graph Library. Java applications that want to
make available performance monitoring information can do so by developing a
VisualVM plug-in. Several existing VisualVM plug-ins are available in Visual-
VM’s plug-in center.

Applications that have built JConsole plug-ins can use the VisualVM-
JConsole plug-in to automatically integrate their custom JConsole plug-ins
into VisualVM.

ptg6882136

Java Application Monitoring 151

Quick Lock Contention Monitoring

A trick often used by the authors to get a quick sense of where lock contention
is occurring in a Java application is to capture several thread dumps using the
JDK’s jstack command. This approach works well when operating in more of a
monitoring role where the objective is to quickly capture some data rather than
spending time to set up and configure a profiler where a more detailed analysis
can be done.

The following jstack output is from an application that has a set of reader
threads and writer threads that share a single queue. Work is placed on the queue
by writer threads, and reader threads pull work from the queue.

Only the relevant stack traces are included to illustrate the usefulness of using
jstack to rapidly find contended locks. In the jstack output the thread, Read
Thread-33, has successfully acquired the shared queue lock, which is identified as
a Queue object at address 0x22e88b10. This is highlighted in the output in bold as
locked <0x22e88b10> (a Queue).

Figure 4-20 GlassFish MBeans

ptg6882136

152 Chapter 4 � JVM Performance Monitoring

All the other thread stack traces shown are waiting to lock the same lock held by
the thread, Read Thread-33. This is highlighted in the other stack traces in bold
as waiting to lock <0x22e88b10> (a Queue).

”Read Thread-33” prio=6 tid=0x02b1d400 nid=0x5c0 runnable
[0x0424f000..0x0424fd94]
 java.lang.Thread.State: RUNNABLE
 at Queue.dequeue(Queue.java:69)
 - locked <0x22e88b10> (a Queue)
 at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
 at ReadThread.run(ReadThread.java:23)

”Writer Thread-29” prio=6 tid=0x02b13c00 nid=0x3cc waiting for monitor
entry [0x03f7f000..0x03f7fd94]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.enqueue(Queue.java:31)
 - waiting to lock <0x22e88b10> (a Queue)
 at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
 at WriteThread.run(WriteThread.java:47)

”Writer Thread-26” prio=6 tid=0x02b0d400 nid=0x194 waiting for monitor
entry [0x03d9f000..0x03d9fc94]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.enqueue(Queue.java:31)
 - waiting to lock <0x22e88b10> (a Queue)
 at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
 at WriteThread.run(WriteThread.java:47)

”Read Thread-23” prio=6 tid=0x02b08000 nid=0xbf0 waiting for monitor entry
[0x03c0f000..0x03c0fb14]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.dequeue(Queue.java:55)
 - waiting to lock <0x22e88b10> (a Queue)
 at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
 at ReadThread.run(ReadThread.java:23)

”Writer Thread-24” prio=6 tid=0x02b09000 nid=0xef8 waiting for monitor
entry [0x03c5f000..0x03c5fa94]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.enqueue(Queue.java:31)
 - waiting to lock <0x22e88b10> (a Queue)
 at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
 at WriteThread.run(WriteThread.java:47)

”Writer Thread-20” prio=6 tid=0x02b00400 nid=0x19c waiting for monitor
entry [0x039df000..0x039dfa14]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.enqueue(Queue.java:31)
 - waiting to lock <0x22e88b10> (a Queue)
 at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
 at WriteThread.run(WriteThread.java:47)

”Read Thread-13” prio=6 tid=0x02af2400 nid=0x9ac waiting for monitor entry
[0x035cf000..0x035cfd14]
 java.lang.Thread.State: BLOCKED (on object monitor)

ptg6882136

Bibliography 153

It is important to note the lock addresses, the hex number surrounded by < and
>, are the same address. This is how locks are uniquely identified in jstack output.
If lock addresses in the stack traces are different, they represent different locks. In
other words, thread stack traces that have different lock addresses are threads that
are not contending on the same lock.

The key to finding contended locks in jstack output is searching for the same lock
address across multiple stack traces and finding threads that are waiting to acquire
the same lock address. Observing multiple thread stack traces trying to lock the same
lock address is an indication the application is experiencing lock contention. If captur-
ing multiple jstack outputs yields similar results of observing lock contention on
the same lock, it is stronger evidence of a highly contended lock in the application.
Also notice that the stack trace provides the source code location of the contended
lock. Being able to find the location in the source code of a highly contended lock in a
Java application has historically been a difficult task. Using jstack in the manner
described here can help significantly in tracking down contended locks in applications.

Bibliography

Monitoring and Management for the Java Platform. http://download.oracle.com/
javase/1.5.0/docs/guide/management/.

Java SE Monitoring and Management Guide. http://download.oracle.com/javase/6/
docs/technotes/guides/management/toc.html.

Connecting to JMX Agents Explicitly. http://download.oracle.com/javase/6/docs/tech-
notes/guides/visualvm/jmx_connections.html.

VisualVM Features. https://visualvm.dev.java.net/features.html.

jvmstat 3.0 Web site. http://java.sun.com/performance/jvmstat.

 at Queue.dequeue(Queue.java:55)
 - waiting to lock <0x22e88b10> (a Queue)
 at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
 at ReadThread.run(ReadThread.java:23)

”Read Thread-96” prio=6 tid=0x047c4400 nid=0xaa4 waiting for monitor
entry [0x06baf000..0x06bafa94]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Queue.dequeue(Queue.java:55)
 - waiting to lock <0x22e88b10> (a Queue)
 at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
 at ReadThread.run(ReadThread.java:23)

http://download.oracle.com/javase/1.5.0/docs/guide/management/
http://download.oracle.com/javase/1.5.0/docs/guide/management/
http://download.oracle.com/javase/6/docs/technotes/guides/management/toc.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/toc.html
http://download.oracle.com/javase/6/docs/tech-notes/guides/visualvm/jmx_connections.html
http://download.oracle.com/javase/6/docs/tech-notes/guides/visualvm/jmx_connections.html
https://visualvm.dev.java.net/features.html
http://java.sun.com/performance/jvmstat

ptg6882136

This page intentionally left blank

ptg6882136

155

5
Java Application
Profiling

Chapter 2, “Operating System Performance Monitoring,” made a clear distinction
between the activities of performance monitoring, performance profiling, and per-
formance tuning. Before jumping into the details of what is involved in performance
profiling a Java application, it is worthy to revisit the performance profiling defini-
tion. Performance profiling is an activity of collecting performance data from an
operating or running application that may be intrusive on application performance
responsiveness or throughput. Performance profiling tends to be a reactive type of
activity, or an activity in response to a stakeholder reporting a performance issue,
and usually has a narrower focus than performance monitoring. Profiling is rarely
done in production environments. Rather it is typically done in qualification, testing,
or development environments and is often an act that follows a monitoring activity
that indicates some kind of performance issue.

As suggested in Chapter 1, “Strategies, Approaches, and Methodologies,” perfor-
mance testing, including profiling, should be an integral part of the software devel-
opment process. When performance testing is not an integral part of the software
development process, profiling activities are usually performed as the result of a
stakeholder complaining that performance of the application is not as he or she
desires. For applications having a strong emphasis on meeting performance and
scalability requirements, constructing prototypes of areas identified as being at per-
formance risk and profiling them are ideally done early in the software development
process to mitigate risk. This activity offers the opportunity to entertain alternative
architectures, designs, or implementations at a stage where it is much less costly to
make changes than later in the software development process.

ptg6882136

156 Chapter 5 � Java Application Profiling

In this chapter, the basic concepts of how to profile a Java application using a
modern profiler are presented. Both method profiling and memory profiling, also
known as heap profiling, are presented. Method profiling provides information about
the execution time for Java methods in a Java application. The Oracle Solaris Studio
Performance Analyzer (formerly known as the Sun Studio Performance Analyzer) is
one of two method profilers presented in this chapter that can provide both Java and
native method profile information. The Oracle Solaris Studio Performance Analyzer,
often called the Performance Analyzer can also provide execution information about
the internals of the Java Virtual Machine, which can help isolate potential issues
observed in a Java Virtual Machine.

In contrast to method profiling, memory profiling provides information about a
Java application’s memory usage, that is, the number of object allocations, the size of
object allocations, and which object allocations live, along with stack traces showing
the method where the object allocation occurred.

Many capable profilers are available, both free and commercial, that can perform
method profiling or memory profiling. This chapter shows how to use the free Oracle
Solaris Studio Performance Analyzer and the free NetBeans Profiler.

Performance Analyzer offers several advanced capabilities. For example it profiles
at the native level, which means it has the capability to collect accurate profiles. It
also has the capability to distinguish the difference between a running thread and
a paused or blocked thread. For example, it can tell the difference between when
a thread is blocking on a read() system call versus blocking in a system call to
wait(). As a result, Performance Analyzer reports read() operations as the amount
of time actually spent doing a read operation and reports separately the amount time
it spends blocking on a read(), in a call to wait(), waiting for more data to arrive. If
it could not differentiate between those two operations and lumped both the blocked
and waiting time together with the time spent in a read() operation it could lead to
misleading information about how much time is really spent in a read() operation
and how much time is spent blocking and waiting for more data to arrive.

The Performance Analyzer also has the capability to collect and report on Java
monitor, or lock information. Monitor contention, or lock contention, is a scalability
blocker for Java applications. Traditionally, tracking down and isolating hot Java
monitor contention has been a difficult problem. As shown later in this chapter, the
Performance Analyzer makes this task much easier. There is also an example use
case shown in Chapter 6, “Java Application Profiling Tips and Tricks.”

The Performance Analyzer is also easy to set up and use, as described in the
next section, and can provide an enormous level of detailed information. How-
ever, one of the challenges with the Performance Analyzer is it is available on the
Oracle Solaris (also referred to as Solaris hereafter) and Linux platforms only.
It is not available on the Windows platform. Tools such as AMD’s CodeAnalyst

ptg6882136

Terminology 157

Performance Analyzer and Intel’s VTune could be used as alternatives on the
Windows platform. They are similar tools with similar functionality as Perfor-
mance Analyzer. The concepts with using a profiler such as Performance Analyzer
apply to AMD’s CodeAnalyst and Intel’s VTune. Another good alternative to use
on Windows is the NetBeans Profiler. NetBeans Profiler is also available for
Solaris, Linux, and Mac OS X platforms. The NetBeans Profiler’s method profiling
capabilities are also covered in this chapter. In addition, memory profiling with
the NetBeans Profiler is covered. Also included in this chapter is how to use the
NetBeans Profiler to identify memory leaks in a Java application.

This chapter begins by presenting some profiling terminology, which should make
the understanding of the tasks involved in profiling easier. The profiling terminology
is followed by two major sections. The first major section describes how to use the
Performance Analyzer for method profiling and isolating monitor or lock contention
profiling. The second major section is followed by how to use the NetBeans Profiler
for both method profiling and memory profiling along with how to use it to identify
memory leaks. Chapter 6 illustrates some of the more commonly observed perfor-
mance issues the book’s authors have seen in Java applications.

Terminology

This section describes terms that are used throughout this chapter. Terms that are
common to both the Performance Analyzer and NetBeans Profiler are described first,
followed by terms specific to the Performance Analyzer and then terms specific to
the NetBeans Profiler.

Common Profiling Terms

Common profiling terms include the following:

� Profiler. A tool that shows its users the behavior of an application as it exe-
cutes. It may include both the behavior of the Java Virtual Machine and the
application including both Java code and any native code.

� Profile. A file that contains information collected by a profiler while execut-
ing an application.

� Overhead. The amount of time spent by the profiler collecting the profile
information instead of executing the application.

� Call Tree. A listing of methods in a call stack form illustrating the dynamic call
stack of the program as it was run. When method profiling, looking at a call tree

ptg6882136

158 Chapter 5 � Java Application Profiling

can be useful when determining the hot use cases. When memory profiling, looking
at a call tree can be useful to understand context of a Java object allocation.

� Filter. An artifact that can be applied to either the collected profile or to the
collecting of a profile that narrows the scope of information collected and/or
presented.

Oracle Solaris Studio Performance Analyzer Terms

Oracle Solaris Studio Performance Analyzer terms include the following:

� Experiment. An experiment or experiment file is the artifact produced by
collecting a profile of an application using the Performance Analyzer. The Per-
formance Analyzer uses the term experiment where many other profilers use
the term profile.

� collect. A command line tool used to collect an experiment or profile by profil-
ing and tracing function usage. The data collected can include call stack infor-
mation, microstate accounting information, Java monitor information, and
hardware counter information.

� Analyzer. A GUI used to view a collected experiment or experiment file.
� er_print. A command line utility that can be used to view the collected experi-

ment or experiment file. It can also be scripted to automate the processing of a
collected experiment or experiment file.

� Inclusive time. The amount of time taken to execute a method and all the
methods it calls.

� Exclusive time. The amount of time taken to execute a specific method. It
does not include any time consumed by methods called by the specific method.

� Attributed time. The amount of time attributed to a given method by a
method that calls it or is a callee of.

� Caller-Callee. A relationship of a method either being called by some
method (a caller), or a method being called by some other method (a callee).
The Analyzer GUI has a view that shows the Caller-Callee relationship of a
given method.

� System CPU. The amount of time, or percentage of elapsed time, a method
listed in a collected experiment spends executing within the operating system
kernel.

� User CPU. The amount of time, or percentage of experiment elapsed time, a
method listed in a collected experiment spends executing outside the operating
system kernel.

ptg6882136

Oracle Solaris Studio Performance Analyzer 159

NetBeans Profiler Terms

NetBeans Profiler terms include the following:

� Instrumentation. The insertion of counters, timers, and so on into the Java
bytecode of an application to be profiled. The insertion of these counters, timers,
and so on do not change the logic of an application and are removed once the
profiling is terminated.

� Heap. The memory pool used by the Java Virtual Machine for all objects
allocated in a Java application using the Java keyword new.

� Garbage collection. The operation responsible for the removal or cleaning
of Java objects from the Heap that are no longer in use by the Java application.
The Java Virtual Machine is responsible for the scheduling and executing of
garbage collection.

� Memory leak. An object that is no longer in use by an application but cannot
be garbage collected due to one or more Java objects holding a reference to it.

� Self time. The amount of time needed to execute the instructions in a method.
This does not include the time spent in any other methods called by the method.
Self time is analogous to the exclusive time in Oracle Solaris Studio Perfor-
mance Analyzer terminology.

� Hot spot. A method that has a relatively large Self Time.
� Root method. A method selected for performance profiling.

Oracle Solaris Studio Performance Analyzer

This section covers how to use the Performance Analyzer to profile a Java application, in
particular how to do method profiling and monitor profiling. The Performance Analyzer
is a powerful tool. Its capabilities go well beyond profiling Java applications. It can also
be used to profile C, C++, and Fortran based applications too. As mentioned earlier in
this chapter, the Performance Analyzer can profile both Java code and native code. In
addition, since it profiles at the native level, it can collect more accurate profiles. As a
Java profiler, it is most useful as a method profiler and Java monitor/lock profiler.

Tip

The features of the Performance Analyzer that are most useful for method profiling
Java applications are covered in this chapter. Additional features and capabilities of the
Performance Analyzer can be found at the Performance Analyzer’s product Web page: http://
www.oracle.com/us/products/tools/050872.html.

http://www.oracle.com/us/products/tools/050872.html
http://www.oracle.com/us/products/tools/050872.html

ptg6882136

160 Chapter 5 � Java Application Profiling

As a method profiler, the Performance Analyzer can show the amount of time spent
in user CPU, system CPU, contending for locks, and several others. However, the
three categories of user CPU, system CPU, and lock contention are usually of most
interest to Java applications. In addition, within each of those major categories, the
collected data can be presented in either inclusive time or exclusive time. Inclusive
time says that all the time reported includes not only the time the application spent
in the selected method, but also all the methods it calls. In other words, inclusive time
includes all the methods a selected method calls. In contrast, exclusive time includes
only the amount of time it takes to execute the selected method. In other words, it
excludes the time spent in any methods that the selected method calls.

The steps to profile a Java application with the Performance Analyzer are a little
different from traditional Java profilers. When using the Performance Analyzer, there
are two distinct steps to profiling. The first is collecting an experiment using the
Performance Analyzer’s collect command and executing the Java application. The
second step, analysis, is viewing the collected experiment and analyzing its results
with either the Performance Analyzer’s Analyzer GUI tool, or using the Performance
Analyzer’s command line tool er_print.

Supported Platforms

The Performance Analyzer can profile Java applications running a Java Virtual
Machine that supports the JVMTI (JVM Tool Interface). Java 5 Update 4 and later,
including all Java 6 updates, support JVMTI.

Tip

Java 6 Update 18 and later JDKs include enhancements that provide additional information
to the Performance Analyzer, which further enhances the view of the collected data.

Since the Performance Analyzer contains native code and can also profile native
code, it is platform specific. The supported platforms are

� Solaris SPARC. Performance Analyzer 12.2 version is supported on Solaris
10 1/06 and later updates of Solaris 10 along with Solaris 11 Express. It also
supports all UltraSPARC based systems and Fujitsu SPARC 64 based systems.

� Solaris x86/x64. Performance Analyzer 12.2 version is supported on Solaris
10 1/06 and later updates of Solaris 10 along with Solaris 11 Express.

� Linux x86/x64. Performance Analyzer 12.2 version is supported on SuSE
Linux Enterprise Server 11, Red Hat Enterprise Linux 5, and Oracle Enterprise
Linux 5.

ptg6882136

Oracle Solaris Studio Performance Analyzer 161

Before using the Performance Analyzer, you should also check the Performance
Analyzer documentation system requirements for the operating system versions
supported and required patches. These may vary depending on the version of the
Performance Analyzer. Running the Performance Analyzer’s collect command with
no arguments checks whether the platform you are running on is supported and has
the required patches. Any missing required patches are reported in the output. In
addition, if a valid JDK distribution is not found on the system, it too is reported.

If the Java application you want to method profile runs on a platform not listed
as supported for the Performance Analyzer, you may consider running the Java
application on one of the supported operating systems platforms as an alternative.
Another alternative is using the NetBeans Profiler as a method profiler. One of the
advantages of using the Performance Analyzer is that its intrusiveness on the Java
application’s performance tends be less than other Java profilers.

Downloading and Installing Oracle Solaris
Studio Performance Analyzer

There are several ways to download and install the Performance Analyzer. As of
this writing, the home page for the Performance Analyzer is http://www.oracle.com/
technetwork/server-storage/solarisstudio/overview/index.html.

At the preceding URL, the latest version of the Performance Analyzer can be
downloaded and installed for any of the supported platforms. The Performance Ana-
lyzer is a free download.

There are two different types of installation bundles for the Performance Analyzer:
a package installer or tar file installer. The package installer installs the Performance
Analyzer as either Solaris or Linux packages. This type of installation requires root
access to the system where the Performance Analyzer is to be installed. The package
installer also provides the ability for the installation to be patched. There is also a
support contract option available with this type of installer. In contrast, the tar file
installer does not require root access to install the Performance Analyzer. However,
it is not eligible for patches or a support contract. But there is community support
available through the Performance Analyzer forums, which at the time of this writ-
ing can be found at http://www.oracle.com/technetwork/server-storage/solarisstudio/
community/index.html.

Tip

A large amount of detailed information is available at the Oracle Solaris Studio home page
(http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html),
including many demos, tutorials, screencasts, detailed documentation, and FAQs.

http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/community/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/community/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

ptg6882136

162 Chapter 5 � Java Application Profiling

The version of the Performance Analyzer covered in this chapter is Oracle
Solaris Studio Performance Analyzer 12.2 (also known as Oracle Solaris Studio
12.2). Earlier versions may have slightly different screenshots and menus than
those illustrated in this chapter. Many of these differences are identified. In addi-
tion, many of the general concepts of how to use the Performance Analyzer apply
to other profilers.

Capturing a Profile Experiment with Oracle
Solaris Studio Performance Analyzer

As mentioned earlier, profiling with the Performance Analyzer is a two-step process.
The first step is collecting the experiment, which is described in this section. The
second step is viewing and analyzing the collected experiment, which is described in
the following section.

One of the advantages of using the Performance Analyzer is the ease at which it
can collect an experiment profile. In its simplest form, collecting an experiment pro-
file is as easy as prefixing collect -j on to the java command line used to launch
a Java application. The collect command is the Performance Analyzer command
that collects the experiment profile.

Here are the general steps to collect a profile experiment.

 1. Update the PATH environment variable to include the Performance Analyzer
tools, that is, include the bin subdirectory of the directory where the Performance
Analyzer is installed.

 2. Prefix the text collect -j on to the Java command line used to launch the
Java application you want to profile. If the Java application is launched from a
script, you can update or modify the script.

 3. Run the Java application and allow the Performance Analyzer collect
command to profile the application and produce an experiment profile.
By default, the experiment profile is placed in a file called test.1.er in the
directory where the Java application is launched. The number in test.1.er
name is incremented with each subsequent invocation of the collect
command. Hence, if the collect command finds a test.1.er experiment file
already exists, the collect command creates a new experiment file with
the name test.2.er.

Collect Command Line Options

Many additional options may be of interest to pass to the Performance Analyzer collect
command. Here are some that may be of particular interest when profiling Java applications:

ptg6882136

Oracle Solaris Studio Performance Analyzer 163

� -o <experiment file name>
When used, this option creates an experiment file name with the name specified after the -o.

� -d <experiment directory path>
When used, this option puts the experiment file in the directory specified as experi-
ment directory path. If -d <experiment directory path> is not used, the direc-
tory where the collect command is launched is the default directory used as the
location where the experiment file is placed. Note, in a networked file system environ-
ment, it is advantageous to use a local directory/file system as the location to place
the experiment to avoid unnecessary high network file system activity.

� -p <option>
By default, when profiling Java applications, clock-based profiling is used with a profiling
interval of approximately 10 milliseconds. This is equivalent to specifying -p on. In situations
where it is desirable to reduce the size of the collected experiment file, using -p lo reduces
the profiling interval to approximately 100 milliseconds. A -p hi can be used in situations
where the profiling window of interest is small and more frequent profiling data collection is
desired. Realize though, the more frequent the profiling data is collected, the larger the experi-
ment file. This not only consumes additional file system space, it can also increase the time it
takes to view the experiment file with the Analyzer GUI or command line er_print. A -p
<value>, where <value> is a positive integer, can also be used to specify the profiling inter-
val. The default setting for -p, -p on, tends to work well for most Java applications. There is
no need to tweak the profiling interval using the -p option unless there is a need for a smaller
experiment file, or a higher frequency of profiling data collection is needed.

� -A <option>
When used, this option controls whether artifacts used by the target Java application and
Java Virtual Machine should be archived or copied into the recorded experiment. The
default value for <option> is on, which means the artifacts are archived into the experi-
ment file. Other options include off, which means the artifacts are not archived into the
experiment file. The other option, copy, means to both copy and archive the artifacts
into the experiment file. If you plan to copy or read a collected experiment on a different
machine than the one where the experiment was collected, you should use -A copy. How-
ever, keep in mind that the system where you copy or read the experiment is expected
to have any source files or objects files used by the Java application to be accessible when
you read and analyze the experiment.

� -y <signal>
When used, this option provides the ability to control the recording of data with a <signal>.
Whenever the signal is delivered to the collect process, the collecting of data is toggled, either
from paused (no data collected) to recording, or recording to paused. When this option is
used, the Java application is launched in a paused (no data collected) state and the first send-
ing of the <signal> to the collect process toggles on the collecting of data. A collect -j
on -y SIGUSR2 ... allows you the ability to send the collect process a SIGUSR2 signal (i.e.,
kill -USR2 <collect process id>) to toggle on the collecting of experiment data and
likewise toggle it off on a subsequent SIGUSR2 signal being sent to the collect process.

� -h <cpu counter>
This option is an advanced option that may not be useful for all Java application develop-
ers. But it deserves mentioning since it can be useful for computing bound Java applications
whose stakeholders are looking for every bit of performance they can get. The -h option
allows for the ability to collect CPU counters and associate them with the source code being

ptg6882136

164 Chapter 5 � Java Application Profiling

executed by the application. Having this ability can help isolate methods that incur costly
operations, such as Java object field accesses that incur the most CPU cache misses. When a
CPU cache miss occurs, there is an access to some data, possibly an access to a Java object’s
field, in the application that does not currently reside in the CPU cache. As a result, that data
has been fetched from memory and placed in the CPU cache. It generally takes hundreds of
CPU clock cycles to satisfy CPU cache misses. In addition, CPU utilization reported by modern
operating systems report a CPU as being busy even when a CPU cache miss occurs. Realize
that no work is actually being done in the application until the CPU cache miss is satisfied even
though the operating system is reporting the CPU as being busy. Hence, for Java applications
that are compute bound and are seeking additional performance, collecting CPU cache miss
data with a profiler and being able to observe a Java object field or variable access that is con-
tributing the most CPU cache misses can be crucial to improving performance of the applica-
tion. There are times when alternative implementations of a Java object field access producing
the most CPU cache misses can reduce CPU cache misses and improve the Java application’s
performance. However, it is wise to not use this command line option unless you have an
application that is compute bound. In other words, it is wise to focus first on strategies such as
improving application algorithms, implementations of Java application methods and reducing
the amount of system CPU utilization as much as possible prior to venturing down the path
of reducing CPU cache misses. This option also tends to be used by advanced Java users and
a performance specialist. The -h option is also not limited to associating CPU cache misses to
Java object field accesses. It can also be used with other CPU counters such as TLB (translation
look-aside buffer) misses and instruction count. A full list of CPU counters that can be speci-
fied with the -h option on a platform running the application can be obtained by running
the collect command with no arguments. Whatever the CPU counter specified with the -h
option, so long as it is supported on the hardware platform where the Performance Analyzer
is being used, the Performance Analyzer will associate the CPU counter events with the source
code, Java or native, that generated the CPU counter event.

 To use the -h <cpu counter> option, you specify the CPU hardware counter name
after the -h. Multiple CPU counters can be profiled at the same time by comma separat-
ing the list of CPU counters. Depending on the processor, the number of CPU counters
that can be specified may vary from as few as two to as many as five. As an example, to
collect profile information on data loads that miss both the L1 and L2 cache on a Sun
SPARC Enterprise T5120, you would specify -h DC_miss/0,L2_dmiss_ld/1,10003
as an option to the collect command. As mentioned earlier, identifying the syntax of
what to specify with the -h option for a CPU counter can be shown by running the col-
lect command with no options and looking at the Raw HW counters available for
profiling section of the output.

To illustrate how to use the Performance Analyzer to collect an experiment, sup-
pose the task at hand is to capture a method profile of the SPECjbb2005 benchmark.
For simplicity, suppose the SPECjbb2005 benchmark is launched by executing the
following command line:

$ java -Xmx1g -cp SPECjbb2005.jar spec.jbb.Main

ptg6882136

Oracle Solaris Studio Performance Analyzer 165

Collecting a Performance Analyzer experiment is as simple as prefixing collect -j
on to the preceding command line (assuming you have updated your PATH environ-
ment variable to include the Performance Analyzer bin subdirectory):

$ collect -j on java -Xmx1g -cp SPECjbb2005.jar spec.jbb.Main
Creating experiment database test.1.er ...

The result of executing the preceding command, as the output suggests, since there is
no explicit -d or -o Performance Analyzer command line option specified, an experi-
ment file called test.1er is created in the directory where the preceding command is
launched. If the -o and/or -d command line options are specified, the output from
executing the command is updated to reflect the name of the experiment and the
directory where the experiment is stored. Consider the following command line:

$ collect -j on -d /tmp -o specjbb2005.er \
 java -Xmx1g -cp SPECjbb2005.jar spec.jbb.Main
Creating experiment database /tmp/specjbb2005.er ...

Notice the output from the command communicates the directory where the experi-
ment is stored and the name given to the experiment.

For some profiling tasks it is advantageous to direct the Performance Analyzer’s
collect command to not gather profiling information until a desired moment in
time. This is often the case when an application has a lengthy startup or initialization
phase and later has a load test run against it. In this scenario, you want to enable the
collecting of profiling information at the time when the load test commences so the
resulting experiment profile does not include data from the startup or initialization
phase. This is accomplished using the collect command’s -y option and specifying
a signal for the collect command to listen to that toggles on and off the collecting
of profile data. The -y option requires an operating system signal name as an argu-
ment. A commonly used operating system signal name for this purpose is SIGUSR2.
Hence, in the scenario described here you use the -y option using SIGUSR2 as the
signal to toggle on and off profiling collection. For example, the collect command
line would look like this:

$ collect -j on -y SIGUSR2 \
 java -Xmx1g -cp SPECjbb2005.jar spec.jbb.Main
Creating experiment database test.1.er ...

In this usage of the collect command, the Java application is launched in a
paused (no data collected but application executing) state. In a separate command

ptg6882136

166 Chapter 5 � Java Application Profiling

line window, the process id of the Java process running with collect must be gath-
ered. Then the Java process running with collect, upon receiving a SIGUSR2 sig-
nal, toggles on the collecting of profile data. Java process id running with collect is
accomplished using the ps -ef | grep Xruncollector command on Solaris or
Linux, or alternatively using the ps aux | grep Xruncollector. The collect
command does some initial work including adding the -Xruncollector command
line option to the set of JVM command line options used to run the application and
then the collect process exits. But the Java process continues to run with the addi-
tional -Xruncollector command line option. Hence, the reason for finding the Java
process with a -Xruncollector command line option in the ps command output.

Sending a SIGUSR2 signal to the Java process id running with -Xrun
collector is done on Solaris by issuing a kill -USR2 <Java process id>
command, or on Linux by issuing a kill -SIGUSR2 <Java process id>. A sub-
sequent issuing of the kill -USR2 <Java process id> command on Solaris or a
kill -SIGUSR2 <Java process id> on Linux toggles off profile data collection.
If this sounds too complex for your liking, you can collect the profile experiment
without using the collect – y command line option and use the filtering capability in
the Performance Analyzer GUI to narrow the time period of interest in the collected
profile data. Filtering is also available using the command line er_printutility. Both
the Performance Analyzer GUI and command line er_print utility are covered in
the next several sections of this chapter.

Viewing the Collected Profile Experiment

As mentioned earlier, there are two distinct steps involved in doing method profiling
using the Performance Analyzer. The first is collecting the experiment profile, which
is described in the previous section, and the second is viewing the data collected in
the experiment file, presented in this section.

There are two ways to view the collected data in the experiment file. One way is using
the GUI, called the Analyzer, and the second way is using a command line tool called
er_print. The Analyzer GUI approach is described first and then er_print. Many
of the concepts presented in the Analyzer approach apply to the er_print approach.

Loading an experiment in the Analyzer is as simple as updating the PATH envi-
ronment variable to include the Performance Analyzer bin directory and executing
the following command:

$ analyzer

The Analyzer can also be launched with the name of the experiment to load. Assum-
ing an experiment named test.1.er, the Analyzer loads the test.1.er experiment auto-
matically by executing the following command:

ptg6882136

Oracle Solaris Studio Performance Analyzer 167

$ analyzer test.1.er

If the Analyzer is launched without an optional experiment name, the Analyzer GUI
opens a window prompting the user to select an experiment to load as shown in
Figure 5-1.

The default view of the Analyzer once it has loaded a profile experiment file is
shown in Figure 5-2. The Analyzer by default reports both exclusive and inclusive
user CPU utilization metrics. User CPU utilization is a measure of CPU time spent
executing outside system or kernel calls. The Analyzer can be configured to display
many additional performance metrics. How to display additional metrics is presented
later in this chapter in the “Data Presentation” section.

Figure 5-1 Analyzer Open Experiment

Figure 5-2 Analyzer default view

ptg6882136

168 Chapter 5 � Java Application Profiling

The Analyzer does not save any state information about the current view prior
to exit.

See Table 5-1 for an explanation of the shortcuts available on the Analyzer’s
toolbar.

There are two tabs on the right panel of the default Analyzer GUI view, shown
previously in Figure 5-2, a Summary tab and Event tab. Information found on the
Summary and Event tabs on the right panel are described in Table 5-2.

Table 5-1 Analyzer Toolbar

Icon Description

Open an experiment file.

Combine an experiment’s data to an existing experiment already
loaded. Seldom used for Java application profiling or analysis.

Drop an experiment’s results from the experiments already
loaded. Seldom used for Java application profiling or analysis.

Collect an experiment. It tends to be easier to collect an experiment
using the collect-j on command line than this route.

Print the listing of data currently displayed in the Analyzer to
either a file or printer. Useful when wanting a printout of the
information displayed in the Analyzer.

Create a new Analyzer window with the same experiment
file loaded in both windows. If no experiment file is currently
loaded, a new Analyzer window is displayed with no experiment
loaded.

Close and exit the Analyzer GUI program.

Modify the category of information to display. Very commonly
used functionality to also show System CPU and lock contention
columns.

Filter the data presented. Commonly used when wanting to
focus on a particular phase or time period of the application
being profiled. It can also be used to look at a subset of threads
in the experiment or to look at a subtree in the call graph.

 Show and/or hide APIs or methods from logical areas. Can be
useful when wanting to ignore core Java SE classes, Java HotSpot
VM methods, etc.

Switches to alternative viewing modes: User, Expert, and
Machine.

ptg6882136

Oracle Solaris Studio Performance Analyzer 169

There are several tabs in the left panel of the default view in the Analyzer GUI.
The Functions tab, as shown in Figure 5-3, is considered the “home” tab where most
of your analysis work commences. The default view for the Functions tab lists inclu-
sive and exclusive User CPU columns for Java methods in the Java application
and orders the list of methods in decreasing order of exclusive User CPU time. The
definitions of “exclusive” and “inclusive” terms are provided in the “Oracle Solaris
Studio Performance Analyzer Terms” section earlier in the chapter. The additional
tabs, shown in Figure 5-3, are described in Table 5-3.

Of the tabs in the left panel, the ones expected to be the most useful and get the
most use while analyzing Java method profile experiments are Functions, Call Tree,
Callers-Callees, Source, and Disassembly.

Usually the best place to start with the analysis of the experiment is using the
Call Tree tab. The Call Tree tab shows the hierarchy of calls where an application
spends its time. This view offers the ability to quickly recognize at a high level and
in what use case(s) an application spends most of its time. Modifications made at the
highest level, often a change in an algorithm, offers the biggest return in performance
improvement. Although focusing on those methods that the profiles reports take the
most amount of time and making implementation changes to those methods makes a
certain amount of sense, stepping back at a higher level and changing the algorithm,
data structures, or design will generally offer a greater performance improvement.
Hence, it is useful to gain an understanding of the general operations taking the most
time before focusing on the amount of time a method consumes.

The time and percent shown at each node in the Call Tree is the cumulative
time spent both in the method represented by the node and everything it calls. For

Table 5-2 Summary and Event Tab Information

Tab Name Description

Summary Shows all the recorded metrics for the selected object, both as values and
percentages, and information on the selected object. The selected object
could be a Java method, a line of source code, or a program counter. The
information in the Summary tab is updated any time a new Java method,
line of source code, or program counter is selected.

Event Shows the available data for the selected Java method, source code line, or
program counter, including the event type, method name, LWP Id, thread
Id, and CPU Id.

Figure 5-3 Analyzer left panel tabs

ptg6882136

170 Chapter 5 � Java Application Profiling

example, in Figure 5-4, the top node, <Total>, represents the total time and percent
consumed, that is, 100%. As each node underneath the <Total> node is expanded, the
amount of time and percent of time reported at each node represents the cumulative
time spent in that method and the methods it calls.

Expanding the nodes in the Call Tree that have the highest reported time and walking
down the call traces is a good approach to identify where an application spends most of
its time. For example, Figure 5-4 has nodes expanded to show 93% of the application’s
time is spent in a method called spec.jbb.TransactionManager.runTxn(). Not too
surprising, it appears this application spends most of its time executing transactions.

Table 5-3 Tab Names

Tab Name Description

Functions Shows a list of methods, or functions, and their metrics, i.e., CPU utilization,
lock contention, etc., that have been selected to be shown via the Metrics
tab using the View > Set Data Presentation menu. The Functions tab can
display inclusive metrics and exclusive metrics.

Callers-Callees Shows the selected method, or function, from the Functions tab, in a pane
in the center, with callers of that selected method or function in a pane
above it, and the callees of that method or function in a pane below it.

Call Tree* Shows the dynamic call graph of the program as a tree. Each node in the
tree can be expanded or contracted.

Source Shows the source file that contains the selected method or function, from
the Functions tab, source line, or instruction. Each line in the source file for
which instructions have been generated is annotated with performance
metrics.

Disassembly Shows a disassembly listing for the Java class file in either bytecode form or
machine level assembly language that contains the selected method, source
line, or instruction.

Timeline Shows a chart of events as a function of time.

Experiments The Experiments tab is divided into two panels. The top panel contains
a tree that includes nodes for the artifacts in all the loaded experiments,
and for each experiment loaded. The Load Objects node, a list of all load
objects, is displayed with various messages about their processing. Load
objects are any artifact such as Java classes, native libraries, etc., for which
there is collected profile data in the experiment. The Notes area displays
the contents of any notes file in the experiment. The Info area contains
information about the experiments collected and the load objects accessed
by the collection target, including any error messages or warning messages
generated during the processing of the experiment or the load objects.

* This tab is new in Oracle Solaris Studio version 12.2.

ptg6882136

Oracle Solaris Studio Performance Analyzer 171

It also provides a good sense of the transactions or the operations of a transaction it
spends the most time executing.

This call tree suggests the biggest gains in performance can be realized by improv-
ing the performance of the use case executed by DeliveryTransaction.process()
and the use case of what appears to be a new order transaction, the logic executed
by NewOrderTransaction.process() and NewOrderTransaction.pro-
cessTransactionLog(). The logic in NewOrderTransaction.process() and
NewOrderTransaction.processTransactionLog() account for 29% of the
application time, and DeliveryTransaction.process() accounts for 28%. There-
fore, changes to the algorithms or data structures in the use cases implemented by
those three methods have the biggest impact on improving the performance of this
application.

It’s worth pointing out that the Call Tree view is synchronized with the Functions
tab, Callers-Callees tab, Source tab, and Disassembly tab. When a node is selected
in the Call Tree, a switch to any of the other tabs results in an updated view with
the selected method shown. For example, if the spec.jbb.TransactionManager.
runTxn() node is selected in the Call-Tree and the view is switched to the Callers-
Callees tab, the Callers-Callee view is shown with focus on the spec.jbb.Trans-
actionManager.runTxn() method. Maintaining the selected method across the
different views allows you to remain focused on a particular method of interest.

Another approach, and also complementary to using the Call Tree, is to analyze the
experiment using the Functions tab and identifying the hottest methods in the applica-
tion. This approach focuses more on improving the implementation of a specific method.
Hence, its focus tends to be more narrow than the approach of using the Call Tree.

Figure 5-4 Call Tree

ptg6882136

172 Chapter 5 � Java Application Profiling

The Functions tab shows a list of methods and their metrics (refer to Figure 5-2
for an example showing the Functions tab). As mentioned earlier, by default, the
Analyzer shows the inclusive and exclusive user CPU utilization metrics. Exclusive
metrics report the amount of time spent in a method and do not include any time
consumed by methods it calls. In contrast, inclusive metrics report the time taken to
execute a method and all the methods it calls. The displayed metrics can be changed
through the View > Set Data Presentation menu. Changing the displayed metrics
is described in the next section. The data displayed in the Functions tab can also
be sorted by a metric column. By default, the data is sorted by exclusive user CPU
utilization in descending order. When the Analyzer is configured to show multiple
metrics, clicking on a different metric column changes the sort order. Methods at the
top are the hottest methods for the sorted metric.

When a method is selected in the Functions list and the Callers-Callees tab is
clicked on, a listing of the methods that call the selected method, “Callers,” and a
listing of methods that are called by the selected method, “Callees,” are shown. An
example view of the Callers-Callees tab is shown in Figure 5-5.

The Callers-Callees tab shows the selected method in the center panel, with call-
ers of that method in a panel above it, and callees of that method in a panel below it.
You can add callers and callees to the center panel to construct a call stack fragment
as the center function. Metrics will be computed for the entire fragment. You can
also set a function as the head, center, or tail of the call stack. The center panel also
includes navigation buttons that let you go forward and backward in the call stack
history. These are the arrow icons on the left part of the center panel.

Attributed metrics are shown in each panel. For the selected method, the attrib-
uted metric represents the exclusive metric for that method. In other words, the time
spent to execute the selected method. It does not include any time spent in methods
it calls. For the callees, the attributed metric represents the portion of the callee’s

Figure 5-5 Callers-Callee

ptg6882136

Oracle Solaris Studio Performance Analyzer 173

inclusive metric that is attributable to calls from the center method. In other words,
the callee’s attributed metric is the amount of time the center method spent calling
the callee including all the methods the callee invokes. Notice that the sum of attrib-
uted metrics for the callees and the selected method add up to the inclusive metric
for the center method (not to be confused with the selected method’s exclusive metric,
which is shown in the center panel).

For the callers, the attributed metrics represent the portion of the selected meth-
od’s inclusive metric that is attributable to calls from the callers. In other words, the
attributed metric represents the time spent calling the center method including all
the methods it invokes. Again, notice the sum of the attributed metrics for all callers
also adds up to the inclusive metric for the selected method (again, not be confused
with the selected method’s exclusive metric, which is shown in the center panel).

The callers list and the callees list are sorted by a metric. If more than one column
is displayed in the Callers-Callees tab, you can select the sort column by clicking on
the column header. The sort column header is always displayed in bold. Also note
that changing the sort metric in the Callers-Callees view changes the sort metric in
the Functions tab.

The way to interpret the information shown in Figure 5-5 is as follows:

� TransactionLogBuffer.putDollars() and its callees contribute 45.462
User CPU seconds to the execution of the calling method NewOrderTransac-
tion.processTransactionLog().

� TransactionLogBuffer.putDollars() and its callees contribute
6.735 User CPU seconds to the execution of PaymentTransaction.
processTransactionLog().

� TransactionLogBuffer.putDollars() and its callees contribute 5.114
User CPU seconds to the execution of CustomerReportTransaction.
processTransactionLog().

� TransactionLogBuffer.putDollars() and its callees contribute
1.221 User CPU seconds to the execution of OrderStatusTransaction.
processTransactionLog().

� 10.557 User CPU seconds were spent invoking only the TransactionLogBuf-
fer.putDollars() method, not including any of the methods it calls.

� BigDecimal.toString() and the methods it invokes contribute 29.861 User
CPU seconds to TransactionLogBuffer.putDollars() inclusive metric.

� Similarly for TransactionLogBuffer.putText(), BigDecimal.lay-
outChars(), BigDecimal.signum(), and String.length().

The Functions tab and the Callers-Callees tab can be used together by navigat-
ing through a collected experiment in the Functions tab, searching for high metric

ptg6882136

174 Chapter 5 � Java Application Profiling

values such as User CPU, and then selecting a method of interest and clicking on
the Callers-Callees tab to find out how much time is attributed to the method that
has been selected.

A new feature added to the Callers-Callee tab in Performance Analyzer 12.2 allows
you to build a call stack around a method of interest and see the attributed time
spent in that call stack. In previous versions of Performance Analyzer, when you
moved up and down the call stack, the amount of attributed time adjusted based on
the method in the center of the Callers-Callees view.

To illustrate the usefulness of this new feature, consider System.array-
copy() as being a hot method in an experiment with a value of 100 for both its
inclusive and exclusive metric. Since both inclusive and exclusive metrics have
the same value, it is a leaf method call, that is, no other method is called by Sys-
tem.arraycopy(). Suppose you analyze the callers of System.arraycopy()
and observe all its use came from the String(char[] value) constructor.
If you move String(char[] value) to the center to evaluate its callers, you
will be analyzing String(char[] value)’s inclusive time. Suppose its inclu-
sive time is 200. That 200 also includes time spent calling System.array-
copy(), which is 100. Now, you analyze the callers of String(char[] value)
and find there are many callers of it. As you put each of those methods that call
String(char[] value) in the center, you find it hard to determine how much
of the inclusive time from that method is actually spent in System.array-
copy(). With Oracle Solaris Studio 12.2 you can view how much time is spent in
System.arraycopy() for each of the call stacks that eventually call System.
arraycopy().

To find the amount of time a call stack spends in a given method within a call
stack, you can use the Set Center button to focus on that method. Then by selecting
one of the Callers and clicking the Add button, you can see in the center panel how
much time is attributed to that call stack for those methods. You can similarly add
Callees to the center panel too. Adding more Callers or Callees to the center panel
gives you the ability to easily move up and down a call stack and easily correlate the
amount of time spent in a particular method in the call stack.

To put this feature to work using the example in Figure 5-5, suppose you wanted to
isolate the call stack of PaymentTransaction.processTransactionLog() from
other callers for TransactionLogBuffer.putDollars(). To do this, you select and
add the PaymentTransactionLog.processTransactionLog() to the center. The
resulting view is shown in Figure 5-6.

You can see attributed metrics for TransactionLogBuffer.putDollars() and
its callers have all been updated to reflect their attributed metrics for the call stack
that isolates the PaymentTransaction.processTransactionLog() method from
the other callers for TransactionLogBuffer.putDollars(). Also updated is the
caller of the PaymentTransaction.processTransactionLog().

ptg6882136

Oracle Solaris Studio Performance Analyzer 175

In short, this new capability allows you to build a call stack fragment and compute
attributed time for its callers and callees quickly and easily. This allows you to focus
on specific call stacks that call a specific hot method and isolate specific uses of that
hot method.

As mentioned earlier in this section, additional metrics can be presented by the
Analyzer such as System CPU and User Lock. A description of how to display addi-
tional metrics is presented in the next section.

Data Presentation

Recall from the previous section “exclusive” is defined as the amount of time taken
to execute a specific method. It does not include any time consumed by methods
called by the specific method. Also recall that User CPU time is the amount of time
a method has spent executing outside the operating system kernel. Inclusive time,
the data shown in the second column in the default Functions view, is the amount of
time taken to execute a method and all the methods it calls.

Additional metrics can be added or removed from the Functions view, such as
System CPU and User Lock. The way to add additional metrics is by selecting either
the View > Set Data Presentation from the main menu or clicking on the Set Data
Presentation shortcut in the toolbar.

See Figure 5-7 for a screenshot of the Performance Analyzer’s Set Data Presenta-
tion user interface illustrating metrics that can be shown for a clock-profiling experi-
ment. Clock-profiling is the default profiling type for Java. The metrics available in
the Set Data Presentation Metric’s view change depending on the type of profiling
and metrics collected in the experiment.

The Metrics tab allows you to choose the metrics to display and the form in which
to display them. There are three possible forms: time, value, and percentage. The list
contains all metrics that are available in the loaded experiment. For each metric,

Figure 5-6 Call stack fragment

ptg6882136

176 Chapter 5 � Java Application Profiling

check boxes are provided for the metric forms available. Alternatively, instead of
setting individual metrics, you can set all metrics at once by selecting or deselecting
the check boxes in the bottom row and then clicking the Apply to all metrics” button.

You can only choose to display exclusive and inclusive metrics. Attributed metrics
are always displayed in the Callers-Callees view if either the exclusive metric or the
inclusive metric is displayed in the Functions view.

The metrics of most interest for Java applications are User CPU, System CPU, and
User Lock. User CPU is the amount of CPU consumed executing a method outside
the operating system kernel. In contrast, System CPU is the amount of CPU executed
in the operating system on behalf of the method.

In addition to using the Call Tree tab for analyzing the experiment, another strat-
egy to employ is to focus on reducing the amount of System CPU consumption since
CPU time used executing system calls in the operating system is CPU time that
could be used executing your program. The benefit realized from using such a strat-
egy depends on the amount of time spent in System CPU relative to the amount
of time spent in User CPU. Focusing on reducing System CPU consumption on an
experiment with small amounts of System CPU consumption relative to User CPU
consumption will not offer much return on investment. An example focusing on Sys-
tem CPU consumption is provided in Chapter 6.

The User Lock metric provides the method names that have locks and may expe-
rience lock contention in your Java application. A Java application under load with
high lock contention will not scale on systems with a large number of CPUs. Hence,
to improve application scaling, you need to focus on reducing lock contention. The
User Lock metric tells you which locks are the most highly contended. An example
is presented Chapter 6.

Figure 5-7 Clock-profiling’s Set Data Presentation metrics

ptg6882136

Oracle Solaris Studio Performance Analyzer 177

To add System CPU as a metric to display in the Functions view and Callers-
Callees view, you simply select the check boxes of interest, Exclusive Time, Exclusive
%, Inclusive Time, and Inclusive % corresponding to System CPU. In most cases, it is
useful to display Exclusive metrics since you likely are most interested in the amount
of time or percentage of time spent exclusively in a given method for some metric
rather than the amount of time or percentage of time spent associated with a given
method and all methods it calls.

To display monitor or lock contention information, simply select the check boxes
of interest for User Lock.

Figure 5-8 shows the Functions view after selecting Exclusive % metrics for User
CPU, System CPU, and User Lock.

Notice in Figure 5-8 that the list is ordered by Sys CPU %. The sorted column is
identified by the bold font of the column name.

Also notice in this example, the functions list shows the vast majority of the Sys-
tem CPU is consumed by an entry labeled <JVM-System>. <JVM-System> is a gen-
eral placeholder for time spent within the internals of the JVM performing tasks
such as garbage collection, JIT compilation, class loading, and other various JVM
housekeeping activities.

There are multiple format modes in which profiled experiment data can be shown
in the Performance Analyzer: User mode, Expert mode, or Machine mode.

In User mode, both JIT compiled and interpreted Java methods are displayed by
their method name. In addition, native method names are shown in their natural
form. During execution of a Java application several instances may be available of a
Java method being executed, that is, an interpreted version and possibly one or more
JIT compiled versions. However, if more than one version of a Java method exists in
the collected data, their information is aggregated together and reported as a single
Java method. In User mode, data collected that represents internal JVM threads
such as JIT compiler threads or garbage collection threads is reported under a special
entry titled <JVM-System>. An example of this is found in Figure 5-8.

In User mode, the methods list in the Function’s panel shows metrics against the
Java methods and any native methods called. The Callers-Callees panel shows the
calling relationships between Java methods and/or native methods. The Source panel

Figure 5-8 Functions tab with User CPU, System CPU, and User Lock

ptg6882136

178 Chapter 5 � Java Application Profiling

shows the Java source code for Java methods with metrics on each source line. The
Disassembly panel shows the bytecode generated for the Java methods with metrics
on each line of bytecode. It also interleaves the Java source code if it is found by the
Performance Analyzer.

Expert mode is similar to User mode except that some of the details of the JVM
internals are exposed. Method and function names from JVM internal threads
such as JIT compiler threads and garbage collection threads are shown in the
Functions panel and Callers-Callees panel. In addition, Java methods that have
spent time in the JVM Interpreter are not aggregated together with its corre-
sponding JIT compiled information as it is in User mode. Instead, time spent in
the JVM Interpreter is listed as a separate distinct item in any of the method
lists. The Sources panel shows the Java source of a selected method name from
the Functions panel or Callers-Callees panel. The Disassembly panel shows the
bytecode generated from a selected Java method with metrics reported against
each bytecode. It also may interleave Java source code if the source code is found
by the Performance Analyzer.

Machine mode shows method and function names from the JVM along with any
JIT compiled method names and native method names. Some of the JVM method or
function names represent transition code between interpreted Java code, JIT com-
piled Java code, and native code. In Machine mode, multiple HotSpot JIT compila-
tions for a given Java method may be shown as completely independent method
names in the method lists even though the method names will have the same name.
The Sources panel shows the Java source if the selected method in the Functions
panel or Callers-Callees panel is a Java method. If the selected method is a native
method, the source code will be displayed if it is available. The Disassembly panel in
Machine mode shows the generated machine code, not the Java bytecode seen in User
or Expert modes. Also in Machine mode, Java monitors, which delegate to operating
system locking primitives are listed in the method lists as calls to operating system
lock primitives such as _lwp_mutex_ on Solaris. Traversing up the call stack from
an operating system locking primitive such as an _lwp_mutex_ entry in the Callers-
Callees panel eventually shows the origination of the Java monitor in the form of a
Java method name.

To change from User mode, choose View > Set Data Presentation from the main
menu, or click on the Set Data Presentation icon in the toolbar. Then select the For-
mats tab where a radio button can be selected for the desired mode, User, Expert, or
Machine mode. In the lower half of Figure 5-9 you can see where you can select the
view mode from the Formats tab of the Set Data Presentation form.

Java developers tend to use User mode the most since they are usually not inter-
ested in viewing data that includes internal methods of the JVM. Java performance
specialists tend to use all three modes, especially Expert and Machine modes, since

ptg6882136

Oracle Solaris Studio Performance Analyzer 179

performance specialists possess specific knowledge about the internals of the JVM
and can identify if there happens to be reason for concern about the performance or
scalability of the JVM.

Filtering Profile Data

Often there are time periods of an application’s execution that you want to ignore
when viewing a profile. For example, most of the time you are not interested in the
startup or initialization phase of an application and want to ignore that informa-
tion. Or there is a particular time span where performance is of concern and you
want to focus on that particular time span. The Performance Analyzer has a con-
cept called filtering that allows you to focus on specific time spans of interest. The
Performance Analyzer allows you to select the range of profile samples collected.
By default the Performance Analyzer displays all samples. Since the collect
command of Performance Analyzer by default collects a sample once every second,
it is easy to identify a time period of interest. For example, suppose an applica-
tion runs for 30 minutes (1800 seconds), it takes 45 seconds to initialize, and you
are not interested in viewing any performance data from the initialization phase.
To exclude the first 45 seconds of profile data, you specify a filter so the first 45
samples are ignored with a range of 46–1800 as the samples to include the presen-
tation of the profile data.

Specifying a filter in the Performance Analyzer is done through the Filter Data
form, which can be accessed by selecting the View > Filter Data from the main menu
or by selecting the Filter Data icon from the toolbar. Figure 5-10 illustrates a filter
for limiting the data to be presented to samples 301–1720, which suggests the first
300 seconds (5 minutes) of the application profile data is to be ignored.

Figure 5-9 Format modes

ptg6882136

180 Chapter 5 � Java Application Profiling

Command Line er_print Utility

In addition to the Analyzer GUI, there is also a command line utility called er_print
that can be used to process a collected experiment profile. The er_print command line
utility prints an ASCII text version of the various displays found in the Performance Ana-
lyzer GUI such as method lists and callers-callees of User CPU, System CPU, and User
Lock consumers. The output from er_print is written to standard output unless it is
redirected to a file. The er_print utility requires at least one argument, the name of one
or more experiments generated with the Performance Analyzer’s collect command.

One of the powerful capabilities of er_print is that it can be scripted, which
makes it useful for automated performance analysis. For instance, er_print can
be scripted to automatically process a collected experiment and output the top ten
methods using the most User CPU, System CPU, and User Locks. But before talking
about how to create scripts for er_print, it makes sense to talk about its command
syntax and more generally how to use it interactively. Once these topics are covered,
the task of creating scripts for er_print is straightforward.

The command syntax for er_print is

Figure 5-10 Filter Data

$ er_print [-script <script name> | -command <er_print command> | - | -V]
<profile experiment name>

ptg6882136

Oracle Solaris Studio Performance Analyzer 181

The text between [and] means the arguments are optional. Text demarcated by |
means any of the options can be used between the | characters. And text between
< and > means a name of a script or file that you have created is required, or an
er_print command is required. When the -script option is not used, er_print
reads commands from the command line.

� -script <script name> says to execute the er_print script called <script
name>, a script you have created that contains a list of er_print commands.

� -command says to execute the er_print command where command is one of
the er_print commands, that is, -func will print a functions (methods) list.

� - says to read er_print commands entered from the keyboard. er_print
prompts and waits for er_print commands to be entered. Using – is useful
when used in combination with -command to execute a command and then wait
for keyboard input for the next command. In other words, it is useful when using
er_print for interactive command line analysis where you may not know the
next command to execute until after viewing the previous command’s output. A
tip to keep in mind when in interactive mode: A help command will list avail-
able er_print commands.

� -V tells er_print to display version information and exit.

Multiple options can appear on the er_print command line. They are processed
in the order they appear. You can mix scripts, hyphens, and explicit commands in
any order. The default action if you do not supply any commands or scripts is to enter
interactive mode, where commands are entered from the keyboard. To exit interactive
mode type quit or press Ctrl+D.

After each command is processed, any error messages or warning messages arising
from the processing are printed.

The commands accepted by the er_print utility are listed in the following sections.
You can abbreviate any command with a shorter string as long as the command is

unambiguous. You can split a command into multiple lines by terminating a line with
a \ character. Any line that ends in \ will have the \ character removed, and the con-
tent of the next line appended before the line is parsed. There is no limit, other than
available memory, on the number of lines you can use for an er_print command.

You must enclose arguments that contain embedded blanks in double quotes. You
can split the text inside the quotes across lines.

Many of the er_print commands use a list of metric keywords. The syntax of
the list is

metric-keyword-1[:metric-keyword-2 ...]

ptg6882136

182 Chapter 5 � Java Application Profiling

In other words, multiple metric keywords can be specified. They need to be delim-
ited by a : (colon) character. Metric keywords can be a combination of a metric name,
metric type, donated by a metric type character, and a metric visibility character.
Metric names are shown in Table 5-4. Metric type characters are shown in Table 5-5.
Metric visibility characters are shown in Table 5-6.

Table 5-4 Metric Names

Metric Name Description

user Shows User CPU time, i.e., the amount of time spent consuming user land
CPU cycles

system Shows System CPU time, i.e., the amount of time spent consuming CPU
cycles executing in operating system calls

lock Shows User Lock time, i.e., the amount of time spent blocked, waiting to get
access to a shared lock

Table 5-5 Metric Type Characters

Metric Type
Character

Description

e Shows exclusive metric value. Remember exclusive metric values represent
values for only a method and not any additional value from methods it calls.

i Shows inclusive metric value. Remember inclusive metric values represent not
only the values for a method, but also includes values for methods it calls.

a Shows attributed metric value. This is applicable only to Callers-Callees metrics.

Table 5-6 Metric Visibility Characters

Metric Visibility
Character

Description

. Shows the metric as time. This applies to timing metric metrics and
hardware counters that measure cycle counts. For other metrics, it is
interpreted the same as the “+” character.

% Shows metric as a percentage of the total program metric. For attributed
metrics in the Callers-Callees list, shows the metric as a percentage of the
inclusive metric for the selected function.

+ Shows metric as an absolute value. For hardware counters, this value is an
event count. If the hardware counter measures cycle counts, the metric is
reported as time.

! Does not show any metric value. This option cannot be used in
combination with other visibility characters listed in this table.

ptg6882136

Oracle Solaris Studio Performance Analyzer 183

Note, there are other metric names, but those listed in Table 5-4 are the ones most
commonly used with Java applications. A full listing of all metric names available in
an experiment being evaluated can be obtained using the er_print metric_list
command.

With this information you specify which metrics you want to have selected and
printed. For example, if you are interested in reporting the percentage of total time
on exclusive metrics for User CPU, System CPU, and User Lock, you would enter an
er_print command as

metrics e.%user:e.%system:e%lock

If you enter the preceding metrics command at an er_print command line, er_
print will respond by saying:

Current metrics: e.%user:e.%system:e%lock:name
Current Sort Metric: Exclusive User CPU Time (e.%user)

Notice that er_print is also saying that the current sort metric will be exclusive
User CPU time. You can change the sort order by using the sort command followed
by the metric name to sort by. For example, if instead of wanting to sort by exclusive
User CPU time, you want to sort by exclusive User CPU time after entering the pre-
vious metrics command, you would use the following sort command:

sort e.%system

After entering the sort command, er_print reports the result of the command. For
example, er_print responds with the following message after entering the preced-
ing sort command:

Current Sort Metric: Exclusive System CPU Time (e.%system)

To obtain a listing of the methods for a set of metrics, you use the functions com-
mand. However, the functions command, in the absence of a specified limit, prints
all methods collected in the experiment profile. To limit the number of methods
printed, you can use the limit command. The limit command tells er_print to

ptg6882136

184 Chapter 5 � Java Application Profiling

limit the number of methods printed with the functions command to the number
of methods given as an argument to the limit command. For example, to limit the
number of methods printed with a functions command to 25 methods, you would
use the following limit command:

limit 25

The limit command is one of the few er_print commands when entered that does
not respond back the fact that the number of methods printed with the functions
command now has a capped limit.

At this point you have enough information to use er_print to print out the top
25 methods consuming the most System CPU, User CPU, and User Lock time. How-
ever, you are probably also interested in knowing how to print out Callers-Callees
information with er_print.

The er_print command callers-callees prints a Callers-Callees table for each of
the methods printed by the functions command. The number of Callers-Callees table
entries that are printed are constrained by the limit command in the same way that
the limit command limits the number of methods printed by the functions command.
For example, if the limit command limits the number of methods printed by 25, then
only 25 table entries will be printed by the callers-callees command. For each table
entry printed by the callers-callees command, the center method name is the name
of the method from the functions list and it is marked with an asterisk. Here is example
output from a callers-callees command:

Attr. Excl. Incl. Name
User CPU User CPU User CPU
 sec. sec. sec.
4.440 0. 42.910 com.mydomain.MyProject.doWork()
0. 0. 4.440 *com.mydomain.MyProject.work()
4.080 0. 4.080 com.mydomain.MyProject.preProcessItem()
0.360 0. 0.360 com.mydomain.MyProject.processItem()

In this example, com.mydomain.MyProject.work() is the selected method from
the methods list, the center method name, which is reportable from the functions
command. The com.mydomain.MyProject.work() method is called by com.
mydomain.MyProject.doWork(), and the com.mydomain.MyProject.work()
method calls both com.mydomain.MyProject.preProcessItem() and com.
mydomain.MyProject.processItem() methods. Also notice in this example the
Attributed User CPU metric is also reported.

ptg6882136

Oracle Solaris Studio Performance Analyzer 185

Another er_print command, csingle, can also print callers-callees information.
In contrast to the callers-callees command, csingle prints the callers-callees of
the method name passed as an argument to the csingle command. The callers-
callees command prints a list of callers-callees. The length of the list of caller-callee
pairs from the callers-callees command is constrained by the limit command.
The csingle command is useful when wanting to look exclusively at callers-callees
of a specific method. A common work flow when viewing profiles with er_print is
to output the top ten methods having the highest usage of exclusive User CPU, and
then print the callers-callees of the top method. This could be done interactively
with er_print with the following sequence of er_print commands (er_print
commands are shown in bold):

$ er_print test.er.1
(er_print) limit 10
(er_print) functions
Functions sorted by metric: Exclusive User CPU Time

Excl. Incl. Name

User CPU User CPU
 sec. sec.
3226.047 3226.047 <Total>
 372.591 521.395 com.mydomain.MyProject.work()
 314.230 314.230 com.mydomain.MyProject.doWork ()
 177.134 455.639 java.lang.Integer.valueOf(int)
 169.118 169.118 java.lang. StringBuilder.toString()
(er_print) csingle com.mydomain.myproject.work
Callers and callees sorted by metric: Attributed User CPU Time

Attr. Name
User CPU
 sec.
521.365 com.mydomain.MyProject.doWork()
372.591 *com.mydomain.MyProject.work()
 66.907 java.lang.Integer.valueOf(int)
 17.342 java.lang.StringBuilder.toString()

Since modern JVMs include JIT compilers to compile Java bytecode into machine
code for the underlying hardware platform and Performance Analyzer differentiates
between interpreted methods and those that have been JIT compiled, the csingle
command may ask for a specific version of the selected method. One of the choices
will be a version of the method that had been executing in the JVM in interpreted
mode, and there may be additional choices of method versions after JIT compila-
tion. The reason there may be multiple choices after JIT compilation is the JVM’s
JIT compiler may have deoptimized and reoptimized the method. Having these dis-
tinct versions can be useful for JVM and JIT compiler engineers with improving

ptg6882136

186 Chapter 5 � Java Application Profiling

JIT compilation techniques. The following example illustrates the prompting of the
csingle command asking for a version of a method.

(er_print) csingle java.lang.Integer.valueOf (int)
Available name list:

 0) Cancel
 1) java.lang.Integer.valueOf(int) JAVA_CLASSES:0x0 (Integer.java)
 2) java.lang.Integer.valueOf(int) JAVA_COMPILED_METHODS:0x52f70
(Integer.java)
Enter selection:

In the previous output, the JIT compiled version of the java.lang.Integer.
valueOf(int) method is identified by the JAVA_COMPILED_METHODS text. The
interpreted version is identified by the JAVA_CLASSES text. In the presence of mul-
tiple choices of a method using the csingle command, it is best to look at perfor-
mance metrics for each version since you may not know how long a given version had
been executing as interpreted code, or as JIT compiled code.

The metrics reported by the callers-callees and csingle commands can be
controlled using the cmetrics command. Using cmetrics with no arguments tells
er_print to set the callers-callees and csingle metrics to the same metrics as
those specified for printing methods using the functions command. The cmetrics
command can also take a list of metric keywords if you want to expand or contract the
metrics reported with the callers-callees or csingle commands. For example,
if you are interested in reporting only exclusive percentage System CPU time and
attributed percentage System CPU time in the Callers-Callees output, you would
specify the following cmetrics command:

cmetrics e.%system:a.%system

 To limit the scope of information printed; in other words, in situations where you
are interested in a particular time period of the collected experiment profile, you can
specify a filter for er_print to use in the same way you can specify a filter in the
Analyzer GUI. To limit the scope of the samples included in the printed information
reported by er_print, you use the filters command. The filters command
takes an argument that can be a list of one or more sample ranges with each range
of samples delimited by a , (comma) character. For example, suppose you wanted
to limit the scope of the information reported by er_print to be samples 61–120
and 301–360 (this suggests the data collected between 61 seconds and 120 seconds
into the experiment and between 301 seconds and 360 seconds are of interest since

ptg6882136

Oracle Solaris Studio Performance Analyzer 187

the collect command samples at once per second), you would specify the following
filters command:

filters 61-120,301-360

To direct the output produced by er_print to an output file you specify the
outfile command followed by a file name you want to capture the output in. For
example, to capture the output from an er_print sequence of commands to a file
named my-output-file.txt, you would specify the following outfile command:

outfile my-output-file.txt

An additional er_print command worth mentioning is the selecting of a view
mode. Recall that three view modes are available: User, Expert, and Machine.
These three view modes were described earlier in the Oracle Solaris Studio Per-
formance Analyzer Data Presentation section. As mentioned in that section, most
Java developers use the User view mode. But if you want to see er_print output
data in either Expert mode or Machine mode, the viewmode command can be
used. The default view mode is User. To set a view mode to use with er_print,
you append one of the view modes of User, Expert, or Machine to the viewmode
command. For example, to set the view mode to Expert mode you specify the fol-
lowing viewmode command:

viewmode expert

At this point you have seen the basic set of er_print commands that allow you
to make effective use of er_print. The next step in using er_print is to automate
the processing of an experiment with an er_print script. Following are a couple of
example er_print scripts for various tasks. Any of the following er_print scripts
can be saved to a file and run against a collected experiment using er_print with
the -script option followed by the name of the file the commands were saved as.

Example 1

Print the top 10 methods using the most percentage of exclusive System CPU time
and include percentage of exclusive User CPU time and percentage of exclusive User
Lock time too.

ptg6882136

188 Chapter 5 � Java Application Profiling

If the preceding commands are saved in a file named, top-10-system-cpu.script,
this script could be executed using er_print as

metrics e.%system:e.%user:e.%lock
sort e.%system
limit 10
functions
quit

er_print -script top-10-system-cpu.script <experiment name>

Note that <experiment name> is the name of an experiment that has been collected
with the Performance Analyzer collect command.

Example 2

Print the top 25 methods using the most exclusive User CPU time, reported as time
rather than percentage. Then print the top 10 methods using the most exclusive
System CPU time, reported as time rather than percentage. And then report the top
5 methods experiencing the most exclusive percentage of User Lock time. This script
could be a general purpose script to report a high level view of the top consumers
of CPU time, including both User CPU and System CPU along with reporting any
potential lock contention issues.

metrics e.user
sort e.user
limit 25
functions
metrics e.system:e.%user:e.%lock
sort e.system
limit 10
functions
metrics e.%lock
sort e.%lock
limit 5
functions
quit

These two example scripts illustrate the power of being able to create er_print
scripts. Many more scripts can be created and can be useful. The preceding two
examples illustrate how quickly er_print scripts can be developed and how use-
ful they can be as general purpose scripts that could be run against a collected

ptg6882136

NetBeans Profiler 189

experiment to give a quick overview of an application’s performance. In an era of
automated build and test environments, even the simple examples shown previ-
ously could be useful in an automated performance testing system to do an initial
high level performance analysis. The resulting output from the preceding scripts
could be further integrated into an e-mail reporting system to report the findings
to interested stakeholders.

This section on er_print has only provided an introduction to the capabilities
you can achieve utilizing er_print. Getting a list of er_print commands and their
usage at any time is as simple as executing er_print with no arguments, that is,
er_print.

As you use the Performance Analyzer and er_print, you will become more versed
in its capabilities and its power.

NetBeans Profiler

Since some readers may not have the ability to do method profiling on one of the
Oracle Solaris Studio Performance Analyzer’s supported platforms, method pro-
filing using the NetBeans Profiler is covered in this section. In addition, memory
profiling and memory leak detection with the NetBeans Profiler are also pre-
sented. To get the most from this section, it may be useful to revisit the Common
Profiling Terms and NetBeans Profiler Terms sections at the beginning of this
chapter.

The NetBeans Profiler is a powerful tool that can help you identify performance
problems in your application. The NetBeans Profiler is included in the NetBeans
IDE and also included in a JVM monitoring tool called VisualVM. VisualVM is an
open source project found at http://visualvm.dev.java.net and is also packaged with
the Java HotSpot JDK beginning with Java 6 Update 7. Regardless whether you
use NetBeans Profiler with NetBeans IDE or with VisualVM, it allows you to profile
your Java application, determine the time used by specific methods, and examine
how your application uses memory.

Tip

At the time of this writing, there are few differences in the functionality between the
NetBeans Profiler available in NetBeans IDE and VisualVM. Both rely on the same underlying
technology. One of the features absent from VisualVM is the ability to go to a specific
line of source code in the NetBeans IDE editor when double-clicking on a method name
while examining a profile. A feature absent in NetBeans Profiler is the profiling sampler, a
lightweight profiler that’s included with VisualVM 1.3.1 version (and available as a plug-in
in version 1.2).

http://visualvm.dev.java.net

ptg6882136

190 Chapter 5 � Java Application Profiling

The NetBeans Profiler uses advanced technology that reduces profiling overhead,
making it easier to learn about the performance of an application. The following are
some of the features of the NetBeans Profiler:

� Low overhead profiling. You can control the profiler’s performance impact
on your application. Based on your selections, the performance impact ranges
from extensive to none.

� CPU performance profiling. Time spent in every method of your applica-
tion or just in selected methods can be reported.

� Memory profiling. You can check for excessive object allocations.
� Memory leak detection. The profiler’s statistical reports make it easy to

detect object instances that are leaking.

The act of profiling with the NetBeans Profiler presented are those followed when
using the NetBeans Profiler within NetBeans IDE. However, other than some of the
initial setup of selecting an application to profile, the concepts, flow of control, and so
on are similar if not the same as found in VisualVM. Once you have used the NetBeans
Profiler in either the NetBeans IDE or VisualVM you will find it easy to use in either tool.

Supported Platforms

The NetBeans Profiler can profile applications when they are run in a Java Virtual
Machine (JVM) that supports the JVM Tool Interface (JVMTI). Java 5 Update 4 (and
later) supports JVMTI. Because the NetBeans Profiler includes binary code, which is
needed to communicate with the JVMTI support in the JVM, the NetBeans Profiler
is platform specific. The supported platforms are as follows:

� Solaris (SPARC and x86/x64)
� Windows
� Linux
� Mac OS X

Downloading and Installing the NetBeans Profiler

The standard NetBeans IDE download includes the NetBeans Profiler and can be
used directly within the NetBeans IDE. The NetBeans IDE can be downloaded from
the NetBeans Web site, http://www.netbeans.org. Downloading the NetBeans IDE is
as simple as selecting the download for your target platform. Once NetBeans IDE
has been downloaded, you use the installation wizard to install the NetBeans IDE.

http://www.netbeans.org

ptg6882136

NetBeans Profiler 191

VisualVM, which also bundles the NetBeans Profiler, can be obtained by either
downloading the latest version of VisualVM from http://visualvm.dev.java.net, or by
downloading Oracle’s Java 6 Update 7 or later JDK distribution. Java 6 Update 7
and later bundle VisualVM in its distribution.

Tip

The only difference between the VisualVM version available at http://visualvm.dev.java.net
and what is bundled in a HotSpot JDK is the version from http://visualvm.dev.java.net may
be a slightly newer version having new or additional features available in it.

The VisualVM program that is bundled with Java 6 and later releases can be
found in the <install directory>/bin directory of a JDK installation. The name of the
program is called jvisualvm. The VisualVM program in the downloaded VisualVM
package from http://visualvm.dev.java.net is called visualvm and can be found in the
<install directory>/bin directory. Note that the open source VisualVM version does
not have a leading “j” character in front of the visualvm name.

The default JDK installation directory on Windows systems is C:\Program Files\
Java\<jdk release> where <jdk release> is the name of the JDK release such as
jdk1.6.0_21. So, if you installed Java 6 Update 21 on a Windows system, by default
the JDK installer places the jvisualvm program in the C:\Program Files\Java\
jdk1.6.0_21\bin directory.

The installation of NetBeans IDE on Windows systems places a launch icon on the
Windows desktop for easy launching.

Starting a Method Profiling Session

The steps described here assume you are using NetBeans IDE. NetBeans IDE was
chosen as the program for describing how to use NetBeans Profiler since it offers
remote profiling capabilities.

Tip

VisualVM has a lightweight remote profiling feature different from the NetBeans IDE remote
profiling feature. VisualVM’s lightweight profiling feature was presented in Chapter 4.

Additionally, the steps illustrated here describe profiling remotely since usu-
ally it is most desirable to profile an application running on a target system
in a qualification type of environment, and most desktop systems do not have

http://visualvm.dev.java.net
http://visualvm.dev.java.net
http://visualvm.dev.java.net
http://visualvm.dev.java.net

ptg6882136

192 Chapter 5 � Java Application Profiling

sufficient memory resources to run both a powerful profiler and a complex appli-
cation at the same time.

A remote profiling session requires the following steps:

 1. Identify the remote system where the application to profile resides.

 2. Start NetBeans IDE.

 3. Select a profiling task, method profiling or memory profiling.

 4. Specify options for the selected task.

 5. Generate the remote profiling pack.

 6. Configure the remote system with the remote profiling pack.

 7. Start the profiling; examine the data it displays and the data it collects.

The following sequence of steps illustrates what is required to remotely profile an
application using NetBeans Profiler in NetBeans IDE. In this example, the remote
system’s name is halas and the remote application is called SPECjvm2008’s compiler.
compiler workload. SPECjvm2008 can be freely downloaded at http://www.spec.org/
download.html. The version of NetBeans IDE used in this example is NetBeans IDE
6.8. The JVM version used with both the NetBeans IDE and the remote application
is Java 6 Update 21.

 1. Identify the remote system where the application to profile resides.
As mentioned earlier, the remote system is halas, and the application is
SPECjvm2008’s compiler.compiler workload.

 2. Start NetBeans IDE on your desktop system.

 3. Select the profiling task and method profiling.
Select the Profile > Attach Profiler option from the main menu in NetBeans
IDE. From the Attach Profiler panel, select the CPU icon on the left to select
method profiling as shown in Figure 5-11. Note, if you want to perform memory
profiling, select the memory icon.

 4. Specify options for the selected task.
On the right side of the Attach Profiler panel, you have several options to scope
method profiling such as profiling the entire application and an option to specify
a filter. A filter allows you to include or exclude specific Java classes from being
included in the profiling activity. There is also a measure of intrusiveness pro-
vided by the Overhead meter. Notice in Figure 5-11, with the options to profile
the entire application and a filter selected to exclude the Java core classes from
the profile there is a projected profiling overhead of about 50%. If you select a
filter to profile all classes, you will notice the profiling overhead jumps to 100%.
Generally you will find that method profiling an entire application can be rather

http://www.spec.org/download.html
http://www.spec.org/download.html

ptg6882136

NetBeans Profiler 193

intrusive on the application’s performance. Hence, it is useful to use a filter or
define a filter to use with method profiling. In other words, if you happen to
have a good idea of the part or parts of the application that have performance
issues, it will greatly help the intrusiveness introduced by the profiling activity
if you can create and specify a filter to narrow the scope of what is profiled to
that part or parts of the application.
 You can also reduce the intrusiveness of the profiling by reducing the sam-
pling rate at which profiling data is acquired from the running application. To
reduce the sampling rate, you must construct a custom configuration by select-
ing the Create Custom option in the CPU profiling icon on the Attach Profiler
panel and then clicking on the Advanced Settings option to the right of the
Overhead meter; refer to Figure 5-11. Once you have clicked on the Advanced
Settings option, you can specify a lower sampling interval than the 10 millisecond
default as shown in Figure 5-12.
 If you have not specified an Attach Mode, you must do so. Specifying an Attach
Mode tells the profiler whether the JVM running the application you want to pro-
file is running locally or remotely on a different system. You specify the Attach
Mode by launching the Attach Wizard by selecting the Define Attach Mode option
at the bottom of the Attach Profiler panel, shown previously in Figure 5-12.
 On the Attach Wizard you specify the target type: Application, Applet, or J2EE/
Web Application along with attach method, local or remote, and attach invocation,
direct or dynamic. Direct attach blocks the target application from launch until

Figure 5-11 Selecting method profiling

ptg6882136

194 Chapter 5 � Java Application Profiling

the profiler has attached to it. Dynamic attach allows you to attach, detach, and
re-attach to the running application at any time. However, dynamic attach is not
available for remote profiling or for profiling applications running on Java 5 or older
JVMs.
 For illustration purposes, as mentioned earlier, the example illustrated in
this section assumes the target application is running remotely on a system
called halas as a standalone application. Hence, on the Attach Wizard the fol-
lowing options are selected, also shown in Figure 5-13, Target Type is Applica-
tion, Attach method is Remote, and Attach invocation is Direct.
 Once the attach type is specified, you can press the Next button to proceed
through the Attach Wizard.
 On the next form of the Attach Wizard, you specify the hostname where the
remote target application will be executed and the operating system along with
specifying whether a 32-bit JVM or 64-bit JVM is being used on the target sys-
tem as shown in Figure 5-14.

 5. Generate the remote profiling pack.
Notice in Figure 5-13 there is a reminder that a Profiler Remote Pack is
required to profile a remote application. If you have not profiled an applica-
tion remotely on the target system where the application resides, you need
to generate a Profiler Remote Pack. The Profiler Remote Pack makes the con-
figuration and setup needed for the profiler to attach remotely much simpler

Figure 5-12 Reducing method profiling sampling interval

ptg6882136

NetBeans Profiler 195

Figure 5-13 Specifying remote profiling

Figure 5-14 Remote host, operating system, and JVM

ptg6882136

196 Chapter 5 � Java Application Profiling

than doing it manually. The Profiler Remote Pack is generated by the Net-
Beans Profilers on the Manual Integration form of the Attach Wizard, which
is one of the next forms in the Attach Wizard. Click the Next button until
you reach the Manual Integration form. On the Manual Integration form,
you specify the Java SE version the target application is running. In this
example, the target application is running Java SE 6. Instructions on how to
generate the Profiler Remote Pack are also listed on the Manual Integration
form and also shown in Figure 5-15.
 Review the instructions on the form and when you are ready to generate the
Profiler Remote Pack, click the Generate Remote Pack button. You are prompted
for a directory location in which to store the Profiler Remote Pack. Click the
Finish button to complete the Attach Wizard.

 6. Configure the remote system with the Remote Profiling Pack.
Now you must configure the remote system using the Remote Profiling Pack. In
addition, if this is the first time you are profiling in the remote system with a
target JVM, then the target JVM will also perform some calibration of the tar-
get JVM. The calibration can be performed by a script included in the Remote
Profiling Pack called calibrate.sh.
 The first task is to copy the Remote Profiling Pack to the remote target sys-
tem and unzip its contents to directory on the remote system. In the instructions

Figure 5-15 Generating Profiler Remote Pack

ptg6882136

NetBeans Profiler 197

given here, assume the directory that you have unzipped in the Remote Profil-
ing Pack on the remote system is called “remote.” The first task to execute on
the remote system, if it has not been done previously, is to run the calibration
script found in the <remote>/bin directory called calibrate.sh. Be sure to
edit and update the calibrate.sh script with the appropriate JAVA_HOME,
or set the JAVA_HOME environment variable externally to the calibrate.sh
script prior to attempting to execute the calibrate.sh script. The JAVA_HOME
environment variable must point to the base directory of the JVM you plan to
use to run the remote application.
 After executing the calibrate.sh script, you need to update the Java
command line options you use to launch the target application to tell the
JVM to block and wait until the Profiler has remotely connected to it. The
Remote Profiler Pack has convenience scripts you can update to launch your
Java application. These convenience scripts have the necessary HotSpot
JVM command line option, -agentpath, needed for remote profiling. If you
are using a Java 5 JVM you can update the <remote>/bin/profile-15
command file or script file. If you are using a Java 6 JVM, you can update
the <remote>/bin/profile-16 command file or script file. Alternatively,
you can add the appropriate -agentpath command line option for your plat-
form. The command line option to specify for a Java 5 JVM or Java 6 JVM
can be found in the Remote Profiling Pack’s <remote>/bin/profile-15
or <remote>/bin/profile-16 command file or script file, respectively.
When the -agentpath command line option is specified correctly, if you
attempt to launch the target Java application, a message prints saying that
the profiling agent is initializing and it is waiting for a connection from a
remote profiler.

 7. Start profiling; examine the data it displays and the data it collects.
Everything necessary for remote profiling is set up and configured in the
previous steps. All that is left to do is launch the remote Java application
and connect the Profiler to it. Launch the remote Java application with
the command file or script file you updated in the -agentpath command
line in step 6. As mentioned in step 6, when the remote Java application
launches, it reports that it is waiting for the Profiler to attach. Go to your
desktop system and tell the NetBeans Profiler to attach to the remote
Java application. If you have forgotten how to get to the Attach Profiler
panel, select the Profile > Attach Profiler option from the main menu in
NetBeans IDE.
 Once the NetBeans Profiler has successfully attached, the remote Java
application unblocks and continues to execute. The NetBeans Profiler opens
a Profiler Control Panel in NetBeans IDE with Controls, Status, Profiling

ptg6882136

198 Chapter 5 � Java Application Profiling

Results, Save Snapshots, View, and Basic Telemetry subpanels as shown in
Figure 5-16.

Regardless of whether you are doing method profiling or memory profiling, the Profiler
Control Panel looks the same. Each section of the Profiler Control Panel can be expanded
or hidden by clicking the arrow icon next to the name of the section. Each of the Profiler
Control Panel’s subpanels is explained in more detail in the following subsections.

Controls

See Table 5-7 for an explanation of the buttons in the Profiler Control Panel Controls
section.

Status

See Table 5-8 for an explanation of the entries in the Profiler Control Panel Status
section.

Profiling Results

See Table 5-9 for an explanation of the entries in the Profiler Control Panel Profiling
Results section.

Figure 5-16 Profiler control panel

ptg6882136

NetBeans Profiler 199

Table 5-7 Profiler Control Panel Controls

Component Description

ReRun Last Profiling

Run the last profiling command again.

Stop

Stops the current profiling command. Also stops the target application if
the application was started by the profiler.

Reset Collected Results

Discards the already accumulated profiling results.

Run GC

Runs garbage collection.

Modify Profiling

Opens the Modify Profiling Task dialog box and allows you to run a new
profiling command without stopping the target application.

VM Telemetry

Opens the VM Telemetry Overview in the Output window of the IDE,
displaying smaller versions of the telemetry graphs.

Table 5-8 Profiler Control Panel Status

Component Description

Type The type of profiling: Monitor, CPU, or Memory

Configuration Indicates whether the profiler was started with one of its preset
configurations

On An identifier indicating the name of the system where application is
being profiled

Status Running or Inactive

Table 5-9 Profiler Control Panel Profiling Results

Component Description

Take Snapshot

Displays a static snapshot of the profiling results accumulated thus far

Live Results

Displays the current results of the profiling task

Reset Collected Results

Discards the already accumulated profiling results

ptg6882136

200 Chapter 5 � Java Application Profiling

Table 5-11 Profiler Control Panel Basic Telemetry

Component Description

Instrumented When doing memory profiling, the number of classes with profiler
instrumentation; when doing CPU performance profiling, the
number of methods with profiler instrumentation

Filter Type of filter (if any) that was specified

Threads Number of active threads

Total Memory Allocated size of the heap

Used Memory Portion of the heap that is in use

Time Spent in GC Percentage of time spent performing garbage collection

Saved Snapshots

Enables you to manage the profile snapshots. When you save a snapshot, the saved
snapshot is displayed here. Double-clicking the name of the snapshot opens the snapshot.

View

See Table 5-10 for an explanation of the entries in the Profiler Control Panel View
section.

Basic Telemetry

See Table 5-11 for an explanation of the entries in the Profiler Control Panel Basic
Telemetry section. You can see the graphic presentation of some of this information
by clicking the VM Telemetry and Threads buttons in the View section.

Table 5-10 Profiler Control Panel View

Component Description

VM Telemetry

Opens the VM Telemetry tab. The VM Telemetry tab displays high-level data
on thread activity and memory heap and garbage collection in the VM.

Threads

Opens the Threads tab. When Enable Threads Monitoring is selected in
the Select Profiling Task dialog box, application thread activity is displayed
in the Threads tab.

ptg6882136

NetBeans Profiler 201

Viewing Live Results

While your remote application is running you can watch the amount of time used by
individual methods by clicking the Live Results icon in the Profiler Control Panel to
display the Profiling Results window (shown in Figure 5-17).

This window displays all methods that have been invoked at least once. The
default sort order is by descending self time, so the methods in your application
that are using the most time are displayed at the top of the list. The amount of time
used is displayed in two columns, one with a graph to show the percentage of time
spent in each method and the other with text that displays the raw time value and
the percentage. The number of invocations is also shown. The profiler updates these
values as your application runs.

To change the sort order, click a column header. This sorts the table in descending
order using the values from the column. Click again to sort in ascending order. Click-
ing the Hot Spots—Method column sorts the table by package, class, and method
name. To find a specific method more quickly click on Method Name Filter at the
bottom of the table and then enter the method name.

Taking a Snapshot of Results

To see more detailed information, click the Take Snapshot icon in the Profiler Control
Panel. The CPU snapshot window is displayed, with the time of the snapshot as its
title (shown in Figure 5-18).

The CPU snapshot window initially displays its Call Tree tab, which shows
the call trees organized by thread. To switch to the Hot Spots view, just click
the Hot Spots tab at the bottom of the panel. It is usually helpful to see the

Figure 5-17 Live results while analyzing performance

ptg6882136

202 Chapter 5 � Java Application Profiling

execution path used by your application to get from one or more of the method
roots to the hot methods or hot spots in your application. To do that easily, click
the Combined tab. This tab shows both the Call Tree and the Hot Spots. Click-
ing a method in the Hot Spot list will find that method’s entry in the Call Tree,
making it easy to see the relationship between a method’s root and the hot spot
(shown in Figure 5-19).

The Info tab displays a summary of the snapshot information: date, time, filter
settings, and so on. The icons along the top of the snapshot window allow you to save
the snapshot, control the granularity of the snapshot (method, classes, or packages),
and search the snapshot.

The next several sections cover memory profiling.

Starting a Memory Profiling Session

The steps required to gather a memory profile with the NetBeans Profiler are
similar to the steps required to gather a method profile described earlier in this
chapter.

As is the case with the method profiling section, the steps presented in this section
illustrate remote profiling since usually it is more desirable to profile an application
running on a target system in a qualification type of environment and most desktop
systems do not have sufficient memory resources to run both a powerful memory
profiler and a complex application at the same time.

Figure 5-18 Results snapshot while analyzing performance

ptg6882136

NetBeans Profiler 203

The general steps for memory profiling are as follows:

 1. Identify the remote system where the application to profile resides.

 2. Start NetBeans IDE on your desktop system.

 3. Select the profiling task and method profiling.

 Select the Profile > Attach Profiler option from the main menu in NetBeans
IDE. From the Attach Profiler panel, select the Memory icon on the left to select
method profiling as shown in Figure 5-20.

 4. Specify options for memory profiling.

 When you memory profile with the NetBeans Profiler you have several options.
To get just a general feel for an application’s object allocation footprint, select
the Record object creation only since it imposes the least amount of overhead.
Collected profile statistics are displayed in the live results profiling panel that
suggest potential excessive object allocations in your application.

 To get a sense of the long-lived objects in your application, select the Record
both object creation and garbage collection option. This option is also useful for
tracking down potential memory leaks.

Figure 5-19 Combined view while analyzing performance

ptg6882136

204 Chapter 5 � Java Application Profiling

 By default, for each class used by your application, only every tenth allocation
actually is tracked by the profiler. For most applications, this statistical
approach dramatically lowers overhead without an impact on accuracy. You
can use the spin control to change the number of allocations that are tracked,
but keep in mind that lowering the value increases profiling overhead. In a
complex application that you intend to profile for an extended period of time,
consider increasing the value so the profiling activity is not as intrusive on
the application’s performance. If you find the profiling activity is too intrusive
on your application, increasing Track every object allocations value reduces
the profiling overhead. But increasing the Track every object allocations value,
may lose some profiling accuracy if not enough samples are collected. Hence,
when increasing the Track every object allocation, the application must execute
longer to gain enough information from the reduce sampling frequency.

 Most important though is for the profiler to report the methods that performed
the object allocations, you must select the Record stack trace for Allocations option.

 5. Generate the remote profiling pack.

 6. Configure the remote system with the remote profiling pack; refer back to the
instructions in the previous section on remote method profiling if you need
assistance in how to perform these two steps.

 7. Start profiling; examine the data it displays and the data it collects.

Figure 5-20 Analyze Memory options

ptg6882136

NetBeans Profiler 205

Start the remote application. When it initializes, it blocks and waits until the Net-
Beans Profiler attaches to it. Once the NetBeans Profiler has successfully attached,
the remote Java application unblocks and continues to execute. The NetBeans Pro-
filer opens a Profiler Control Panel in NetBeans IDE with Controls, Status, Profiling
Results, Save Snapshots, View, and Basic Telemetry subpanels as shown previously
in Figure 5-16.

Viewing Live Results

Once profiling begins, you can use the Live Results button to open a dynamic display
of the heap contents (shown in Figure 5-21).

The columns displayed are

� Allocated Objects. The number of objects that the profiler is tracking.
� Live Objects. The number of the Allocated Objects that are currently on the

heap and are therefore taking up memory.
� Live Bytes. Shows the amount of heap memory being used by the Live

Objects. One column displays a graph; the other displays text.

Figure 5-21 Live Results while analyzing memory usage

ptg6882136

206 Chapter 5 � Java Application Profiling

� Avg. Age. Average age of the Live Objects. The age of each object is the num-
ber of garbage collections that it has survived. The sum of the ages divided by
the number of Live Objects is the Avg. Age.

� Generations. Calculated using the Live Objects. The age of an object is the
number of garbage collections it has survived. The Generations value is the
number of different ages for the Live Objects. It is the same concept as the sur-
viving generations, only applied to a single class; see the “Surviving Generations
and Memory Leaks” sidebar.

To change the sort order, click a column header. This sorts the table in descend-
ing order using the values from the column. Click again to sort in ascending order.
Sorting the table by Generations can frequently help identify classes that are the
source of memory leaks. This is because an increasing value for Generations typically
indicates a memory leak.

Tip

Once you have the display sorted so that the classes of interest are at the top, if you chose
to track object creation and garbage collection, then you can right-click an entry and choose
Stop Profiling Classes below this Line to reduce profiling overhead.

Surviving Generations and Memory Leaks

To understand the Generations column in the memory profiling results view, you have to
think about the JVM’s Garbage Collection process. Every time the garbage collector runs
each object either survives and continues to occupy heap memory, or it is removed and its
memory is freed. If an object survives, then its age has increased by a value of 1. In other
words, the age of an object is simply the number of garbage collections that it has survived.
The value of Generations is the number of different object ages.

For example, assume several objects were all allocated when your application first started.
Further, another group of objects was allocated at the midpoint of your application’s run.
And finally, some objects have just been allocated and have only survived one garbage
collection. If the garbage collector has run 80 times, then all the objects in the first group
will have an age of 80, all the objects in the second group will have an age of 40, and
all of the objects in the third group will have an age of 1. In this example, the value of
Generations is 3, because there are three different ages among all the objects on the
heap: 80, 40, and 1.

In most Java applications the value for Generations eventually stabilizes. This is because the
application has reached a point where all long-lived objects have been allocated. Objects
that are intended to have a shorter life span do not impact the Generations count because
they will eventually be garbage collected.

ptg6882136

NetBeans Profiler 207

If the Generations value for your application continues to increase as the application
runs, it could be an indication of a memory leak. In other words, your application is
continuing to allocate objects over time, each of which has a different age because it has
survived a different number of garbage collections. If the objects were being properly
garbage collected, the number of different object ages would not be increasing.

Taking a Snapshot of Results

To see which methods in your application are allocating objects, you must take
a snapshot. Use the Take Snapshot button in the Profiler Control Panel. The
resulting window has a tab labeled Memory that contains the same information
as the Live Results window. Right-click a class in the list and then select the
Show Allocation Stack Traces option to switch to the Allocation Stack Traces
tab. Its display is similar, only the first column displays method names (shown
in Figure 5-22).

Figure 5-22 Results snapshot while analyzing memory usage

Tip

You can right-click an entry in the Live Results window and select Take Snapshot and Show
Allocation Stack Traces to quickly open a new Memory tab with the Allocation Stack Traces
displayed. This is useful when spotting object allocations that are of immediate interest while
observing Live Results.

The listed methods shown in the Allocation Stack Traces tab indicates which
methods allocated one or more instances of the selected class. If you focus on those
objects allocating the largest number of bytes and have a short average age, these
become good candidates to reduce object allocations. There are many different
approaches and strategies for reducing object allocations ranging from reducing
underlying containers from being resized, such as StringBuilder’s underlying
char[], to object pooling, which pools a number of objects to be reused rather

ptg6882136

208 Chapter 5 � Java Application Profiling

than allocating a new one. However, it is generally not a good practice to pool
objects unless there is a high cost of allocation or collecting those objects. High
cost implies a lengthy duration of elapsed time to allocate or garbage collect those
objects.

Isolating Memory Leaks

You can use the displayed statistics in the Allocation Stack Traces view of the Mem-
ory panel to help narrow down which of the methods is allocating class instances
that are causing memory leaks. In the example shown previously in Figure 5-22,
the addEntry() and createEntry() methods are both allocating instances of
HashMap$Entry. Note that the Generations value for the allocations done by addEn-
try() is much higher than that for createEntry(). This indicates that addEn-
try() is where leaking instances of HashMap$Entry are being allocated. You can
click the icon next to a method’s name to see the different execution paths that called
that method (shown in Figure 5-23).

The addEntry() method was called by put(), which in turn was called by sev-
eral different methods. The calls from one of those methods, LeakThread.run(),
resulted in allocations with a high Generations value, indicating that it is a likely
source of a memory leak. It should be inspected to see whether perhaps it is adding
entries to a HashMap that are never being removed. In general, adding entries to
a Java Collection and never removing them are a common source of memory leaks.
Memory profiling with NetBeans Profiler in addition to observing sources of potential
unnecessary object allocations can be useful.

Figure 5-23 Execution paths for a method

ptg6882136

Bibliography 209

Analyzing Heap Dumps

In addition to memory profiling a running application, the NetBeans Profiler can also
load a binary heap dump generated by the Java HotSpot VM. A binary heap dump
is a snapshot of all the objects in the Java HotSpot VM at the time the heap dump is
taken. One of features introduced in Java 6 HotSpot VMs is the capability to generate
heap dumps on OutOfMemoryErrors. This is a useful feature when troubleshooting
the root case that led to an OutOfMemoryError. Java 5 and Java 6 can both produce
binary heap dumps using the jmap command. Binary heap dumps can also be gener-
ated using Java 6’s JConsole using its HotSpotDiagnostics MBean. VisualVM can
also be used to generate a binary heap of an application. How to configure the
Java HotSpot VM to produce heap dumps on OutOfMemoryErrors, and how to
use jmap, JConsole, or VisualVM for generating binary heap dumps are described
in Chapter 4, “JVM Performance Monitoring.”

Binary heap dumps can be loaded in the NetBeans Profiler by selecting Profile >
Load Heap Dump from the main menu in the NetBeans IDE.

Tip

Since VisualVM contains a subset of the NetBeans Profiler capabilities, a common practice
for VisualVM users is to generate a binary heap dump using VisualVM and then immediately
analyzing it by loading the binary heap dump in VisualVM.

Once the binary heap dump has been loaded, you can analyze object allocations
for opportunities to reduce or avoid unnecessary object allocations. You can think of
looking at binary heap dumps as a means of doing offline memory profiling.

Bibliography

AMD CodeAnalyst Performance Analyzer. http://developer.amd.com/cpu/CodeAna-
lyst/Pages/default.aspx AMD Corporation.

Intel VTune Amplier XE 2011. http://software.intel.com/en-us/articles/intel-vtune-
amplifier-xe/ Intel Corporation.

Itzkowitz, Marty. “Performance Tuning with the Oracle Solaris Studio Performance
Tools.” Oracle Develop, Oracle OpenWorld 2010 Conference. San Francisco, CA. Sep-
tember 2010.

Keegan, Patrick, et al. NetBeans IDE field guide: developing desktop, web, enterprise,
and mobile applications, Second Edition. Sun Microsystems, Inc. Santa Clara, CA, 2006.

http://developer.amd.com/cpu/CodeAnalyst/Pages/default.aspx
http://developer.amd.com/cpu/CodeAnalyst/Pages/default.aspx
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

ptg6882136

This page intentionally left blank

ptg6882136

211

6
Java Application
Profiling Tips and
Tricks

Chapter 5, “Java Application Profiling,” presented the basic concepts of using a mod-
ern Java profiler such as the Oracle Solaris Studio Performance Analyzer and Net-
Beans Profiler. It did not, however, show any specific tips and tricks in using the
tools to identify performance issues and approaches of how to resolve them. This is
the purpose of this chapter. Its intention is to show how to use the tools to identify
performance issues and take corrective actions to resolve them. This chapter looks at
several of the more common types of performance issues the authors have observed
through many years of working as Java performance engineers.

Performance Opportunities

Most Java performance opportunities fall into one or more of the following categories:

� Using a more efficient algorithm. The largest gains in the performance
of an application come from the use of a more efficient algorithm. The use of
a more efficient algorithm allows an application to execute with fewer CPU
instructions, also known as a shorter path length. An application that executes
with a shorter path length generally executes faster. Many different changes
can lead to a shorter path length. At the highest level of the application, using
a different data structure or modifying its implementation can lead to a shorter
path length. Many applications that suffer application performance issues
often use inappropriate data structures. There is no substitute for choosing the

ptg6882136

212 Chapter 6 � Java Application Profiling Tips and Tricks

proper data structure and algorithm. As profiles are analyzed, take notice of
the data structures and the algorithms used. Optimal performance can be real-
ized when the best data structures and algorithms are utilized.

� Reduce lock contention. Contending for access to a shared resource inhibits
an application’s capability to scale to a large number of software threads and across
a large number of CPUs. Changes to an application that allow for less frequent lock
contention and less duration of locking allow an application to scale better.

� Generate more efficient code for a given algorithm. Clocks per CPU
instruction, usually referred to as CPI, for an application is a ratio of the
number of CPU clock ticks used per CPU instruction. CPI is a measure of the
efficiency of generated code that is produced by a compiler. A change in the
application, JVM, or operating system that reduces the CPI for an application
will realize an improvement in its performance since it takes advantage of
better and more optimized generated code.

There is a subtle difference between path length, which is closely tied to the algo-
rithm choice, and cycles per instruction, CPI, which is the notion of generating more
efficient code. In the former, the objective is to produce the shortest sequence of CPU
instructions based on the algorithm choice. The latter’s objective is to reduce the num-
ber of CPU clocks consumed per CPU instruction, that is, produce the most efficient
code from a compiler. To illustrate with an example, suppose a CPU instruction results
in a CPU cache miss, such as a load instruction. It may take several hundred CPU clock
cycles for that load instruction to complete as a result of the CPU cache miss having to
fetch data from memory rather than finding it in a CPU cache. However, if a prefetch
instruction was inserted upstream in the sequence of instructions generated by a com-
piler to prefetch from memory the data being loaded by the load instruction, it is likely
the number of clock cycles required to load the data will be less with the additional
prefetch instruction since the prefetch can be done in parallel with other CPU instruc-
tions ahead of the load instruction. When the load instruction occurs, it can then find
the data to be loaded in a CPU cache. However, the path length, the number of CPU
instructions executed is longer as a result of the additional prefetch instruction. There-
fore, it is possible to increase path length, yet make better use of available CPU cycles.

The following sections present several strategies to consider when analyzing a pro-
file and looking for optimization opportunities. Generally, optimization opportunities
for most applications fall into one of the general categories just described.

System or Kernel CPU Usage

Chapter 2, “Operating System Performance Monitoring,” suggests one of the statis-
tics to monitor is system or kernel CPU utilization. If CPU clock cycles are spent
executing operating system or kernel code, those are CPU clock cycles that cannot

ptg6882136

System or Kernel CPU Usage 213

be used to execute your application. Hence, a strategy to improve the performance of
an application is to reduce the amount of time it spends consuming system or kernel
CPU clock cycles. However, this strategy is not applicable in applications that spend
little time executing system or kernel code. Monitoring the operating system for
system or kernel CPU utilization provides the data as to whether it makes sense to
employ this strategy.

The Oracle Solaris Performance Analyzer collects system or kernel CPU statis-
tics as part of an application profile. This is done by selecting the View > Set Data
Presentation menu in Performance Analyzer, choosing the Metrics tab, and setting
the options to present system CPU utilization statistics, both inclusive or exclusive.
Recall that inclusive metrics include not only the time spent in a given method, but
also the time spent in methods it calls. In contrast, exclusive metrics report only the
amount of time spent in a given method.

Figure 6-1 Set system CPU data presentation

Tip

It can be useful to include both inclusive and exclusive metrics when first analyzing a profile.
Looking at the inclusive metrics provides a sense of the path the application executes. Looking
at the general path an application takes you may identify an opportunity for an alternative
algorithm or approach that may offer better performance.

Figure 6-1 shows the Performance Analyzer’s Set Data Presentation form with
options selected to present both inclusive and exclusive System CPU metrics. Also
notice the options selected report both the raw time value and the percentage of
System CPU time.

ptg6882136

214 Chapter 6 � Java Application Profiling Tips and Tricks

After clicking on the OK button, the Performance Analyzer displays the profile’s
System CPU inclusive and exclusive metrics in descending order. The arrow in the
metric column header indicates how the data is presented and sorted. In Figure 6-2,
the System CPU data is ordered by the exclusive metric (notice the arrow in the exclu-
sive metric header and the icon indicating an exclusive metric).

Figure 6-2 shows a profile from an application that exhibits high system or ker-
nel CPU utilization. You can see this application consumed about 33.5 seconds of
System CPU in the java.io.FileOutputStream.write(int) method and about
11.6 seconds in a method called __write(), or about 65% and 22.5%, respectively.
You can also get a sense of how significant the improvement can be realized by
reducing the System CPU utilization of this application. The ideal situation for an
application is to have 0% System CPU utilization. But for some applications that
goal is difficult to achieve, especially if there is I/O involved, since I/O operations
require a system call. In applications that require I/O, the goal is to reduce the
frequency of making a system call. One approach to reduce the call frequency of an
I/O system call is buffer the data so that larger chunks of data are read or written
during I/O operations.

In the example shown in Figure 6-2, you can see the file write (output) oper-
ations are consuming a large amount of time as illustrated by the java.
io.FileOutputStream.write(int) and __write() entries. To identify whether
the write operations are buffered, you can use the Callers-Callees tab to walk up the
call stack to see what methods are calling the FileOutputStream.write(int)
method and the __write method. You walk up the call stack by selecting one of the
callees from the upper panel and clicking the Set Center button. Figure 6-3 shows
the Callers-Callees of the FileOutputStream.write(int) method.

The callers of FileOutputStream.write(int) are ExtOutputStream.
write(int) and OutImpl.outc(int). 85.18% of the System CPU attributed
to FileOutputStream.write(int) comes from its use in ExtOutputStream.
write(int) and 14.82% of it from OutImpl.outc(int). A look at the implementa-
tion of ExtOutputStream.write(int) shows:

Figure 6-2 Exclusive system CPU

ptg6882136

System or Kernel CPU Usage 215

A look at the implementation of super.write(b) shows it is not a call to FileOut-
putStream.write(int):

Figure 6-3 FileOutputStream.write(int) callers and callees

 public void write(int b) throws IOException {
 super.write(b);
 writer.write((byte)b);
 }

 public void write(int b) throws IOException {
 crc = crc * 33 + b;
 }

But the writer field in ExtOutputStream is declared as a FileOutputStream:

 private FileOutputStream writer;

And it is initialized without any type of buffering:

 writer = new FileOutputStream(currentFileName);

currentFileName is a field declared as a String:

 private String currentFileName;

Hence, an optimization to be applied here is to buffer the data being written to
FileOutputStream in ExtOutputStream using a BufferedOutputStream. This
is done rather quickly and easily by chaining or wrapping the FileOutputStream
in a BufferedOutputStream in an ExtOutputStream. Here is a quick listing of
the changes required:

ptg6882136

216 Chapter 6 � Java Application Profiling Tips and Tricks

Then chain a BufferedOutputStream and FileOutputStream at initialization
time:

 // Change FileOutputStream writer to a BufferedOutputStream
 // private FileOutputStream writer;
 private BufferedOutputStream writer;

 // Initialize BufferedOutputStream
 // writer = new FileOutputStream(currentFileName);
 writer = new BufferedOutputStream(
 new FileOutputStream(currentFileName));

Writing to the BufferedOutputStream, instead of the FileOutputStream, in
ExtOutputStream.write(int b) does not require any update since BufferOut-
putStream has a write() method that buffers bytes written to it. This ExtOutput-
Stream.write(int b) method is shown here:

 public void write(int b) throws IOException {
 super.write(b);
 // No update required here,
 // automatically uses BufferedOutputStream.write()
 writer.write((byte)b);
 }

The other uses of the writer field must be inspected to ensure the use of
BufferedOutputStream operates as expected. In ExtStreamOutput, there are two
additional uses of the writer field, one in a method called reset() and another in
checkResult(). These two methods are as follows:

 public void reset() {
 super.reset();
 try {
 if (diffOutputStream != null) {
 diffOutputStream.flush();
 diffOutputStream.close();
 diffOutputStream = null;
 }
 if (writer != null) {
 writer.close();
 }
 } catch (IOException e) {
 e.printStackTrace();

ptg6882136

System or Kernel CPU Usage 217

The uses of writer as a BufferedOutputStream works as expected. It should be
noted that the API specification for BufferedOutputStream.close() indicates it
calls the BufferedOutputStream.flush() method and then calls the close()
method of its underlying output stream, in this case the FileOutputStream.close()
method. As a result, the FileOutputStream is not required to be explicitly closed,
nor is the flush() method in ExtOutputStream.checkResult(int) required. A
couple of additional enhancements worth consideration are

 1. A BufferedOutputStream can also be allocated with an optional buffered size.
The default buffer size, as of Java 6, is 8192. If the application you are profiling
is writing a large number of bytes, you might consider specifying an explicit size
larger than 8192. If you specify an explicit size, consider a size that is a multiple
of the operating systems page size since operating systems efficiently fetch
memory that are multiples of the operating system page size. On Oracle Solaris,
the pagesize command with no arguments reports the default page size. On
Linux, the default page size can be obtained using the getconf PAGESIZE
command. Windows on x86 and x64 platforms default to a 4K (4096) page size.

 2. Change the ExtOutputStream.writer field from an explicit
BufferedOutputStream type to an OutputStream type, that is,
OutputStream writer = new BufferedOutputStream(), instead of
BufferedOutputStream writer = new BufferedOutputStream().
This allows for additional flexibility in type of OutputStream, for example,
ByteArrayOutputStream, DataOutputStream, FilterOutputStream,
FileOutputStream, or BufferedOutputStream.

Looking back at Figure 6-3, a second method calls FileOutputStream.
write(int) called org.w3c.tidy.OutImpl.outc(int), which is a method from
a third-party library used in the profiled application. To reduce the amount of system
CPU utilization used in a third-party supplied method, the best approach is to file

 }
 }
 public void checkResult(int loopNumber) {
 try {
 writer.flush();
 writer.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 check(validiationProperties.getProperty(propertyName));
 outProperties.put(propertyName, ”” + getCRC());
 reset();
 }

ptg6882136

218 Chapter 6 � Java Application Profiling Tips and Tricks

a bug or enhancement request with the third-party library provider and include the
information from the profile. If the source is accessible via an open source license and
has acceptable license terms, you may consider further investigating and including
additional information in the bug or enhancement request report.

After applying the changes identified in ExtOutputStream, using the
BufferedOutputStream and its default constructor (not including the two addi-
tional enhancements just mentioned), and collecting a profile, the amount of system
CPU utilization drops substantially. Comparing the profiles in Figure 6-4 to those
in Figure 6-2, you can see the amount of inclusive system CPU time spent in
java.io.FileOutputStream has dropped from 45.182 seconds to 6.655 seconds
(exclusive system CPU time is the second column).

Executing this application workload outside the profiler in a performance testing
environment prior to making the modifications reports it took this application
427 seconds to run to completion. In constrast, the modified version of the applica-
tion workload that uses the BufferOutputStream in the same performance test-
ing environment reports it runs to completion in 383 seconds. In other words, this
application realized about a 10% improvement in its run to completion execution.

In addition, looking at the Callers-Callees tab for java.io.FileOutputStream.
write(int), only the call to org.w3c.tidy.OutImpl.outc(int) remains as a
significant consumer of the FileOutputStream.write(int) method. The Callers-
Callees of FileOutputStream.write(int) are shown in Figure 6-5.

Figure 6-5 Callers-Callees after changes

Figure 6-4 Reduced system CPU utilization

ptg6882136

System or Kernel CPU Usage 219

Comparing the Callers-Callees in Figure 6-5, after the changes to ExtStream
Output, with the Callers-Callees in Figure 6-3, prior to the changes, you can see
the amount of attributable time spent in org.w3c.tidy.OutImpl.outc(int)
stays close to the same. This should not be a surprise since the changes made
to ExtStreamOutput now use BufferedOutputStream. But recall that the
BufferedOutputStream invokes a FileOutputStream method when any
of the underlying buffer in the BufferedOutputStream becomes full, the
BufferedOutputStream.flush() method is called, or when the Buffered-
OutputSteam.close() method is called. If you look back at Figure 6-4 you
see a FileOutputStream.writeBytes(byte[], int, int) method. This is the
method that the BufferedOutputStream calls from ExtStreamOut-
put. Figure 6-6 shows the Callers-Callees tab for the FileOutputStream.
writeBytes(byte[], int, int).

Selecting java.io.FileOutputStream.write(byte[], int, int) method from
the upper Callee panel and clicking the Set Center button illustrates that Buff-
eredOutputStream.flushBuffer() is its callee; see Figure 6-7.

Figure 6-6 Callers-Callees of FileOutputStream.writeBytes(byte[],int,int)

Figure 6-7 Callers-Callees of FileOutputStream.writeBytes(byte[], int, int)

ptg6882136

220 Chapter 6 � Java Application Profiling Tips and Tricks

Selecting the BufferedOutputStream.flushBuffer() method in the
upper Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.flushBuffer() is BufferedOutputStream.
write(int). The Callers-Callees of BufferedOutputStream.flushBuffer()
are shown in Figure 6-8.

Selecting the BufferedOutputStream.write(int) method in the upper
Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.write(int) is ExtOutputStream.write(int),
the method that has been modified. The Callers-Callees of BufferedOutput-
Stream.write(int) are shown in Figure 6-9.

As mentioned earlier, the next step in reducing System CPU utilization for this
application requires a modification to a third-party library, a library that holds the
implementation of org.w3c.tidy.OutImpl.outc(int). It may be possible for
the maintainers of the third-party library to implement a similar modification to
OutImpl.outc(int) as just described and implemented for ExtOutputStream.
write(int). However, the performance improvement realized will likely not be as
significant since the profile suggests there is more System CPU utilization attributed

Figure 6-8 Callers-Callees of BufferedOutputStream.flushBuffer()

Figure 6-9 Callers-Callees of BufferedOutputStream.write(int)

ptg6882136

System or Kernel CPU Usage 221

to the call path of ExtOutputStream.write(int) than to OutImpl.outc(int);
refer to Figure 6-3 for attributable System CPU utilization on callers of FileInput-
Stream.write(int). In addition, looking at the amount of System CPU utilization
consumed in OutImpl.outc(int), about 6.6 seconds, compared to the total appli-
cation runtime of 383 seconds is rather small, about 1.5%. Hence, a modification to
reduce the amount of System CPU utilization spent in OutImpl.outc(int) would
likely not yield more than 1% to 2% improvement.

Tip

Applications that perform network I/O can employ a similar, general approach to reduce
system CPU utilization as that just described in this section. That is, buffer both the data in
the input and output stream used to write and read the data.

An additional strategy to reduce system CPU utilization for applications performing
large amounts of network I/O is utilizing Java NIO nonblocking data structures. Java
NIO was introduced in Java 1.4.2 with many runtime performance improvements
added in Java 5 and Java 6. Java NIO nonblocking data structures allow for the abil-
ity to read or write as much data as possible in a single call to a network I/O (read
or write) operation. Remember that every network I/O call eventually results in the
invocation of an operating system’s system call, which consumes system CPU utili-
zation. The challenge with using Java NIO nonblocking data structures is it is more
difficult to program than using blocking Java NIO or the older, more traditional Java
SE blocking data structures such as java.net.Socket. In a Java NIO nonblocking
output operation, you can write as many bytes as the operating system allows to be
written. But you have to check the return value of the output operation to determine
whether all the bytes you asked to be written have indeed been written. In a Java
NIO nonblocking input operation, where you read as many bytes as are available,
you have to check how many bytes have been read. You also have to implement
some complex programming logic to deal with partially read protocol data units, or
multiple protocol data units. That is, you may not be able to read enough bytes in a
single read operation to construct a meaningful protocol data unit or message. In the
case of blocking I/O, you simply wait until you generally read the specified number
of bytes that constitute a full protocol data unit or message. Whether to migrate an
application to utilize nonblocking network I/O operations should be decided upon by
the application’s performance needs. If you want to take advantage of the additional
performance promised by using nonblocking Java NIO, you should consider using
a general Java NIO framework to make the migration easier. Several popular Java
NIO frameworks are available such as Project Grizzly (https://grizzly.dev.java.net)
and Apache MINA (http://mina.apache.org).

https://grizzly.dev.java.net
http://mina.apache.org

ptg6882136

222 Chapter 6 � Java Application Profiling Tips and Tricks

Another area where high System CPU utilization may show up is in applica-
tions experiencing heavy lock contention. Identifying lock contention in a profile and
approaches to reduce lock contention are discussed in the next section.

Lock Contention

In early JVM releases, it was common to delegate Java monitor operations directly
to operating system monitors, or mutex primitives. As a result, a Java application
experiencing lock contention would exhibit high values of system CPU utilization
since operating system mutex primitives involve system calls. In modern JVMs
Java monitors are mostly implemented within the JVM in user code rather than
immediately delegating them to operating system locking primitives. This means
Java applications can exhibit lock contention yet not consume system CPU. Rather,
these applications first consume user CPU utilization when attempting to acquire
a lock. Only applications that experience severe lock contention may show high
system CPU utilization since modern JVMs tend to delegate to operating sys-
tem locking primitives as a last resort. A Java application running in a modern
JVM that experiences lock contention tends to show symptoms of not scaling to a
large number of application threads, CPU cores, or a large number of concurrent
users. The challenge is finding the source of the lock contention, that is, where are
those Java monitors in the source code and what can be done to reduce the lock
contention.

Finding and isolating the location of highly contented Java monitors is one of
the strengths of the Oracle Solaris Performance Analyzer. Once a profile has been
collected with the Performance Analyzer, finding the highly contented locks is easy.

The Performance Analyzer collects Java monitor and lock statistics as part of an
application profile. Hence, you can ask the Performance Analyzer to present the Java
methods in your application using Java monitors or locks.

Tip

You can also view locks used within the JVM with the Performance Analyzer, but that requires
setting the presentation view mode to Machine Mode.

By selecting the View > Set Data Presentation menu in Performance Analyzer and
choosing the Metrics tab, you can ask the Performance Analyzer to present lock sta-
tistics, both inclusive or exclusive. Remember that inclusive lock metrics include not
only the lock time spent in a given method but also the lock time spent in methods

ptg6882136

Lock Contention 223

it calls. In contrast, exclusive metrics report only the amount of lock time spent in
a given method.

Figure 6-10 shows the Performance Analyzer’s Set Data Presentation form
with options selected to present both inclusive and exclusive lock information.
Also notice the options selected report both the time value and the percentage
spent locking.

After clicking OK, the Performance Analyzer displays the profile’s lock inclusive
and exclusive metrics in descending order. The arrow in the metric column header
indicates how the data is presented. In Figure 6-11, the lock data is ordered by the
exclusive metric (notice the arrow in the exclusive metric header and note the icon
indicating an exclusive metric).

Figure 6-10 Set user lock data presentation

Figure 6-11 Java monitors/locks ordered by exclusive metric

ptg6882136

224 Chapter 6 � Java Application Profiling Tips and Tricks

The screenshot taken in Figure 6-11 is from a simple example program (com-
plete source code for the remaining examples used in this chapter can be found in
Appendix B, “Profiling Tips and Tricks Example Source Code”) that uses a java.
util.HashMap as a data structure to hold 2 million fictitious tax payer records
and performs updates to those records stored in the HashMap. Since this example is
multithreaded and the operations performed against the HashMap include adding
a new record, removing a new record, updating an existing record, and retrieving a
record, the HashMap requires synchronized access, that is, the HashMap is allocated
as a synchronized Map using the Collections.synchronizedMap() API. The fol-
lowing list provides more details as to what this example program does:

� Creates 2 million fictitious tax payer records and places them in an in-memory
data store, a java.util.HashMap using a tax payer id as the HashMap key
and the tax payer’s record as the value.

� Queries the underlying system for the number of available processors using
the Java API Runtime.availableProcessors() to determine the number
of simultaneous Java threads to execute concurrently.

� Uses the number returned from Runtime.availableProcessors() and
creates that many java.util.concurrent.Callable objects to execute
concurrently in an allocated java.util.concurrent.ExecutorService
pool of Executors.

� All Executors are launched and tax payer records are retrieved, updated,
removed, and added concurrently by the Executor threads in the HashMap.
Since there is concurrent access to the HashMap through the actions of add-
ing, removing, and updating records, HashMap access must be synchronized.
The HashMap is synchronized using the Collections.synchronizedMap()
wrapper API at HashMap creation time.

From the preceding description, it should be of little surprise this example program
experiences lock contention when a large number of threads are trying to concurrently

Tip

Before blindly looking only at lock metrics in Performance Analyzer, an application should
be exhibiting scalability symptoms. The classic scaling symptoms occur when executing an
application on a system with a large number of CPUs, CPU cores, or hardware threads does
not show an expected scaling in performance throughput relative to a system with a smaller
number of CPUs, CPU cores, or hardware threads, or leaves CPU utilization unused. In other
words, if an application is not showing scaling issues, then there is no need to investigate an
application’s locking activity.

ptg6882136

Lock Contention 225

access the same synchronized HashMap. For example, when this program is run on
a Sun SPARC Enterprise T5120 Server configured with an UltraSPARC T2 proces-
sor, which has 64 virtual processors (the same value as that returned by the Java
API Runtime.availableProcessors()), the performance throughput reported by
the program is about 615,000 operations per second. But only 8% CPU utilization
is reported due to heavy lock contention. Oracle Solaris mpstat also reports a large
number of voluntary thread context switches. In Chapter 2, the “Memory Utilization”
section talks about high values of voluntary thread context switches being a potential
indicator of high lock contention. In that section, it is said that the act of parking a
thread and awaking a thread after being notified both result in an operating system
voluntary context switch. Hence, an application experiencing heavy lock contention
also exhibits a high number of voluntary context switches. In short, this application is
exhibiting symptoms of lock contention.

Capturing a profile of this example program with the Performance Analyzer and
viewing its lock statistics, as Figure 6-11 shows, confirms this program is experiencing
heavy lock contention. The application is spending about 59% of the total lock time, about
14,000 seconds, performing a synchronized HashMap.get() operation. You can also see
about 38% of the total lock time is spent in an entry labeled <JVM-System>. You can
read more about this in the “Understanding JVM-System Locking” sidebar. You can also
see the calls to the put() and remove() records in the synchronized HashMap as well.

Figure 6-12 shows the Callers-Callees of the SynchronizedMap.get() entry.
It is indeed called by the TaxPayerBailoutDBImpl.get() method, and the
SynchronizedMap.get() method calls a HashMap.get() method.

Understanding JVM-System Locking

A JVM-System entry in Performance Analyzer indicates time spent within the JVM internals.
In the context of looking at lock contention statistics in Performance Analyzer, this is the
amount or percentage of time spent in locks within the internals of the JVM. This may sound
alarming when looking at the amount of time spent in the JVM-System in Figure 6-11.

Figure 6-12 Callers-Callees of synchronized HashMap.get()

ptg6882136

226 Chapter 6 � Java Application Profiling Tips and Tricks

Hence, this requires a little further explanation and clarification. Recall from Chapter 5 that
switching from a Data Presentation Format of User mode to either Expert mode or Machine
mode shows the internal operations of the JVM and puts them in the JVM-System entry
seen in User mode. Also remember that switching to Expert mode or Machine mode also
shows highly contended Java monitors as a form of a _lwp_mutex, __lwp_cond_wait,
or __lwp_park type of entry and isolates the locking within Java APIs with those found
within the JVM. Figure 6-13 shows the same profile but is switched from User mode to Expert
mode in the Performance Analyzer.

Comparing Figure 6-11 to Figure 6-13 suggests the JVM-System entry has resolved
into __lwp_condition_wait and __lwp_park operations. The sum of the __lwp_
condition_wait and __lwp_park are close to what is reported for JVM-System in
Figure 6-11. Your initial reaction may be the JVM is also experiencing lock contention.
However, selecting the __lwp_cond_wait entry and selecting the Callers-Callees tab
and walking up the call stack, the source of the locking activity associated with __lwp_
cond_wait, in other words the locking activity associated with the JVM-System entry, is
shown in Figure 6-14.

All five of the methods shown in Figure 6-14 are internal JVM methods. Notice that over
95% of the attributable lock time is spent in GCTaskManager::get_task(unsigned).

Figure 6-13 Switching from User mode to Expert mode

Figure 6-14 Traversing up the call stack of callers of __lwp_cond_wait

ptg6882136

Lock Contention 227

This method is part of the garbage collection subsystem of the Java HotSpot VM. This
garbage collection method blocks and waits on a queue for work to do on behalf of the
garbage collector subsystem. Each of the method names listed in Figure 6-14 represent
areas of the Java HotSpot VM that may block and wait for some work to be placed on
their respective work queue. For example, the VMThread::loop() method blocks on a
queue for work to do on behalf of the Java HotSpot VM. You can think of the VMThread as
the “kernel thread” of the Java HotSpot VM. The CompilerBroker::compile_thread_
loop() method blocks and waits for work to do on behalf of the JIT compilation subsystem
and so on. As a result, the entries reported as the JVM-System entry in User Mode can be
ignored as being hot locks in this profile.

Continuing with the example program, the reaction from many Java developers
when he or she observes the use of a synchronized HashMap or the use of a java.
util.Hashtable, the predecessor to the synchronized HashMap, is to migrate to
using a java.util.concurrent.ConcurrentHashMap.1 Following this practice
and executing this program using a ConcurrentHashMap instead of a synchronized
HashMap showed an increase of CPU utilization of 92%. In other words, the previ-
ous implementation that used a synchronized HashMap had a total CPU utilization
of 8% while the ConcurrentHashMap implementation had 100% CPU utilization.
In addition, the number of voluntary context switches dropped substantially from
several thousand to less than 100. The reported number of operations per second
performed with the ConcurrentHashMap implementation increased by a little over
2x to 1,315,000, up from 615,000 with the synchronized HashMap. However, seeing
only a 2x performance improvement while utilizing 100% CPU utilization compared
to just 8% CPU utilization is not quite what was expected.

1. java.util.concurrent.ConcurrentHashMap was introduced in the Java 5 SE class
libraries and is available in Java 5 and later Java JDKs/JREs.

Tip

When performance testing, observing an unexpected result or observing a result that
looks suspicious is a strong indication to investigate performance results and revisit testing
methodology.

Capturing a profile and viewing the results with the Performance Analyzer is in
order to investigate what happened. Figure 6-15 shows the hot methods as java.
util.Random.next(int) and java.util.concurrent.atomic.AtomicLong.
compareAndSet(long, long).

Using the Callers-Callees tab to observe the callers of the java.util.concurrent.
atomic.AtomicLong.compareAndSet(long, log) method shows java.util.
Random.next(int) as the most frequent callee. Hence, the two hottest methods in
the profile are in the same call stack; see Figure 6-16.

ptg6882136

228 Chapter 6 � Java Application Profiling Tips and Tricks

Figure 6-17 shows the result of traversing further up the call stack of the call-
ers of Random.next(int). Traversing upwards shows Random.next(int)
is called by Random.nextInt(int), which is called by a TaxCallable.
updateTaxPayer(long, TaxPayerRecord) method and six methods from

Figure 6-16 Callers of AtomicLong.compareAndSet

Figure 6-17 Callers and callees of Random.nextInt(int)

Figure 6-15 Hot methods in the ConcurrentHashMap implementation of the program

ptg6882136

Lock Contention 229

the BailoutMain class with the bulk of the attributable time spent in the
TaxCallable.updateTaxPayer(long, TaxPayerRecord) method.

The implementation of TaxCallable.updateTaxPayer(long, TaxPayerRecord)
is shown here:

 final private static Random generator = BailoutMain.random;
 // these class fields initialized in TaxCallable constructor
 final private TaxPayerBailoutDB db;
 private String taxPayerId;
 private long nullCounter;
 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer’s DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

The purpose of TaxCallable.updateTaxPayer(long, TaxPayerRecord)
is to update a tax payer’s record in a tax payer’s database with a tax paid. The
amount of tax paid is randomly generated between 15 and 25. This randomly
generated tax is implemented with the line of code, long tax = generator.
nextInt(10) + 15. generator is a class instance static Random that
is assigned the value of BailoutMain.random which is declared in the
BailoutMain class as final public static Random random = new Random(Thread.
currentThread().getId()). In other words, the BailoutMain.random class
instance field is shared across all instances and uses of BailoutMain and TaxCallable.
The BailoutMain.random serves several purposes in this application. It generates
random fictitious tax payer ids, names, addresses, social security numbers, city names
and states which are populated in a tax payer database, a TaxPayerBailoutDB
which uses a ConcurrentHashMap in this implementation variant as its storage
container. BailoutMain.random is also used, as described earlier, to generate a
random tax for a given tax payer.

ptg6882136

230 Chapter 6 � Java Application Profiling Tips and Tricks

Since there are multiple instances of TaxCallable executing simultaneously
in this application, the static TaxCallable.generator field is shared across all
TaxCallable instances. Each of the TaxCallable instances execute in different
threads, each sharing the same TaxCallable.generator field and updating the
same tax payer database.

This means all threads executing TaxCallable.updateTaxPayer(long,
TaxPayerRecord)trying to update the tax payer database must access the same
Random object instance concurrently. Since the Java HotSpot JDK distributes the
Java SE class library source code in a file called src.zip, it is possible to view
the implementation of java.util.Random. A src.zip file is found in the JDK
root installation directory. Within the src.zip file, you can find the java.util.
Random.java source code. The implementation of the Random.next(int) method
follows (remember from the Figure 6-17 that Random.next(int) is the method
that calls the hot method java.util.concurrent.atomic.AtomicLong.
compareAndSet(int,int)).

 private final AtomicLong seed;
 private final static long multiplier = 0x5DEECE66DL;
 private final static long addend = 0xBL;
 private final static long mask = (1L << 48) – 1;
 protected int next(int bits) {
 long oldseed, nextseed;
 AtomicLong seed = this.seed;
 do {
 oldseed = seed.get();
 nextseed = (oldseed * multiplier + addend) & mask;
 } while (!seed.compareAndSet(oldseed, nextseed));
 return (int)(nextseed >>> (48 - bits));
 }

In Random.next(int), there is a do/while loop that performs an AtomicLong.
compareAndSet(int,int) on the old seed and the new seed (this statement is
highlighted in the preceding code example in bold). AtomicLong is an atomic concur-
rent data structure. Atomic and concurrent data structures were two of the features
added to Java 5. Atomic and concurrent data structures typically rely on some form of
a “compare and set” or “compare and swap” type of operation, also commonly referred
to as a CAS, pronounced “kazz”.

CAS operations are typically supported through one or more specialized CPU
instructions. A CAS operation uses three operands: a memory location, an old value,
and a new value. Here is a brief description of how a typical CAS operation works. A
CPU atomically updates a memory location (an atomic variable) if the value at that
location matches an expected old value. If that property fails to hold, no changes
are made. To be more explicit, if the value at that memory location prior to the

ptg6882136

Lock Contention 231

CAS operation matches a supplied expected old value, then the memory location is
updated with the new value. Some CAS operations return a boolean value indicat-
ing whether the memory location was updated with the new value, which means the
old value matched the contents of what was found in the memory location. If the old
value does not match the contents of the memory location, the memory location is
not updated and false is returned.

It is this latter boolean form the AtomicLong.compareAndSet(int, int)
method uses. Looking at the preceding implementation of the Random.next(int)
method, the condition in the do/while loop does not exit until the AtomicLong CAS
operation atomically and successfully sets the AtomicLong value to the nextseed
value. This only occurs if the current value at the AtomicLong’s memory location has
a value of the oldseed. If a large number of threads happen to be executing on the
same Random object instance and calling Random.next(int), there is a high prob-
ability the AtomicLong.compareAndSet(int, int) CAS operation will return
false since many threads will observe a different oldseed value at the AtomicLong’s
value memory location. As a result, many CPU cycles may be spent spinning in the
do/while loop found in Random.next(int). This is what the Performance Analyzer
profile suggests is the case.

A solution to this problem is to have each thread have its own Random object
instance so that each thread is no longer trying to update the same AtomicLong’s
memory location at the same time. For this program, its functionality does not
change with each thread having its own thread local Random object instance. This
change can be accomplished rather easily by using a java.lang.ThreadLocal.
For example, in BailoutMain, instead of using a static Random object, a static
ThreadLocal<Random> could be used as follows:

 // Old implementation using a static Random
 //final public static Random random =
 // new Random(Thread.currentThread.getid());

 // Replaced with a new ThreadLocal<Random>
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };

Then any reference to or use of BailoutMain.random should be replaced
with threadLocalRandom.get(). A threadLocalRandom.get() retrieves
a unique Random object instance for each thread executing code that used to use
BailoutMain.random. Making this change allows the AtomicLong’s CAS operation

ptg6882136

232 Chapter 6 � Java Application Profiling Tips and Tricks

in Random.next(int) to succeed quickly since no other thread is sharing the same
Random object instance. In short, the do/while in Random.next(int) completes on
its first loop iteration execution.

After replacing the java.util.Random in BailoutMain with a
ThreadLocal<Random> and re-running the program, there is a remark-
able improvement performance. When using the static Random, the program
reported about 1,315,000 operations per second being executed. With the static
ThreadLocal<Random> the program reports a little over 32,000,000 operations per
second being executed. 32,000,000 operations per second is almost 25x more opera-
tions per second higher than the version using the static Random object instance. And
it is more than 50x faster than the synchronized HashMap implementation, which
reported 615,000 operations per second.

A question that may be worthy of asking is whether the program that used the
synchronized HashMap, the initial implementation, could realize a performance
improvement by applying the ThreadLocal<Random> change. After applying this
change, the version of the program that used a synchronized HashMap showed little
performance improvement, nor did its CPU utilization improve. Its performance
improved slightly from 615,000 operations per second to about 620,000 operations
per second. This should not be too much of a surprise. Looking back at the profile, the
method having the hot lock in the initial version, the one that used a synchronized
HashMap, and shown in Figure 6-11 and Figure 6-12, reveals the hot lock is on the
synchronized HashMap.get() method. In other words, the synchronized HashMap.
get() lock is masking the Random.next(int) CAS issue uncovered in the first
implementation that used ConcurrentHashMap.

One of the lessons to be learned here is that atomic and concurrent data struc-
tures may not be the holy grail. Atomic and concurrent data structures rely on a CAS
operation, which in general employs a form of synchronization. Situations of high
contention around an atomic variable can lead to poor performance or scalability
even though a concurrent or lock-free data structure is being used.

Many atomic and concurrent data structures are available in Java SE. They are
good choices to use when the need for them exists. But when such a data structure
is not available, an alternative is to identify a way to design the application such
that the frequency at which multiple threads access the same data and the scope of
the data that is accessed is minimized. In other words, try to design the application
to minimize the span, size, or amount of data to be synchronized. To illustrate with
an example, suppose there was no known implementation of a ConcurrentHash-
Map available in Java, that is, only the synchronized HashMap data structure was
available. The alternative approach just described suggests the idea to divide the
tax payer database into multiple HashMaps to lessen the amount or scope of data
that needs to be locked. One approach might be to consider a HashMap for tax pay-
ers in each state. In such an approach, there would be two levels of Maps. The first

ptg6882136

Lock Contention 233

level Map would find one of the 50 state Maps. Since the first level Map will always
contain a mapping of the 50 states, no elements need to be added to it or removed
from it. Hence, the first level Map requires no synchronization. However, the second
level state maps require synchronized access per state Map since tax payer records
can be added, removed, and updated. In other words, the tax payer database would
look something like the following:

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String, Map<String,TaxPayerRecord>> db;
 public TaxPayerBailoutDbImpl(int dbSize, int states) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>(states);
 for (int i = 0; i < states; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(dbSize/states));
 db.put(BailoutMain.states[i], map);
 }
 }
...

 for (int i = 0; i < states; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(dbSize/states));
 db.put(BailoutMain.states[i], map);
 }

In the preceding source code listing you can see the first level Map is allo-
cated as a HashMap in the line db = new HashMap<String, Map<String,
TaxPayerRecord>>(dbSize) and the second level Map, one for each of the 50 states
is allocated as a synchronized HashMap in the for loop:

Modifying this example program with the partitioning approach described here
shows about 12,000,000 operations per second being performed and a CPU utiliza-
tion of about 50%. The number of operations per second is not nearly as good as the
32,000,000 observed with a ConcurrentHashMap. But it is a rather large improve-
ment over the single large synchronized HashMap, which yielded about 620,000
operations per second. Given there is unused CPU utilization, it is likely further
partitioning could improve the operations per second in this partitioning approach.
In general, with the partitioning approach, you trade-off additional CPU cycles for
additional path length, that is, more CPU instructions, to reduce the scope of the data
that is being locked where CPU cycles are lost blocking and waiting to acquire a lock.

ptg6882136

234 Chapter 6 � Java Application Profiling Tips and Tricks

Volatile Usage

JSR-133, which was introduced in Java 5, addressed many issues in the Java Memory
Model. This is well documented at http://jcp.org/jsr/detail?id=133 by the JSR-133 Expert
Group with further material at http://www.cs.umd.edu/~pugh/java/memoryModel/ main-
tained by Dr. Bill Pugh. One of the issues addressed with JSR-133 is the use of the Java
keyword volatile. Fields in Java objects that are declared as volatile are usually used
to communicate state information among threads. The inclusion of JSR-133 into Java 5
and later Java revisions, ensures that a thread that reads a volatile field in an object is
guaranteed to have the value that was last written to that volatile field, regardless of the
thread that is doing read or write, or the location of where those two threads are execut-
ing, that is, different CPU sockets, or CPU cores. The use of a volatile field does limit
optimizations a modern JVM’s JIT compiler can perform on such a field. For example, a
volatile field must adhere to certain instruction ordering. In short, a volatile field’s value
must be kept in sync across all application threads and CPU caches. For instance, when
a volatile field’s value is changed by one thread, whose field might be sitting in a CPU
cache, any other thread that might have a copy of that volatile field in its CPU cache, a
different CPU cache than the other thread that performed the change, must have its CPU
cache updated before its thread reads that volatile field found in its local CPU cache, or it
must be instructed to retrieve the updated volatile field’s value from memory. To ensure
CPU caches are updated, that is, kept in sync, in the presence of volatile fields, a CPU
instruction, a memory barrier, often called a membar or fence, is emitted to update CPU
caches with a change in a volatile field’s value.

In a highly performance sensitive application having multiple CPU caches, fre-
quent updates to volatile fields can be a performance issue. However, in practice, few
Java applications rely on frequent updates to volatile fields. But there are always
exceptions to the rule. If you keep in mind that frequent updates, changes, or writes
to a volatile field have the potential to be a performance issue (i.e., reads of a volatile
field are okay, not a cause for performance concern), you will likely not experience
performance issues when using volatile fields.

A profiler, such as the Performance Analyzer, that has the capability to gather
CPU cache misses and associate them to Java object field access can help isolate
whether the use of a volatile field is a performance issue. If you observe a high num-
ber of CPU cache misses on a volatile field and the source code suggests frequent
writes to that volatile field, you have an application that is experiencing performance
issues as a result of its usage of volatile. The solution to such a situation is to identify
ways in which less frequent writes are performed to the volatile field, or refactor the
application in a way to avoid the use of the volatile field. Never remove the use of a
volatile field if it breaks program correctness or introduces a potential race condi-
tion. It is much better to have an underperforming application than it is to have an
incorrect implementation, or one that has the potential for a race condition.

http://www.cs.umd.edu/~pugh/java/memoryModel/
http://jcp.org/jsr/detail?id=133

ptg6882136

Data Structure Resizing 235

Data Structure Resizing

Java applications tend to make high use of Java SE’s StringBuilder or String-
Buffer for assembling Strings and also make high use of Java objects that act as
containers of data such as the Java SE Collections classes. Both StringBuilder and
StringBuffer use an underlying char[] for their data storage. As elements are added
to a StringBuilder or StringBuffer, the underlying char[] data storage, may be
subject to resizing. As a result of resizing, a new larger char[] array is allocated, the
char elements in the old char[] are copied into the new larger char[] array, and the
old char[] discarded, that is, available for garbage collection. Similar resizing can also
occur in Java SE Collections classes that use an array for their underlying data store.

This section explores ways to identify data structure resizing, in particular
StringBuilder, StringBuffer, and Java SE Collections classes resizing.

StringBuilder/StringBuffer Resizing

When a StringBuilder or StringBuffer becomes large enough to exceed the
underlying data storage capacity, a new char array of a larger size, 2x larger in the
OpenJDK StringBuilder and StringBuffer implementation (used by Java Hot-
Spot Java 6 JDK/JRE), is allocated, the old char array elements are copied into the
new char array, and the old char array is discarded. A version of the implementation
used by StringBuilder and StringBuffer follows:

 char[] value;
 int count;

 public AbstractStringBuilder append(String str) {
 if (str == null) str = ”null”;
 int len = str.length();
 if (len == 0) return this;
 int newCount = count + len;
 if (newCount > value.length)
 expandCapacity(newCount);
 str.getChars(0, len, value, count);
 count = newCount;
 return this;
 }

 void expandCapacity(int minimumCapacity) {
 int newCapacity = (value.length + 1) * 2;
 if (newCapacity < 0) {
 newCapacity = Integer.MAX_VALUE;
 } else if (minimumCapacity > newCapacity) {
 newCapacity = minimumCapacity;
 }
 value = Arrays.copyOf(value, newCapacity);
 }

ptg6882136

236 Chapter 6 � Java Application Profiling Tips and Tricks

Continuing with the fictitious tax payer program example from the previous section
(full listing of the source code used in this section can be found in Appendix B in the
section “First Resizing Variant”), StringBuilder objects are used to assemble random
Strings representing tax payer names, addresses, cities, states, social security num-
bers, and a tax payer id. It also uses the no argument StringBuilder constructor.
Hence, the program is likely to be subject to StringBuilder’s underlying char[] being
resized. A capture of a memory or heap profile with a profiler such as NetBeans Profiler
confirms that is the case. Figure 6-18 shows a heap profile from NetBeans Profiler.

In Figure 6-18, you can see that char[], StringBuilder, and String are the
most highly allocated objects and also have the largest amount of live objects. In the
NetBeans Profiler, selecting and right-clicking on the char[] class name in the far left
column as shown in Figure 6-19 shows the allocation stack traces for all char[] objects.

In the char[] stack allocation traces, shown in Figure 6-20, you can see an entry
for java.lang.AbstractStringBuilder.expandCapacity(int), which is

Figure 6-18 Heap profile

Figure 6-19 Showing allocation stack traces

Figure 6-20 char[] allocations from expanding StringBuilders

ptg6882136

Data Structure Resizing 237

called from AbstractStringBuilder.append(char) and AbstractString-
Builder.append(String) methods. The expandCapacity(int) method calls
java.util.Arrays.copyOf(char[], int). Looking back at the previous source
code listing, you can see where AbstractStringBuilder.append(String str)
calls expandCapacity(int) and calls Arrays.copyOf(char[] int).

You can also see from Figure 6-20, over 11% of the current live char[] objects
are from resized StringBuilder char[]. In addition, there are a total of 2,926,048
char[] objects that have been allocated, and of those, 390,988 char[] allocations
occurred as a result of StringBuilder char[] resizing. In other words, about 13%
(390,988/2,926,048) of all char[] allocations are coming from resized StringBuilder
char[]s. Eliminating these char[] allocations from resizing improves the perfor-
mance of this program by saving the CPU instructions needed to perform the new
char[] allocation, copying the characters from the old char[] into the new char[],
and the CPU instructions required to garbage collect the old discarded char[].

In the Java HotSpot JDK/JRE distributions, both the StringBuilder and
StringBuffer offer no argument constructors that use a default size of 16 for their
underlying char array data storage. These no argument constructors are being used
in this program. This can be seen in the profile by expanding the java.lang.Ab-
stractStringBuilder.<init>(int) entry seen in Figure 6-20. The expansion of
the java.lang.AbstractStringBuilder.<init>(int) entry, shown in Figure
6-21, shows it is called by a no argument StringBuilder constructor.

In practice, few StringBuilder or StringBuffer object instances result
in having consumed 16 or fewer char array elements; 16 is the default size
used with the no argument StringBuilder or StringBuffer constructor.
To avoid StringBuilder and StringBuffer resizing, use the explicit size
StringBuilder or StringBuffer constructor.

A modification to the example program follows, which now uses explicit sizes for
constructing StringBuilder objects. A full listing of the modified version can be
found in Appendix B in the section “Second Resizing Variant.”

Recent optimizations in Java 6 update releases of the Java HotSpot VM analyze
the usage of StringBuilder and StringBuffer and attempt to determine the

Figure 6-21 Uses of StringBuilder default constructor

ptg6882136

238 Chapter 6 � Java Application Profiling Tips and Tricks

optimal char array size to use for a given StringBuilder or StringBuffer object
allocation as means to reduce unnecessary char[] object allocations resulting from
StringBuilder or StringBuffer expansion.

Measuring the performance impact after addressing StringBuilder and
StringBuffer resizing will be done in combination with addressing any Java Col-
lection classes resizing, the topic of the next section.

Java Collections Resizing

The addition of the Java Collections to Java SE offered an enormous boost to devel-
oper productivity by providing containers with interfaces allowing the ability to eas-
ily switch between alternative concrete implementations. For example, the List
interface offers an ArrayList and LinkedList concrete implementation.

Java Collections Definition

As of Java 6, there were 14 interfaces in the Java SE Collections:

Collection, Set, List, SortedSet, NavigableSet, Queue, Deque, BlockingQueue, BlockingDeque, Map,
SortedMap, NavigableMap, ConcurrentMap, and ConcurrentNavigableMap

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder(20);
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder(24);
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

ptg6882136

Data Structure Resizing 239

The following is a listing of the most common concrete implementations of the Java SE
Collections:

HashMap, HashSet, TreeSet, LinkedHashSet, ArrayList, ArrayDeque, LinkedList, PriorityQueue,
TreeMap, LinkedHashMap, Vector, Hashtable, ConcurrentLinkedQueue, LinkedBlockingQueue,
ArrayBlockingQueue, PriorityBlockingQueue, DelayQueue, SynchronousQueue, LinkedBlocking-
Deque, ConcurrentHashMap, ConcurrentSkipListSet, ConcurrentSkipListMap, WeakHashMap,
IdentityHashMap, CopyOnWriteArrayList, CopyOnWriteArraySet, EnumSet, and EnumMap

Some of the Collections’ concrete implementations are subject to potential
expensive resizing as the number of elements added to the Collection grows such
as ArrayList, Vector, HashMap, and ConcurrentHashMap since their under-
lying data store is an array. Other Collections such as LinkedList or TreeMap
often use one or more object references between the elements stored to chain
together the elements managed by the Collection. The former of these, those that
use an array for the Collection’s underlying data store, can be subject to perfor-
mance issues when the underlying data store is resized due to the Collection
growing in the number of elements it holds. Although these Collections classes
have constructors that take an optional size argument, these constructors are
often not used, or the size provided in an application program is not optimal for
the Collection’s use.

Tip

It is possible that there exists concrete implementations of Java Collections classes, such
as LinkedList and TreeMap, that use arrays as underlying data storage. Those concrete
implementations may also be subject to resizing. Collecting a heap profile and looking at
collection resizing will show which Java Collections classes are resizing.

As is the case with StringBuilder or StringBuffer, resizing of a Java Col-
lections class that uses an array as its data storage requires additional CPU cycles
to allocate a new array, copy the old elements from the old array, and at some point
in the future garbage collect the old array. In addition, the resizing can also impact
Collection’s field access time, the time it takes to dereference a field, because a new
underlying data store, again typically an array, for the Collection’s underlying data
store may be allocated in a location in the JVM heap away from the object references
stored within the data store and the other fields of the Collection. After a Collection
resize occurs, it is possible an access to its resized field can result in CPU cache
misses due to the way a modern JVM allocates objects in memory, in particular
how those objects are laid out in memory. The way objects and their fields are laid
out in memory can vary between JVM implementations. Generally, however, since

ptg6882136

240 Chapter 6 � Java Application Profiling Tips and Tricks

an object and its fields tend to be referenced frequently together, an object and its
fields laid out in memory within close proximity generally reduce CPU cache misses.
Hence, the impact of Collections resizing (this also applies to StringBuffer and
StringBuilder resizing) may extend beyond the additional CPU instructions spent
to do the resizing and the additional overhead put on the JVM’s memory manager
to having a lingering higher field access time due to a change in the layout of the
Collection’s fields in memory relative the Collection object instance.

The approach to identifying Java Collections resizing is similar to what was described
earlier for identifying StringBuilder and StringBuffer resizing, collecting heap or
memory profile with a profiler such as NetBeans Profiler. Looking at the source code for
the Java Collection classes helps identify the method names that perform the resizing.

Continuing with the fictitious tax payer program, the program variant in which
tax payer records were populated into multiple HashMaps using a tax payer’s state of
residence as a key into a second HashMap where a tax payer’s id is used as an index is a
good example of where Collections resizing can occur. A full source code listing from this
variant can be found in Appendix B in the section “First Resizing Variant.” The source
code, found in TaxPayerBailoutDbImpl.java, that allocates the HashMaps follows:

 private final Map<String, Map<String,TaxPayerRecord>> db;

 public TaxPayerBailoutDbImpl(int numberOfStates) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>();
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>());
 db.put(BailoutMain.states[i], map);
 }
 }

Here you can see the HashMaps are using a HashMap constructor that takes no
arguments. As a result, the HashMap relies on a default size for its underlying map-
ping array. The following is a portion of OpenJDK’s HashMap.java source code that
shows the default size chosen for a HashMap’s underlying data storage.

static final int DEFAULT_INITIAL_CAPACITY = 16;
static final float DEFAULT_LOAD_FACTOR = 0.75f;

 public HashMap() {
 this.loadFactor = DEFAULT_LOAD_FACTOR;
 threshold =
 (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
 table = new Entry[DEFAULT_INITIAL_CAPACITY];
 init();
 }
 void init() {
 }

ptg6882136

Data Structure Resizing 241

Two factors decide when the data storage for a HashMap is resized: the capacity of the
data storage and the load factor. The capacity is the size of the underlying data storage.
That’s the HashMap.Entry[]’s size. And the load factor is a measure of how full the
HashMap is allowed to reach before the HashMap’s data storage, the Entry[], is resized.
A HashMap resize results in a new Entry[] being allocated, twice as large as the previ-
ous Entry[], the entries in the Entry[] are rehashed and put in the Entry[]. The CPU
instructions required to resize a HashMap are greater than what is required by String-
Builder or StringBuffer resizing due to the rehashing of the Entry[] elements.

In Figure 6-18, you can see a row for java.util.HashMap$Entry[]. For this
entry you can see there are 67 allocated objects, and 37 of them are live at the time
of the profile snapshot. This suggests that 37/67, about 55%, are still live. That also
suggests 45% of those Entry[] objects that had been allocated have been garbage
collected. In other words, the HashMaps are experiencing resizing. Notice that the
total bytes consumed by HashMap.Entry[] objects is much less than those con-
sumed by char[] objects. This suggests the impact of eliding the HashMap resizing is
likely to be less than the impact realized from eliding the StringBuilder resizing.

Figure 6-22 shows the allocation stack traces for HashMap.Entry[]. Here you
can see some of those HashMap.Entry[] allocations result from a HashMap.
resize(int) method call. In addition, you can see the no argument HashMap con-
structor is being used, which also allocates a HashMap.Entry[].

Since this example program populates 50 different HashMaps with a total of
2,000,000 fictitious records, each of those 50 HashMaps hold about 2,000,000 / 50 =
40,000 records. Obviously, 40,000 is much greater than the default size of 16 used by
the no argument HashMap constructor. Using the default load factor of .75, and the
fact that each of the 50 HashMap holds 40,000 records, you can determine a size for
the HashMaps so they will not resize (40,000 / .75 = ~ 53,334). Or simply passing
the total number of records to store divided by the number of states, divided by the
default load factor, i.e., (2,000,000 / 50) / .75, to the HashMap constructor that holds
the records. Following is the modified source code for TaxPayerBailoutDbImpl.
java that elides HashMap resizing:

Figure 6-22 HashMap.Entry[] allocation stack traces

ptg6882136

242 Chapter 6 � Java Application Profiling Tips and Tricks

In this example program, both StringBuilder and HashMap resizing occur dur-
ing the initialization phase of the program, the phase of the program that populates
a Map of Maps with fictitious, randomly generated tax payer records. Hence, to mea-
sure the performance impact of eliding the StringBuilder and HashMap resizing,
the initialization phase of this program has been instrumented with a time stamp
at the beginning of the program and after the Map of Maps has been populated. A
modified version of this example program, one that uses the no argument HashMap
constructor, calculates and reports the time it takes to populate the HashMaps with
2,000,000 records, can be found in Appendix B in the section “First Resizing Variant.”

When this variant of the program is run on a Sun SPARC Enterprise T5120 Server
configured with 64 virtual processors (the same value as that returned by the Java
API Runtime.availableProcessors()), the amount of time it takes to complete
the initialization phase is 48.286 seconds.

 private final Map<String, Map<String,TaxPayerRecord>> db;
 private final int dbSize = 2000000;

 public TaxPayerBailoutDbImpl(int dbSize, int numberOfStates) {
 final int outerMapSize = (int) Math.ceil(numberOfStates / .75);
 final int innerMapSize =
 (int) (Math.ceil((dbSize / numberOfStates) / .75));
 db =
 new HashMap<String,Map<String,TaxPayerRecord>>(outerMapSize);
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(innerMapSize));
 db.put(BailoutMain.states[i], map);
 }
 }

Tip

Since the populating of records is single threaded and the Sun SPARC Enterprise T5120 Server
has a 1.2GHz clock rate, a processor with a smaller number of cores with a higher clock rate
will likely report a shorter duration time needed to populate the 2,000,000 records in the
HashMaps.

Updating this program variant with the changes described in this section to
address both StringBuilder and HashMap resizing and running on the same Ultra-
SPARC T5120 system with the same JVM command line options reports it takes
46.019 seconds to complete its initialization phase. That’s about a 5% improvement
in elapsed time. The source code for this variant can be found in Appendix B in the
section “Second Resizing Variant.”

ptg6882136

Increasing Parallelism 243

Applying the data resizing strategy reduces the application’s path length, the total
number of CPU instructions required to execute the program, and potentially more
efficient use of CPU cycles due to fewer possibilities of CPU cache misses as a result of
frequently accessed data structure fields being laid out in memory next to each other.

You may have noticed that the initialization phase in this program is single
threaded. But the system it is being executed on has a CPU that is multicore and
multithreaded per core. The Sun SPARC Enterprise T5120 Server this program
is executing on has 8 cores, and 8 hardware threads per core. It is a chip multi-
threading type of CPU chip, CMT for short. In other words, 8 cores and 8 hardware
threads per core means it has 64 virtual processors. That also means the Java API,
System.availableProcessors(), returns a value of 64. A next step to improve
the performance of the initialization phase of this program is to refactor it to utilize
all of those 64 virtual processors. This is the topic of the next section.

Increasing Parallelism

Modern CPU architectures have brought multiple cores and multiple hardware
execution threads to developer desktops. This means there are more CPU resources
available to do additional work. However, to take advantage of those additional CPU
resources, programs executed on them must be able to do work in parallel. In other
words, those programs need to be constructed or designed in a multithreaded manner
to take advantage of the additional hardware threads.

Java applications that are single threaded cannot take advantage of additional
hardware threads on modern CPU architectures. Those applications must be refac-
tored to be multithreaded to do their work in parallel. In addition, many Java appli-
cations have single-threaded phases, or operations, especially initialization or startup
phases. Therefore, many Java applications can improve initialization or startup per-
formance by doing tasks in parallel, that is, making use of multiple threads at the
same time.

The example program used in the previous sections “Lock Contention” and “Data
Structure Resizing” has a single-threaded initialization phase where random ficti-
tious tax payer records are created and added to a Java Map. This single-threaded
initialization phase could be refactored to being multithreaded. The single-threaded
form, as it was run in the “Lock Contention” and “Data Structure Resizing” sections,
when run on the same Sun SPARC Enterprise T5120 Server, reports it takes about 45
to 48 seconds for the initialization phase to complete. Since there are 64 virtual pro-
cessors on an a Sun SPARC Enterprise T5120 Server, 63 of those 64 virtual processors
are idle doing little or no work during the initialization phase. Therefore, if the initial-
ization phase could be refactored to utilize those additional 63 virtual processors, the
elapsed time it takes to execute the initialization phase should be significantly less.

ptg6882136

244 Chapter 6 � Java Application Profiling Tips and Tricks

The key to being able to refactor single-threaded phases of a program to be multi-
threaded is constrained by the program’s logic. If there is a loop of execution involved,
and much of the work performed within that loop is independent of what happens within
each loop iteration, it may be a good candidate to be refactored into a multithreaded
version. In the case of the fictitious tax payer program, Map records are added to a Con-
currentMap. Since a ConcurrentMap can handle multiple threads adding records to it
and the records can be created independently of each other, the work performed in the
single-threaded loop can be broken up and spread among multiple threads. With a Sun
SPARC Enterprise T5120 Server that has 64 virtual processors, the work that is being
done in the single-threaded loop could be spread across those 64 virtual processors.

Here is the core part of the single-threaded loop logic (full implementation can
be found in Appendix B in the section “Increasing Parallelism Single-Threaded
Implementation”):

 // allocate the database
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 // allocate list to hold tax payer names
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 // populate the database and tax payer list with random records
 populateDatabase(db, taxPayerList, dbSize);

 ...

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 // make random tax payer id and record
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 // add tax payer id & record to database
 db.add(key, tpr);
 // add tax payer id to to tax payer list
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

The core part of refactoring the for/loop to be multithreaded results in creating
a Runnable, or Callable, along with an ExecutorService to execute the Run-
nables or Callables in addition to ensuring the implementation of a TaxPayer-
BailoutDB and taxPayerIdList are thread safe. That is, the data they hold will
not be corrupted as a result of having multiple threads writing data to them simulta-
neously. Following are segments of source code that contain the most relevant parts
to the multithreaded refactoring (full implementation can be found in Appendix B in
the section “Increasing Parallelism Multithreaded Implementation”):

ptg6882136

Increasing Parallelism 245

 // allocate the database
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new List[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 Collections.synchronizedList(
 new ArrayList<String>(taxPayerListSize));
 }

 // create a pool of executors to execute some Callables
 int numberOfThreads = System.availableProcessors();
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);
 Callable<DbInitializerFuture>[] dbCallables =
 new DbInitializer[numberOfThreads];
 for (int i = 0; i < dbCallables.length; i++) {
 dbCallables[i] =
 new DbInitializer(db, taxPayerList, dbSize/numberOfThreads);
 }

 // start all db initializer threads running
 Set<Future<DbInitializerFuture>> dbSet =
 new HashSet<Future<DbInitializerFuture>>();
 for (int i = 0; i < dbCallables.length; i++) {
 Callable<DbInitializerFuture> callable = dbCallables[i];
 Future<DbInitializerFuture> future = pool.submit(callable);
 dbSet.add(future);
 }

 // A Callable that will execute multi-threaded db initialization
 public class DbInitializer implements Callable<DbInitializerFuture> {
 private TaxPayerBailoutDB db;
 private List<String>[] taxPayerList;
 private int recordsToCreate;

 public DbInitializer(TaxPayerBailoutDB db,
 List<String>[] taxPayerList,
 int recordsToCreate) {
 this.db = db;
 this.taxPayerList = taxPayerList;
 this.recordsToCreate = recordsToCreate;
 }

 @Override
 public DbInitializerFuture call() throws Exception {
 return BailoutMain.populateDatabase(db, taxPayerList,
 recordsToCreate);
 }
 }

 static DbInitializerFuture populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);

ptg6882136

246 Chapter 6 � Java Application Profiling Tips and Tricks

After applying the refactoring to make the initialization phase multithreaded
by dividing up the number of records to be added to the Map to run in 64 threads
rather than 1 thread, the time it takes to perform the initialization phase drops from
about 45 seconds to about 3 seconds on the Sun SPARC Enterprise T5120 Server. A
higher clock rate dual or quad core desktop system may not observe as much of an
improvement. For example, the author’s dual core desktop system realized about a 4
second improvement, 16 seconds down to about 12. The larger the number of virtual
processors that additional parallel work can be spread among, the greater the potential
performance improvement.

This simple example illustrates the potential benefit of being able to take advan-
tage of additional virtual processors on a system that may be idle for some phase of
an application by making that phase multithreaded.

High CPU Utilization

Sometimes an application simply cannot meet service level performance or scalabil-
ity agreements even though performance efforts have reduced system CPU utiliza-
tion, have addressed lock contention, and other optimization opportunities have been
addressed. In such cases, doing an analysis of the program logic and the algorithms
used is the direction to take. Method profilers such as the Performance Analyzer or
NetBeans Profilers do a good job at collecting information about where in general an
application spends most of its time.

The Performance Analyzer’s Call Tree tab is good at providing an application’s hottest
use case by showing the call stack trees. This information can be leveraged to answer
questions in a more abstract way, such as how long does it take the application to per-
form a unit of work, or perform a transaction, use case, and so on so long as the person
looking at the profile has sufficient understanding of the implementation to be able to
map a method entry point as the beginning of a unit of work, beginning of a transaction,
use case, and so on. Being able to analyze the profile in this way provides the opportunity
to step back, look at a higher level, and ask questions such as whether the algorithms
and data structures being used are the most optimal or are there any alternative algo-
rithms or data structures that might yield better performance or scalability. Often the
tendency when analyzing profiles is to focus primarily on the methods that consume
the most time in an exclusive metric kind of way, that is, focusing only on the contents
of a method rather than at a higher level unit of work, transaction, use case, and so on.

 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 DbInitializerFuture future = new DbInitializerFuture();
 future.addToRecordsCreated(dbSize);
 return future;
 }

ptg6882136

Other Useful Analyzer Tips 247

Other Useful Analyzer Tips

Another useful strategy to employ when using the Performance Analyzer is to look
at the Timeline view in the Performance Analyzer GUI (see Figure 6-23).

The Timeline view provides a listing of all threads, one in each row of the list-
ing, that executed during the time when the profile was collected. At the top of the
Timeline view is a timeline of seconds that have passed since the initiation of the
collection of the profile. If the recording of the profiling data is enabled at Java
application launch time, then the timeline contains data since the launching of the
Java application. For each horizontal row, a thread within the application, a unique
color is used to distinguish the method the application was executing in at the time
of the sample. Selecting a thread, one of the rows within a colored area shows the
call stack, their method names in the Call Stack for Selected Event panel, executing
at the time the sample was taken. Figure 6-24 is a screenshot of the Call Stack for
Selected Event panel for the selected thread, thread 1.2 in Figure 6-23.

Hence, by looking at the timeline, you can determine which threads are execut-
ing in the program at any particular point in time. This can be useful when look-
ing for opportunities to multithread single-threaded phases or operations in an
application. Figure 6-23, shows the single-threaded program variant presented in
the “Increasing Parallelism” section earlier in the chapter. In Figure 6-23, you can
see from the timeline, from about 16 seconds to a little past 64 seconds, the thread
labeled as Thread 1.2, is the only thread that appears to be executing. The timeline

Figure 6-23 Performance analyzer timeline view

Figure 6-24 Performance analyzer’s call stack for selected event panel

ptg6882136

248 Chapter 6 � Java Application Profiling Tips and Tricks

in Figure 6-23, suggests the program may be executing its initialization or beginning
phase as a single threaded. Figure 6-24 shows a Call Stack for the Selected Event
after clicking in the region of Thread 1.2 between the timeline of 16 seconds and 64
seconds. Figure 6-24 shows the call stack that’s being executed during the selected
thread and selected timeline sample. As you can see in Figure 6-24, a method by
the name BailoutMain.populateDatabase() is being called. This is the method
identified in the “Increasing Parallelism” section earlier in the chapter as one that
could be multithreaded. Hence, this illustrates how you can use the Performance Ana-
lyzer to identify areas or phases of an application that could benefit from parallelism.

Another useful tip when using the Timeline view is make note of the range of sec-
onds for some time period of interest that has caught your attention in the timeline.
Then use the filtering capability to narrow the profile data loaded by the Analyzer
GUI. After applying the filter, the Functions and Callers-Callees views show data
only for the filtered range. In other words, filtering allows you to focus exclusively on
the profile data collected within the period of interest. To illustrate with an example,
in Figure 6-23, Thread 1.2 between 16 and 64 seconds is the only thread executing.
To narrow the focus of the collected profile data to that particular time range, the
Analyzer can be configured to load only the profile data between 16 and 64 seconds
using the View > Filter Data menu and specifying 16-64 samples in the Filter Data
form’s Samples field as shown in Figure 6-25.

Filtering allows for the ability to eliminate data collected outside an area of inter-
est, which leads to more accurate analysis since only the data of interest is being
presented.

Figure 6-25 Filtering the range of samples to view in performance analyzer

ptg6882136

Bibliography 249

There are many additional features of the Performance Analyzer, but this chapter
presents those likely to be the most useful when profiling and analyzing Java appli-
cations. Additional details on using Performance Analyzer for profiling Java applica-
tions, including the Java EE application, can be found at the Performance Analyzer
product Web site: http://www.oracle.com/technetwork/server-storage/solarisstudio/
overview/index.html.

Bibliography

Keegan, Patrick, et al., NetBeans IDE field guide: developing desktop, web, enterprise,
and mobile applications, 2nd Edition. Sun Microsystems, Inc., Santa Clara, CA, 2006.

Oracle Solaris Studio 12.2: Performance Analyzer. Oracle Corporation. http://dlc.sun.
com/pdf/821-1379/821-1379.pdf.

JSR-133: Java Memory Model and Thread Specification. JSR-133 Expert Group.
http://jcp.org/en/jsr/summary?id=133.

The Java Memory Model. Dr. Bill Pugh. http://www.cs.umd.edu/~pugh/java/
memoryModel/.

http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://dlc.sun.com/pdf/821-1379/821-1379.pdf
http://dlc.sun.com/pdf/821-1379/821-1379.pdf
http://jcp.org/en/jsr/summary?id=133

ptg6882136

This page intentionally left blank

ptg6882136

7
Tuning the JVM,
Step by Step

A modern JVM (Java Virtual Machine) is a complex piece of software with the capa-
bility and flexibility to adapt to many different application families and domains.
Though many applications perform well with the default settings of a JVM, some
applications require additional JVM tuning to meet their performance requirements.
Due to the wide variety of applications that can be run on a modern JVM, a large
number of JVM attributes can be tuned for running an application. Unfortunately,
a well-tuned JVM configuration used for one application may not be well suited for
another application. As a result, understanding how to tune a JVM is a necessity.

Tuning a modern JVM is largely an art, but some fundamentals, when well under-
stood and followed, can make the task much simpler. This chapter presents those
fundamentals and a general step-by-step process to tune the Java HotSpot VM (also
referred to as HotSpot VM hereafter). To gain the most from this chapter, you should
be familiar with the information presented in Chapter 3, “JVM Overview,” in particu-
lar the “HotSpot VM Garbage Collectors” and “HotSpot VM JIT Compilers” sections.

This chapter begins by examining the methodology employed in the step-by-step
tuning process, including any assumptions. Following these assumptions, there is
an examination of the application requirements you need to know before embarking
on tuning the HotSpot VM, requirements for a suggested testing infrastructure, and
the garbage collection command line options to use to collect data. This is followed
by several sections describing the step-by-step process of tuning the HotSpot VM
behaviors such as startup time, memory footprint, throughput, and latency. This
chapter also includes some edge case configurations where a final JVM configuration
may deviate from the general guidelines and process presented in this chapter. These

ptg6882136

252 Chapter 7 � Tuning the JVM, Step by Step

edge cases, as the term implies, are unusual but are included to show that exceptional
configurations exist along with an explanation as to why they work well. The chapter
concludes by examining some additional HotSpot VM command line options that may
offer an application additional performance.

Tip

It is important to note that any change in the application, the data it operates on, or the
hardware platform it runs on requires performance testing and qualification that may include
JVM tuning.

This chapter is structured so that tuning for a particular aspect such as latency or
throughput can be accomplished by turning to those sections. However, familiarity
with the overall tuning process is helpful.

Methodology

The methodology presented in this chapter follows the work flow illustrated in Figure
7-1. It begins with a clear understanding of an application’s performance require-
ments, which should be ranked in priority order by application stakeholders. This
category of requirements is known as systemic requirements. In contrast to func-
tional requirements, which dictate functionally what an application computes or
produces for output, systemic requirements dictate a particular aspect of an appli-
cation’s operation such as its throughput, response time, the amount of memory it
consumes, startup time, availability, manageability, and so on.

The next section takes a closer look at each systemic requirement important to
the tuning process.

Performance tuning a JVM involves many trade-offs. When you emphasize one
systemic requirement, you usually sacrifice something in another. For example, mini-
mizing memory footprint usually comes at the expense of throughput and/or latency.
Or, as you improve manageability, say by reducing the number of JVMs you use to
deploy an application, you sacrifice some level of availability of the application since
running fewer JVMs puts a larger portion of an application at risk should there be
an unexpected failure. Such a situation results in a larger portion of the application
being unavailable to its users. Since there are trade-offs when emphasizing systemic
requirements, it is crucial to the tuning process to understand which are most impor-
tant to the application’s stakeholders.

Once you know which systemic requirements are most important, the next step
is to choose a JVM deployment model. Choosing one involves making a decision
about whether to deploy an application in multiple JVMs or in a single JVM. The

ptg6882136

 253

Prioritize Application
Systemic Requirements

Re-visit Application
Systemic Requirements

Make Changes
To Application

Choose JVM
Deployment Model

Choose JVM
Runtime

Done

Yes

No

Start

Footprint ok?

Determine & Tune
Application Footprint

No

Yes

Yes

Latency ok?

Determine & Tune
Application Latency

No
Throughput ok?

Determine & Tune
Application Throughput

Figure 7-1 Work flow of tuning the JVM, step by step

ptg6882136

254 Chapter 7 � Tuning the JVM, Step by Step

availability, manageability, and memory footprint systemic requirements play a
role in choosing an appropriate JVM deployment model.

The next step is to choose a JVM runtime environment. The HotSpot VM offers
several runtime choices including a 32-bit client VM primarily focused on rapid
startup time and small memory footprint, and a server VM primarily focused on
high throughput available in both 32-bit and 64-bit VMs. Systemic requirements for
high throughput, responsiveness, and startup and initialization time determine the
best choice for a JVM runtime.

Next, the process moves to tuning the garbage collector to meet your application’s
memory footprint, pause time/latency, and throughput requirements. It begins by
tuning to meet footprint requirements and then to meet latency requirements and
finally to meet throughput requirements.

The tuning process presented iterates repeatedly through measurement and con-
figuration refinement. It may take several iterations within a given step before you
are able to meet applicable systemic requirements. In addition, it is possible that
tuning done in one area may require revisiting previous steps in the process. For
example, suppose you are not satisfied with latency after several iterations of try-
ing to tune the garbage collector. In such an event, a change in the JVM deployment
model may be necessary. Another possible outcome may be that either application
changes must be made or that revisiting the application’s systemic requirements is
needed.

For some applications and their systemic requirements, it may take several itera-
tions of this process until the application’s stakeholders are satisfied with the appli-
cation’s performance.

Assumptions

The step-by-step tuning process assumes application execution has the following
phases:

� An initialization phase where the application initializes important data struc-
tures and other necessary artifacts to begin its intended use

� A steady state phase where the application spends most of its time and where
the application’s core functionality is executed

� An optional summary phase where an artifact such as a report may be gener-
ated, such as that produced by executing a benchmark program just prior to
the application ending its execution

The steady state phase—where an application spends most of its time—is the phase
of most interest.

ptg6882136

Application Systemic Requirements 255

Testing Infrastructure Requirements

To make informed decisions about an application’s memory footprint, latency,
throughput, and startup time, along with confirming that the initial JVM runtime
environment decision is appropriate for the application, the data collected from
executing experiments must reflect what is expected to be observed when the appli-
cation is in production. Hence, it is important to have a performance testing envi-
ronment that replicates a production system and the expected production load. The
testing environment must be capable of testing realistic production conditions under
realistic production loads. Included in the performance testing environment should
be all of the hardware and software components required to run the application in
production.

In short, the performance testing environment should be close to, if not a replica
of, the production environment and include the capability to capture metrics of inter-
est, namely memory footprint, latency, throughput, and startup time. The better the
testing environment replicates the production environment running with a realistic
production load, the more accurate and better informed tuning decisions will be.

Application Systemic Requirements

Recall from the “Methodology” section earlier in the chapter that systemic require-
ments dictate a particular aspect of an application’s operation such as its throughput,
response time, the amount of memory it consumes, its availability, its manageability,
and so on. In contrast, functional requirements dictate what an application computes
or the output it produces.

The next several sections define application systemic requirements that can be
optimized by the step-by-step tuning process.

Availability

Availability is a measure of the application being in an operational and usable state.
An availability requirement expresses to what extent an application, or portions of
an application, are available for use when some component breaks or experiences a
failure.

In the context of a Java application, higher availability can be accomplished by
running portions of an application across multiple JVMs or by multiple instances
of the application in multiple JVMs. One of the trade-offs when emphasizing avail-
ability is increased manageability costs. Introducing additional JVMs means addi-
tional JVMs must be managed, which comes at a higher cost and usually more
complexity.

ptg6882136

256 Chapter 7 � Tuning the JVM, Step by Step

A trivial example of an availability requirement is “the application shall be
deployed in a manner in which an unexpected software component failure does not
render the entire application unusable.”

Manageability

Manageability is a measure of the operational costs associated with running and
monitoring the application along with how easy it is to configure the application. A
manageability requirement expresses the ease with which the system can be man-
aged. In general, the fewer the number of JVMs used to run an application, the
lower the operational costs associated with running and monitoring the application.
Configuration tends to be easier with fewer JVMs, but the application’s availability
may be sacrificed.

A simple example of a manageability requirement is “the application shall be
deployed in the fewest possible number of JVMs due to limited staffing resources.”

Throughput

Throughput is a measure of the amount of work that can be performed per unit time.
A throughput requirement ignores latency or responsiveness. Usually, increased
throughput comes at the expense of either an increase in latency and/or an increase
in memory footprint.

An example of a performance throughput requirement is “the application shall
execute 2500 transactions per second.”

Latency and Responsiveness

Latency, or responsiveness, is a measure of the elapsed time between when an appli-
cation receives a stimulus to do some work and that work is completed. A latency or
responsiveness requirement ignores throughput. Usually, increased responsiveness
or lower latency, comes at the expense of lower throughput and/or an increase in
memory footprint.

An example of a latency or responsiveness requirement is “the application shall
execute trade requests to completion within 60 milliseconds.”

Memory Footprint

Memory footprint is a measure of the amount of memory required to run an appli-
cation at a some level of throughput, some level of latency, and/or some level of
availability and manageability. Memory footprint is usually expressed as either the

ptg6882136

Rank Systemic Requirements 257

amount of Java heap required to run the application and/or the total amount of
memory required to run the application. Usually, an increase in memory footprint via
an increase in Java heap size can improve throughput or reduce latency, or both. As
the memory made available for an application is decreased, throughput or latency is
generally sacrificed. The footprint of an application may limit the number of applica-
tion instances you can run on a machine with a given memory size.

An example of a memory footprint requirement is “the application shall execute
on a system having at least 8 gigabytes of memory as a single application or on a
system with 24 gigabytes of memory with three additional application instances.”

Startup Time

Startup time is a measure of the amount of time it takes for an application to initial-
ize. With Java applications, there may also be interest in the amount of time it takes
to reach a point where a modern JVM has optimized the hot portions of the applica-
tion. The time it takes to initialize a Java application is dependent on many factors
including but not limited to the number of classes loaded, the number of objects that
require initialization, how those objects are initialized, and the choice of a HotSpot
VM runtime, that is, client or server.

Leaving aside the number of classes loaded, the number of objects that require
initialization, and how those objects are initialized, a faster startup time using the
HotSpot client runtime comes at the expense of more highly optimized generated
code, that is, potentially higher throughput and lower latency. In contrast, the Hot-
Spot server runtime has a longer startup time as a result of the time it takes to
gain more knowledge of the application’s use of Java, along with the time it takes to
produce highly optimized generated machine code.

An example of a startup time requirement is “the application shall complete its
initialization phase within 15 seconds.”

Rank Systemic Requirements

The first step in the tuning process is prioritizing the application’s systemic require-
ments. Doing so involves getting the major application stakeholders together and
agreeing upon the prioritization. This exercise should be done as part of the applica-
tion architecture and design phase since it provides clarity as to which requirements
are most important.

Ranking the systemic requirements in order of importance to the application
stakeholders is critical to the tuning process. The most important systemic require-
ments drive some of the initial decisions. For example, if availability is more impor-
tant than manageability, then the JVM deployment model decision will be one that

ptg6882136

258 Chapter 7 � Tuning the JVM, Step by Step

uses multiple JVMs. In contrast, if manageability is more important than availability,
then a single JVM deployment model will be the initial choice.

Making decisions about JVM deployment and JVM runtime is discussed in more
detail in the next two sections.

Choose JVM Deployment Model

The JVM deployment model choice amounts to whether to deploy your applica-
tion in a single JVM instance or across multiple JVM instances. Which is best
suited for your application is a function of the systemic requirements ranking
along with some potential constraints. For example, suppose you want to deploy
your application in a 64-bit JVM to leverage the ability to configure a larger Java
heap. If the application is dependent upon third-party native code components for
which 64-bit versions are either not available or not supported by the third-party
vendor, you may be forced to use a 32-bit JVM and tune around a smaller than
optimal Java heap.

Single JVM Deployment Model

Deploying a Java application in a single JVM has the advantage of reducing man-
ageability cost since there are fewer JVMs to manage. The total memory used by
the application will also be smaller since there is memory overhead associated with
each deployed JVM.

The challenge associated with deploying a Java application in a single JVM
is that the availability of the application is at higher risk in the event of a cata-
strophic application or JVM failure. In effect, the application has a single point of
failure.

Multiple JVM Deployment Model

Deploying a Java application in multiple JVMs has the advantages of improved
availability and potential for lower latency. With the application deployed across mul-
tiple JVMs an application or JVM failure may take only a portion of the application
down rather than all of it as would occur with a single JVM deployment. A multiple
JVM deployment may also allow for lower latency. In a multiple JVM deployment,
Java heap sizes tend to be smaller, and smaller Java heaps may allow for shorter
garbage collection pauses. Garbage collection pauses are usually the most signifi-
cant inhibitor of an application’s ability to meet latency requirements. In addition,
a multiple JVM deployment may also help with throughput if there are application

ptg6882136

Choose JVM Runtime 259

level scalability bottlenecks. Distributing the load across multiple JVMs may allow
the application to scale to higher load.

With multiple JVMs, JVMs can be bound to processor sets. Binding JVMs to
processor sets prevents application and JVM threads from migrating across hard-
ware threads bound to different CPU caches. Thread migrations outside CPU cache
boundaries can negatively impact performance due to increased CPU cache misses
or thrashing.

The challenge with deploying a Java application in multiple JVMs is that monitoring,
managing, and maintaining multiple JVMs requires more effort than a single JVM.

General Advice

There is not necessarily a “best” JVM deployment model. The most appropriate choice
depends on which systemic requirements (manageability, availability, etc.) are most
important.

A constraint to be aware of is that deploying in a single JVM may necessitate
the use of a 64-bit JVM if running the Java application has a large enough memory
footprint to warrant the need for a Java heap size larger than what a 32-bit JVM
can handle. If you use a 64-bit JVM, make sure any third-party software compo-
nents used in the application are supported by the third-party software vendor(s).
In addition, if there any native components such as those that use JNI (Java Native
Interface), regardless of whether they are third-party software components or ones
developed along with the application, make sure they are compiled with a 64-bit
compiler.

Generally, the authors’ experience with JVM deployment models has been the
fewer the JVMs the better. With fewer JVMs, there are fewer JVMs to monitor and
manage along with less total memory footprint.

Choose JVM Runtime

Choosing a JVM runtime for a Java application is about making a choice between a
runtime environment that tends to be better suited for one or another of client and
server type applications.

Tip

More specific detailed information on the implementation of the HotSpot VM Runtime can
be found in the “HotSpot VM Runtime” section of Chapter 3.

ptg6882136

260 Chapter 7 � Tuning the JVM, Step by Step

Client or Server Runtime

There are two types of JVM runtimes to choose from when using the HotSpot VM:
client or server. The client runtime is specialized for rapid startup, small memory
footprint, and a JIT compiler with rapid code generation. The server runtime offers
more sophisticated code generation optimizations, which are more desirable in server
applications. Many of the optimizations found in the server runtime’s JIT compiler
require additional time to gather more information about the behavior of the pro-
gram and to produce better performing generated code.

There is a third HotSpot VM runtime under development called tiered, which
combines the best of the client and server runtimes, that is, rapid startup
time and high performing generated code. If you are using Java 6 Update 25,
Java 7, or later, you may consider using tiered server runtime as a replace-
ment for the client runtime. The tiered server runtime is enabled with the
-server -XX:+TieredCompilation command line options. At the time of this
writing, it is not mature enough to recommend as a replacement for either a client
or server runtime. If you are using Java 6 Update 24 or earlier, the tiered server
runtime is also not mature enough to recommend as a replacement for either cli-
ent or server runtimes.

Tip

If you do not know which runtime to initially choose, start with the server runtime. If startup
time or memory footprint requirements cannot be met and you are using Java 6 Update 25
or later, try the tiered server runtime. If you are not running Java 6 Update 25 or later, or the
tiered server runtime is unable to meet your startup time or memory footprint requirement,
switch to the client runtime.

32-Bit or 64-Bit JVM

In addition to a client and server runtime, there is also a choice between 32-bit and
64-bit JVMs. The 32-bit JVM is the default for the HotSpot VM. The choice of using
a 32-bit or 64-bit JVM is dictated by the memory footprint required by the applica-
tion along with whether any third-party software used in the application supports
64-bit JVMs and if there are any native components in the Java application. All
native components using the Java Native Interface (JNI) in a 64-bit JVM must be
compiled in 64-bit mode. Determining the memory footprint necessary to run your
Java application is discussed in the next section of this chapter.

Table 7-1 provides some guidelines for making an initial decision on whether
to start with a 32-bit or 64-bit JVM. Note that client runtimes are not available in
64-bit HotSpot VMs.

ptg6882136

Choose JVM Runtime 261

Garbage Collectors

Before moving to the next step of the tuning process, an initial garbage collector
must be chosen. Several garbage collectors are available in the HotSpot VM: serial,
throughput, mostly concurrent, and garbage first.

Table 7-1 Guidelines for Deciding on a 32-Bit or 64-Bit JVM

Operating
System

Java Heap Size

32-Bit or 64-Bit JVM

Windows Less than 1300 megabytes 32-bit

Windows Between 1500 megabytes and
32 gigabytes*

64-bit with -d64 -XX:+UseCompressedOops
command line options

Windows More than 32 gigabytes 64-bit with -d64 command line option

Linux Less than 2 gigabytes 32-bit

Linux Between 2 and 32
gigabytes*

64-bit with -d64 -XX:+UseCompressedOops
command line options

Linux More than 32 gigabytes 64-bit with -d64 command line option

Oracle
Solaris

Less than 3 gigabytes 32-bit

Oracle
Solaris

Between 3 and 32
gigabytes*

64-bit with -d64 -XX:+UseCompressedOops
command line options

Oracle
Solaris

More than 32 gigabytes 64 bit with -d64 command line option

* Best performance in the 64-bit HotSpot VM with -XX:+UseCompressedOops is realized around 26 gigabytes
or less of maximum Java heap size. HotSpot VM versions later than Java 6 Update 18 automatically enable
-XX:+UseCompressedOops by default based on maximum Java heap size.

Tip

More specifics about the HotSpot VM garbage collectors are presented in the “HotSpot VM
Garbage Collectors” section of Chapter 3.

Since it is possible for applications to meet their pause time requirements with
the throughput garbage collector, start with the throughput garbage collector and
migrate to the concurrent garbage collector if necessary. If migration to the concur-
rent garbage collector is required, it will happen later in the tuning process as part of
the Determine and Tune Application Latency step; see Figure 7-1 for an illustration
of the JVM tuning process.

The throughput garbage collector is specified by the HotSpot VM com-
mand line option -XX:+UseParallelOldGC or -XX:+UseParallelGC. If

ptg6882136

262 Chapter 7 � Tuning the JVM, Step by Step

-XX:+UseParallelOldGC is not available in the version of the HotSpot VM
you are using, use -XX:+UseParallelGC. The difference between the two is
that -XX:+UseParallelOldGC enables both a multithreaded young genera-
tion garbage collector and a multithreaded old generation garbage collector, that
is, both minor garbage collections and full garbage collections are multithreaded.
-XX:+UseParallelGC enables only a multithreaded young generation garbage
collector. The old generation garbage collector used with -XX:+UseParallelGC
is single threaded. Using -XX:+UseParallelOldGC also automatically enables
-XX:+UseParallelGC. Hence, if you want to use both a multithreaded young gen-
eration garbage collector and a multithreaded old generation garbage collector, you
need only specify -XX:+UseParallelOldGC.

GC Tuning Fundamentals

This section describes three major attributes of garbage collection performance, three
fundamental garbage collection tuning principles, and the garbage collection infor-
mation to collect when tuning a HotSpot VM garbage collector. Understanding the
important trade-offs among the attributes, the tuning principles, and what informa-
tion to collect is crucial to JVM tuning.

The Performance Attributes
� Throughput. A measure of the garbage collector’s ability to allow an appli-

cation to run at peak performance without regard to the duration of garbage
collection pause times or the amount of memory it requires

� Latency. A measure of the garbage collector’s ability to allow an application
to experience a minimal amount of, or completely eliminate, pause time or
application jitter induced by the garbage collector

� Footprint. A measure of the amount of memory a garbage collector requires
to operate efficiently

A performance improvement for one of these attributes almost always is at the
expense of one or both of the other attributes. Put another way, the performance of
one the attributes is usually compromised in favor of performance improvements
in one or both of the other attributes. However, for most applications, rarely are all
three performance attributes equally important. Usually, one or two of them are more
important than the other(s).

As is the case with knowing which systemic requirements are most important to
an application, it is also necessary to know which of the three performance attributes

ptg6882136

GC Tuning Fundamentals 263

are the most important. Identifying which of these attributes are most important
will map to similar application systemic requirements that are most important to
the application.

The Principles

There are also three fundamental principles to understand when it comes to tuning
a JVM’s garbage collector.

� At each minor garbage collection, maximize the number of objects reclaimed.
The authors call this the Minor GC Reclamation Principle. Adhering to this
principle helps reduce the number and frequency of full garbage collections
experienced by the application. Full garbage collections typically have the lon-
gest duration and as a result are the number one reason for applications not
meeting their latency or throughput requirements.

� The more memory made available to the garbage collector, that is, the larger
the Java heap space, the better the garbage collector and application perform
when it comes to throughput and latency. The authors call this the GC Maxi-
mize Memory Principle.

� Tune the JVM’s garbage collector for two of the three performance attributes:
throughput, latency, and footprint. The authors call this the 2 of 3 GC Tuning
Principle.

The exercise of tuning a JVM’s garbage collector while keeping these three prin-
ciples in mind makes the task of meeting your application’s performance require-
ments much easier.

Command Line Options and GC Logging

The JVM tuning decisions made in the remainder of the tuning process utilize met-
rics observed from monitoring garbage collections. Collecting this information in
garbage collection logs is the best approach. This means garbage collection statistics
gathering must be enabled via HotSpot VM command line options. Enabling garbage
collection logging, even in production systems, is a good idea. It has minimal overhead
and provides a wealth of information that can be used to correlate application level
events with garbage collection or JVM level events. For example, an application may
exhibit a lengthy pause at some point during its operation. Having garbage collec-
tion logging enabled allows you to recognize whether the lengthy pause event was
the result of a garbage collection or the artifact of some other kind of event, perhaps
generated by the application.

ptg6882136

264 Chapter 7 � Tuning the JVM, Step by Step

If you are unfamiliar with the terms young generation space, old generation space,
permanent generation space, eden space, survivor space, tenuring, or promotion, read
the “HotSpot VM Garbage Collectors” section of Chapter 3. Understanding these
terms is essential to tuning the JVM.

Several HotSpot VM command line options are of interest for garbage collection
logging. The following is the minimal set of recommended command line options
to use:

-XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:<filename>

-XX:+PrintGCTimeStamps prints a time stamp representing the number of sec-
onds since the HotSpot VM was launched until the garbage collection occurred.
-XX:+PrintGCDetails provides garbage collector-specific statistics and thus var-
ies depending on the garbage collector in use. -Xloggc:<filename> directs the
garbage collection information to the file named <filename>.

Here is example output using the preceding three garbage collection logging
command line options in conjunction with the parallel throughput garbage collec-
tor enabled via -XX:+UseParallelOldGC or -XX:+UseParallelGC from Java 6
Update 21 (output is split across several lines for easier reading):

45.152: [GC
 [PSYoungGen: 295648K->32968K(306432K)]
 296198K->33518K(1006848K), 0.1083183 secs]
 [Times: user=1.83 sys=0.01, real=0.11 secs]

45.152 is the number of seconds since the JVM launched and so tells when this
garbage collection occurred. The GC label indicates this is a minor garbage collection,
or young generation garbage collection.
[PSYoungGen: 295648K->32968K(306432K)] provides information on the

young generation space. PSYoungGen indicates the young generation garbage col-
lector in use is the multithreaded young generation garbage collector used with the
throughput collector. Other possible young generation garbage collectors are ParNew,
which is the multithreaded young generation garbage collector used with the con-
current old generation garbage collector known as CMS, and DefNew, which is the
single-threaded young generation garbage collector used with the serial garbage col-
lector. At the time of this writing the G1 garbage collector, which is currently under
development, does not use an identifier in the same way as the other three garbage
collectors to identify the output as G1 GC.

ptg6882136

GC Tuning Fundamentals 265

The value to the left of the ->, 295648K, is the occupancy of the young generation
space prior to the garbage collection. The value to the right of the ->, 32968K, is the
occupancy of the young generation space after the garbage collection. Young genera-
tion space is further divided into an eden space and two survivor spaces. Since the
eden space is empty after a minor garbage collection, the value to the right of the ->,
32968K, is the amount of space consumed in survivor space. It can also be interpreted
as the survivor space occupancy. The value inside the parentheses (306432K), is the
size of the young generation space, that is, the total size of eden and the two survivor
spaces.
296198K->33518K(1006848K) provides the Java heap utilization (cumulative

occupancy of both young generation and old generation spaces) before and after the
garbage collection. In addition, it provides the Java heap size, which is the total size
of young generation and old generation. The value to the left of the ->, 296198K, is
the occupancy of the Java heap before the garbage collection. The value to the right
of the ->, 33518K, is the occupancy of the Java heap after the garbage collection. The
value inside the parentheses (1006848K), is the total size of the Java heap.

From the young generation occupancy and Java heap occupancy, you can quickly
calculate the occupancy of the old generation space. For example, the Java heap size
is 1006848K, and the young generation heap size is 306432K. Hence, the old genera-
tion heap size is 1006848K – 306432K = 700416K. Before the garbage collection,
296198K – 295648K = 550K is the occupancy of the old generation space. After the
garbage collection, 33518K – 32968K = 550K is the occupancy of the old generation
space. In this example, since there is no change in occupancy of the old generation
space before and after the garbage collection, no objects were promoted from the
young to old generation. This is an important observation to make when looking at
garbage collections since this data confirms the Minor GC Reclamation Principle. If
an object is promoted to the old generation and later becomes unreachable, then the
maximum number of objects was not reclaimed in the minor garbage collection and
thus would violate the Minor GC Reclamation Principle. More on what to look for in
garbage collection logs can be found in later sections of this chapter.
0.1083183 secs indicates the elapsed time for the garbage collection.
[Times: user=1.83 sys=0.01, real=0.11 secs] provides CPU and elapsed

time information. The value to the right of user is the CPU time used by the gar-
bage collection in user mode, that is, while executing in the JVM. In this example,
the garbage collector used 1.83 seconds of CPU time in user mode. The value to the
right of sys is the CPU time used by the operating system on behalf of the garbage
collector. In this example, the garbage collection used 0.01 seconds of operating
system CPU time. The value to the right of real is the elapsed wall clock time in
seconds of the garbage collection. In this example, it took 0.11 seconds to complete
the garbage collection. The times reported for user, sys, and real are rounded to
the nearest 100th of a second.

ptg6882136

266 Chapter 7 � Tuning the JVM, Step by Step

If you are interested in a time stamp that reflects a calendar date and time,
you can specify the -XX:PrintGCDateStamps command line option. The output of
-XX:+PrintGCDateStamps shows the year, month, day, and time of day the garbage
collection occurred and was introduced in Java 6 Update 4. The following is example
output using -XX:+PrintGCDateStamps together with -XX:+PrintGCDetails.

2010-11-21T09:57:10.518-0500: [GC
 [PSYoungGen: 295648K->32968K(306432K)]
 296198K->33518K(1006848K), 0.1083183 secs]
 [Times: user=1.83 sys=0.01, real=0.11 secs]

The date stamp field, 2010-11-21T09:57:10.518-0500, uses the ISO 8601 date
and time stamp. The output has the following form: YYYY-MM-DDTHH-MM-SS.
mmm-TZ where:

� YYYY is the four-digit year.
� MM is the two-digit month; single-digit months are prefixed with 0.
� DD is the two-digit day of the month; single-digit days are prefixed with 0.
� T is a literal that denotes a date to the left of the literal and a time of day to the

right.
� HH is the two-digit hour; single-digit hours are prefixed with 0.
� MM is the two-digit minute; single-digit minutes are prefixed with 0.
� SS is the two-digit second; single-digit seconds are prefixed with 0.
� mmm is the three-digit milliseconds; single- and two-digit milliseconds are pre-

fixed with 00 and 0, respectively.
� TZ is the time zone offset from GMT.

Although the time zone offset from GMT is included in the output, the date and
time of day are not printed as GMT time. The date and time of day are adjusted to
local time.

When tuning the HotSpot VM for low latency the following two command line
options are useful since they report the amount of time the application has been
blocked due to a VM safepoint operation and how long the application has executed
between safepoint operations.

• -XX:+PrintGCApplicationStoppedTime
• -XX:+PrintGCApplicationConcurrentTime

ptg6882136

GC Tuning Fundamentals 267

A safepoint operation puts the JVM into a state where all Java application threads
are blocked and any thread executing in native code is prevented from returning to
the VM to execute Java code. Safepoint operations are required when the VM must
perform an internal operation with all Java threads in a known blocked state and
unable to change the Java heap.

Tip

The “VM Operations and Safepoints” section of Chapter 3 describes safepoint operations
in more detail.

Since safepoint operations block Java code execution, it is useful to know if an
observed response time in an application is strongly correlated with a safepoint
operation. Hence, being able to observe when application threads are blocked from
executing as a result of a safepoint operation (the amount of time reported by
-XX:+PrintGCApplicationStoppedTime) along with application log informa-
tion can help identify whether an observed response time that exceeds application
requirements is the result of a VM safepoint operation, or whether it is an artifact of
some other event in the application or system. The use of the command line option
-XX:+PrintSafepointStatistics can help distinguish garbage collection safe-
points from other safepoints.

The -XX:+PrintGCApplicationConcurrentTime command line option can be used
to determine whether the application was executing, and for how long, during some time
period of interest where an observed response time exceeds application requirements.

Table 7-2 summarizes the garbage collection command line options presented in
this section and offers suggestions for when their use is most applicable:

Table 7-2 Recommended GC Logging Command Line Options

GC Command Line Option Most Applicable

-XX:+PrintGCTimeStamps

-XX:+PrintGCDetails

-Xloggc:<filename>

Minimal set of command line options to
enable for all applications.

-XX:PrintGCDateStamps Use when wanting to see a calendar
date and time of day rather than a time
stamp indicating the number of seconds
since the JVM was launched.

Requires Java 6 Update 4 or later.

-XX:+PrintGCApplicationStoppedTime

-XX:+PrintGCApplicationConcurrentTime

-XX:+PrintSafepointStatistics

Useful when tuning an application
for low response time/latency to help
distinguish between pause events
arising from VM safepoint operations
and other sources.

ptg6882136

268 Chapter 7 � Tuning the JVM, Step by Step

Determine Memory Footprint

Up to this point in the tuning process, no measurements have been taken. Only some
initial choices have been made such as a JVM deployment model, a JVM runtime
environment, what garbage collection statistics to collect, and the garbage collection
principles to follow. This step of the tuning process provides a good estimate of the
amount of memory or Java heap size required to run the application. The outcome of
this step identifies the live data size for the application. The live data size provides
input into a good starting point for a Java heap size configuration to run the appli-
cation. It also determines whether the application’s footprint requirements should
be revisited or whether some application changes must be made to meet footprint
requirements.

Tip

Live data size is the amount of memory in the Java heap consumed by the set of long-lived
objects required to run the application in its steady state. In other words, it is the Java heap
occupancy after a full garbage collection while the application is in steady state (see Figure 7-3).

Constraints

The input in this step is how much physical memory can be made available to the
JVM. The choice of a single JVM deployment model or multiple JVM deployment
model plays a significant role. The following list helps determine how much physical
memory can be made available to the JVM(s):

� Will the Java application be deployed in a single JVM on a machine where it is
the only application running? If that is the case, then all the physical memory
on the machine can be made available to JVM.

� Will the Java application be deployed in multiple JVMs on the same machine?
Or will the machine be shared by other processes or other Java applications?
If either case applies, then you must decide how much physical memory will be
made available to each process and JVM.

In either of the preceding scenarios, some memory must be reserved for the operat-
ing system.

HotSpot VM Heap Layout

Before taking some footprint measurements, it is important to have an understand-
ing of the HotSpot VM Java heap layout. This understanding helps in determining

ptg6882136

Determine Memory Footprint 269

the Java heap size to use with the application and in fine-tuning the space sizes that
impact the performance of the garbage collector.

The HotSpot VM has three major spaces: young generation, old generation, and
permanent generation. These three spaces are shown in Figure 7-2.

When a Java application allocates Java objects, those objects are allocated in the
young generation space. Objects that survive, that is, those that remain live, after
some number of minor garbage collections are promoted into the old generation
space. The permanent generation space holds VM and Java class metadata as well
as interned Strings and class static variables.

The -Xmx and -Xms command line options specify the initial and maximum
total size of the young generation and old generation spaces. This initial and
maximum size is also referred to as the Java heap size. The value specified for
-Xms is the initial and minimum size and -Xmx is the maximum size. When
the value for -Xms is smaller than the value for -Xmx, the amount of space
consumed by young and old generation spaces is allowed to grow or contract
depending on the needs of the application. The growth of the Java heap will
never be larger than -Xmx, and the Java heap will never contract smaller than
-Xms. Java applications emphasizing throughput or latency tend to set both
-Xms and -Xmx to the same value. Growing or contracting the size of either the
young generation space or old generation space requires a full garbage collec-
tion. Full garbage collections can reduce throughput and induce larger than
desired latencies.

The young generation space is specified using any one of the following command
line options:

� -XX:NewSize=<n>[g|m|k]
 The initial and minimum size of the young generation space. <n> is the size.
[g|m|k] indicates whether the size should be interpreted as gigabytes,

The Java heap

Configured With
-XX:PermSize &
-XX:MaxPermSize

Young Generation: for newly allocated objects

Old Generation: for older, longer living objects

Permanent Generation: for VM & class meta-data

Figure 7-2 HotSpot VM heap layout

ptg6882136

270 Chapter 7 � Tuning the JVM, Step by Step

megabytes, or kilobytes. The young generation space will never be smaller than
the value specified.1 -XX:MaxNewSize=<n>[g|m|k] should also be specified
when using -XX:NewSize=<n>[g|m|k].

� -XX:MaxNewSize=<n>[g|m|k]
 The maximum size of the young generation space. <n> is the size. [g|m|k]

indicates whether the size should be interpreted as gigabytes, megabytes,
or kilobytes. The young generation space will never be larger than the value
specified. -XX:NewSize=<n>[g|m|k] should also be specified when using
-XX:MaxNewSize=<n>[g|m|k].

� -Xmn<n>[g|m|k]
Sets the initial, minimum, and maximum size of the young generation space.
<n> is the size. [g|m|k] indicates whether the size should be interpreted as
gigabytes, megabytes, or kilobytes. The young generation space size will be set
to the value specified.

-Xmn is convenient to size both the initial and maximum size of the young generation
space. It is important to note that if -Xms and -Xmx are not set to the same value and
-Xmn is used, a growth or contraction in the Java heap size will not adjust the size of
the young generation space. The size of the young generation space will remain con-
stant with any growth or contraction of the Java heap size. Therefore, -Xmn should
be used only when -Xms and -Xmx are set to the same value.

The size of the old generation space is implicitly set based on the size of the young
generation space. The initial old generation space size is the value of -Xms minus
-XX:NewSize. The maximum old generation space size is the value of -Xmx minus
-XX:MaxNewSize. If -Xms and -Xmx are set to the same value and -Xmn is used, or
-XX:NewSize is the same value as -XX:MaxNewSize, then the old generation size
is -Xmx (or -Xms) minus -Xmn.

The permanent generation space is sized with the following command line options:

� -XX:PermSize=<n>[g|m|k]
� The initial and minimum size of the permanent generation space. <n> is the

size. [g|m|k] indicates whether the size should be interpreted as gigabytes,
megabytes, or kilobytes. The permanent generation space will never be smaller
than the value specified.

� -XX:MaxPermSize=<n>[g|m|k]
� The maximum size of the permanent generation space. <n> is the size. [g|m|k]

indicates whether the size should be interpreted as gigabytes, megabytes, or

1. The actual size allocated by the HotSpot VM may be slightly adjusted depending on the
memory system of the hardware platform and the operating system. This is true of all the
command lines listed on this page.

ptg6882136

Determine Memory Footprint 271

kilobytes. The permanent generation space will never be larger than the value
specified.

Java applications with an emphasis on performance should size both the initial and
maximum permanent generation sizes(-XX:PermSize and -XX:MaxPermSize)
to the same value since growing or contracting the permanent generation space
requires a full garbage collection.

If any Java heap size, initial or maximum size, young generation size, or perma-
nent generation size is not specified, the HotSpot VM automatically chooses values
based on the system configuration it discovers through an adaptive tuning feature
called ergonomics.

Tip

Additional information on HotSpot adaptive tuning, including the default values chosen for
Java heap sizes, can be found in the “HotSpot VM Adaptive Tuning” section of Chapter 3.

It is important to understand that a garbage collection occurs when any one of the
three spaces, young generation, old generation, or permanent generation, is in a state
where it can no longer satisfy an allocation event. In other words, a garbage collec-
tion occurs when any one of those three spaces is considered full and there is some
request for additional space that is not available. When the young generation space
does not have enough room available to satisfy a Java object allocation, the HotSpot
VM performs a minor garbage collection to free up space. Minor garbage collections
tend to be short in duration relative to full garbage collections.

Objects that remain live for some number of minor garbage collections eventually
get promoted (copied) to the old generation space. When the old generation space
no longer has available space for promoted objects, the HotSpot VM performs a full
garbage collection. It actually performs a full garbage collection when it determines
there is not enough available space for object promotions from the next minor gar-
bage collection. This is a less costly approach rather than being in the middle of a
minor garbage collection and discovering that the promotion of an object will fail.
Recovering from an object promotion failure is an expensive operation. A full garbage
collection also occurs when the permanent generation space does not have enough
available space to store additional VM or class metadata.

If a full garbage collection is triggered by old generation space being full, both
old generation space and permanent generation space are garbage collected,
even if the permanent generation space is not full. Likewise, if a full garbage
collection event is triggered by permanent generation space being full, both
old generation and permanent generation spaces are garbage collected even if
the old generation space is not full. In addition, the young generation space is

ptg6882136

272 Chapter 7 � Tuning the JVM, Step by Step

also garbage collected before the old generation space on a full garbage collec-
tion unless the -XX:-ScavengeBeforeFullGC command line option is specified.
-XX:-ScavengeBeforeFullGC will disable young generation space garbage collec-
tion on full garbage collections.

Heap Size Starting Point

To begin the heap size tuning process, a starting point is needed. The approach
described in this section may start with a larger Java heap size than is necessary to
run the Java application. The purpose of this step is to gather some initial data and
further refine the heap size to more reasonable values later in the tuning process.

As mentioned earlier in the “Choose JVM Runtime” section, start with the through-
put garbage collector. Remember that the throughput garbage collector is specified
with the -XX:+UseParallelOldGC command line option. If the HotSpot VM you
are using does not accept -XX:+UseParallelOldGC as a valid command line option,
use -XX:+UseParallelGC instead.

If you have a good sense of the amount of the Java heap space the Java application
will require, you can use that Java heap size as a starting point for setting -Xmx and
-Xms. If you do not know what Java heap size the Java application will require, you
can start with the Java heap size the HotSpot VM automatically chooses. Starting
the Java application without specifying a -Xmx or -Xms value provides some initial
data for a Java heap size. In other words, it’s a starting point. The Java heap size will
be refined a bit later in this tuning step.

The suggested command line options to use for capturing data in garbage collec-
tion logs are described earlier in this chapter in the “Command Line Options and GC
Logging” section. The garbage collection logs show the Java heap size in use. The ini-
tial and maximum heap sizes in use can also be viewed using the HotSpot command
line option -XX:+PrintCommandLineFlags. -XX:+PrintCommandLineFlags
prints the selected initial and maximum heap sizes at HotSpot VM initialization
time as -XX:InitialHeapSize=<n> -XX:MaxHeapSize=<m>, where <n> is the
initial Java heap size in bytes and <m> is the maximum Java heap size in bytes.

Regardless of whether you specify an explicit Java heap size using a command line
option, or use the default size, attempt to put the application in the phase where you
expect it to spend most of its operating time, that is, its steady state phase. You must
have sufficient load generation capabilities and the ability to drive the application
with a load representative of what is expected in production.

If you observe OutOfMemoryErrors in the garbage collection logs while attempt-
ing to put the application into its steady state, take notice of whether the old gen-
eration space or the permanent generation space is running out of memory. The
following example illustrates an OutOfMemoryError occurring as a result of a too
small old generation space:

ptg6882136

Determine Memory Footprint 273

The important parts of the garbage collection output are highlighted in bold. Since
the throughput garbage collector is in use, the old generation statistics are identified
by ParOldGen. The fields that follow ParOldGen, 685165K->685165K(685170K),
indicate the old generation space’s occupancy before the full garbage collection, after
the full garbage collection, and the size of the old generation space, respectively.
From this output, you can conclude that the old generation space is too small, since
the old generation space occupancy after the full garbage collection, the value to the
right of the bold -> is very near the same value as the configured old generation size,
the value between the (and). Hence, the JVM reports an OutOfMemoryError and
suggests that Java heap space has run out of memory. In contrast, the permanent
generation space occupancy (32390K), identified with the row beginning with the
PSPermGen label, is nowhere near its capacity of (65536K).

The following example shows an OutOfMemoryError occurring as a result of a too
small permanent generation space:

2010-11-25T18:51:03.895-0600: [Full GC
 [PSYoungGen: 279700K->267300K(358400K)]
 [ParOldGen: 685165K->685165K(685170K)]
 964865K->964865K(1043570K)
 [PSPermGen: 32390K->32390K(65536K)],
 0.2499342 secs]
 [Times: user=0.08 sys=0.00, real=0.05 secs]
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

2010-11-25T18:26:37.755-0600: [Full GC
 [PSYoungGen: 0K->0K(141632K)]
 [ParOldGen: 132538K->132538K(350208K)]
 32538K->32538K(491840K)
 [PSPermGen: 65536K->65536K(65536K)],
 0.2430136 secs]
 [Times: user=0.37 sys=0.00, real=0.24 secs]
java.lang.OutOfMemoryError: PermGen space

Again, the important parts of the garbage collection output are highlighted
bold. Since the throughput garbage collector is in use, the permanent genera-
tion statistics are identified by PSPermGen. The fields that follow PSPermGen,
65536K->65536K(65536K), indicate the permanent generation space’s occupancy
before the full garbage collection, after the full garbage collection, and the size of the
permanent generation space, respectively. It is easy to conclude that the permanent
generation space is not large enough since the permanent generation space occu-
pancy after the full garbage collection, the value to the right of the ->, is the same
as the configured permanent generation size, the value between (and). Hence, the

ptg6882136

274 Chapter 7 � Tuning the JVM, Step by Step

OutOfMemoryError suggests that PermGen space has run out of memory. In con-
trast, the old generation space occupancy is much less than its capacity, 132538K
versus 350208K.

If you observe an OutOfMemoryError in the garbage collection logs, try increas-
ing the Java heap size to 80% to 90% of the physical memory you have available for
the JVM. Pay particular attention to the heap space that incurred the OutOfMem-
oryError and be sure to increase its size. For example, increase -Xms and -Xmx
for old generation space OutOfMemoryErrors, and increase -XX:PermSize and
-XX:MaxPermSize for permanent generation OutOfMemoryErrors. Keep in mind
the limitations of the Java heap sizes based on the hardware platform and whether
you are using a 32-bit or 64-bit JVM. After increasing the Java heap size check the
garbage collection logs for OutOfMemoryErrors. Repeat these steps, increasing
the Java heap size at each iteration, until you observe no OutOfMemoryErrors
in the garbage collection logs.

Once the application is running in its steady state without experiencing Out-
OfMemoryErrors, the next step is to calculate the application’s live data size.

Calculate Live Data Size

As mentioned earlier, the live data size is the Java heap size consumed by the set of
long-lived objects required to run the application in its steady state. In other words,
the live data size is the Java heap occupancy of the old generation space and perma-
nent generation space after a full garbage collection while the application is running
in its steady state.

The live data size for a Java application can be collected from the garbage collec-
tion logs. The live data size provides the following tuning information for

� An approximation of the amount of old generation Java heap occupancy con-
sumed while running the application in steady state

� An approximation of the amount of permanent generation heap occupancy con-
sumed while running the application in steady state

In addition to the live data size, the full garbage collections at steady state also pro-
vide the worst case latency to expect due to full garbage collections.

To get a good measure of an application’s live data size, it is best to look at the Java
heap occupancy after several full garbage collections. Make sure these full garbage
collections are occurring while the application is running in its steady state.

If the application is not experiencing full garbage collections, or they are not occur-
ring very frequently, you can induce full garbage collections using the JVM monitor-
ing tools VisualVM or JConsole. Both are bundled with HotSpot JDK distributions
and can instruct a monitored JVM to induce a full garbage collection. VisualVM can

ptg6882136

Determine Memory Footprint 275

be launched with the jvisualvm command and JConsole with the jconsole com-
mand. VisualVM is available in Java 6 Update 7 or later.

To force full garbage collections, monitor the application with VisualVM or
JConsole and click the Perform GC button in the VisualVM or JConsole window.
A command line alternative to force a full garbage collection is to use the Hot-
Spot JDK distribution jmap command. jmap requires the -histo:live command
line option and the JVM process id for this purpose. The JVM process id can be
acquired using the JDK’s jps command. For example, if the Java application’s
JVM process id is 348, the jmap command line to induce a full garbage collection
would look like

$ jmap -histo:live 348

The jmap command induces a full garbage collection and also produces a heap profile
that contains object allocation information. For the purposes of this step, you can
ignore the generated heap profile.

Initial Heap Space Size Configuration

This section describes how to use live data size calculations to determine an initial
Java heap size. Figure 7-3 shows the fields that identify an application’s live data
size. It is wise to compute an average of the Java heap occupancy and garbage
collection duration of several full garbage collections for your live data size cal-
culation. The more data you collect, the better the estimate for a Java heap size
starting point.

Figure 7-3 Garbage collection log after full GC event

Young Generation size Old Generation size Permanent Generation size

2010-11-25T18:51:03.895-0600:
 [Full GC
 [PSYoungGen: 273724K->0K(358400K)]
 [ParOldGen: 426892K->295111K(685170K)]
 [700616K->295111K(1048570K)
 [PSPermGen: 32390K->32390K(65536K)],
 0.2499342 secs]
 [Times: user=0.08 sys=0.00 real=0.05 secs]

Full GC
duration

Old Generation space
occupancy after Full GC

Permanent Generation space
occupancy after Full GC

ptg6882136

276 Chapter 7 � Tuning the JVM, Step by Step

Using the live data size information, an informed decision can be made on an
initial Java heap size to use along with an estimate of the worst case latency due to
full garbage collections.

As a general rule, the initial and maximum Java heap size command line options,
-Xms and -Xmx, should be set to a value between three and four times larger than the
live data size of the old generation space. In the full garbage collection data shown
in Figure 7-3, the old generation space occupancy after the full garbage collection is
295111K, or about 295 megabytes. Hence, the live data size is about 295 megabytes.
Therefore, the suggested initial and maximum Java heap size to specify for this
application should be a value between 885 and 1180 megabytes, that is, -Xms1180m
-Xmx1180m for four times the live data size. In Figure 7-3, the Java heap size in use
is 1048570K, about 1048 megabytes. This Java heap size is at the upper end of the
recommendation.

Also as a general rule, the initial and maximum permanent generation size,
-XX:PermSize and -XX:MaxPermSize, should be 1.2x to 1.5x larger than the
live data size of the permanent generation space. In the example full garbage col-
lection shown in Figure 7-3, the permanent generation space occupancy after the
full garbage collection is 32390K, or about 32 megabytes. Hence, the suggested ini-
tial and maximum permanent generation space size to specify for this application
should be between 38 megabytes and 48 megabytes, that is, -XX:PermSize=48m
-XX:MaxPermSize=48m, for 1.5 times the permanent generation live data size. In
Figure 7-3, the permanent generation space size in use is 65536K, about 65 mega-
bytes. Although this is above the recommended size of 38 to 48 megabytes, 17 addi-
tional megabytes in the context of a 1 gigabyte Java heap space is not worth worry-
ing about.

As an additional general rule, the young generation space should be 1 to 1.5
times the old generation space live data size. In the example full garbage collec-
tion shown in Figure 7-3, the live data size is about 295 megabytes. As a result,
the suggested young generation size should be between 295 and 442 megabytes. In
Figure 7-3, the young generation space size is 358400K, about 358 megabytes. 358
megabytes is within the recommended size.

If the initial and maximum Java heap size is 3x to 4x the live data size and the
young generation space is 1x to 1.5x the live data size, the size of the old generation
space should be between 2x to 3x the live data size.

The combined Java command line applying these general sizing rules based on
the garbage collection data in Figure 7-3 is

$ java -Xms1180m -Xmx1180m -Xmn295m
 -XX:PermSize=48m -XX:MaxPermSize=48m

ptg6882136

Determine Memory Footprint 277

Guidelines to follow when calculating Java heap sizing are summarized in Table 7-3.

Additional Considerations

This section presents additional items to keep in mind when determining the applica-
tion’s memory footprint. It is important to know that the Java heap size calculated in
the previous section does not represent the full memory footprint of a Java application. A
better way to determine a Java application’s total memory use is by monitoring the appli-
cation with an operating system tool such as prstat on Oracle Solaris, top on Linux,
and Task Manager on Windows. The Java heap size may not be the largest contributor
to an application’s memory footprint. For example, applications may require additional
memory for thread stacks. The larger the number of threads, the more memory con-
sumed in threads stacks. The deeper the method calls executed by the application, the
larger the thread stacks. There may also be native libraries that allocate memory as
well as I/O buffers used by the application that require additional memory. The memory
footprint estimate for an application must include any additional memory use.

Keep in mind that a possible outcome of this step in the tuning process may be
that the application’s memory requirements cannot be met. If that is the case, either
the application memory footprint requirements must be revisited and revised, or
application changes must be made. A possible activity may include Java heap pro-
filing and making changes to the application to reduce object allocations or object
retention. A reduction in object allocations, more importantly, object retention helps
reduce the live data size.

The Java heap sizes calculated in this step are a starting point. These sizes may
be further modified in the remaining steps of the tuning process, depending on the
application’s requirements.

Table 7-3 Guidelines for Calculating Java Heap Sizing

Space Command Line Option Occupancy Factor

Java heap -Xms and -Xmx 3x to 4x old generation space occupancy
after full garbage collection

Permanent
Generation

-XX:PermSize

-XX:MaxPermSize

1.2x to 1.5x permanent generation space
occupancy after full garbage collection

Young Generation -Xmn 1x to 1.5x old generation space
occupancy after full garbage collection

Old Generation Implied from overall Java
heap size minus the young
generation size

2x to 3x old generation space occupancy
after full garbage collection

ptg6882136

278 Chapter 7 � Tuning the JVM, Step by Step

Tune Latency/Responsiveness

The objective of this step in the tuning process is to meet the application’s latency
requirements. The activities performed in this step involve several iterations of refin-
ing the Java heap size configuration, evaluating garbage collection duration and
frequency, possibly switching to a different garbage collector, and further fine-tuning
of space sizes in the event of a change to a different garbage collector.

There are two possible outcomes of this step:

� Application latency requirements are met. If the tuning activities per-
formed in this step result in being able to meet the application’s latency require-
ments, you can continue to the next step in the tuning process, Determine and
Tune Application Throughput described in the next major section “Tune Appli-
cation Throughput.”

� Application latency requirements are not met. If you are not able to
meet the application’s latency requirements after performing the tuning activities
described in this section, you must either revisit the application’s latency require-
ments or implement changes in the application that improve latency. Possible activi-
ties that may drive changes to improve the application’s latency might include

 a. Heap profiling and making changes to the application to reduce object
allocation or object retention

 b. Changing the JVM deployment model to lessen the amount of work or load
taken on by a JVM

Either of these two choices reduces the JVM’s object allocation rate and
therefore garbage collection frequency.

This step begins by looking at the latency impact of the garbage collector start-
ing with the initial Java heap size established in the previous section “Determine
Memory Footprint.”

The following activities are involved in evaluating the garbage collector’s impact
on latency:

� Measuring minor garbage collection duration
� Measuring minor garbage collection frequency
� Measuring worst case full garbage collection duration
� Measuring worst case full garbage collection frequency

Measuring garbage collection duration and frequency is crucial to refining the
Java heap size configuration. Minor garbage collection duration and frequency

ptg6882136

Tune Latency/Responsiveness 279

measurements drive the refinement of the young generation size. Measuring the
worst case full garbage collection duration and frequency drive old generation sizing
decisions and the decision of whether to switch from using the throughput garbage
collector, enabled via -XX:+UseParallelOldGC or -XX:+UseParallelGC, to using
the concurrent garbage collector, enabled via -XX:+UseConcMarkSweepGC. The deci-
sion to switch to the concurrent garbage collector is made if the throughput collec-
tor’s worst case full garbage collection duration or frequency is too high compared
to the application’s latency requirements. If a switch is made, additional tuning of
the concurrent garbage collector may be required, as discussed later in this section.

Each of the previously mentioned activities is elaborated on in the next several
subsections. Before exploring each of these in more detail, several inputs to this step
are worth mentioning. They are described in the next subsection.

Inputs

There are several inputs to this step of the tuning process. They are derived from the
systemic requirements for the application.

� The acceptable average pause time target for the application. The
average pause time requirement(s) are compared against what is measured or
observed for minor garbage collection duration.

� The frequency of minor garbage collection induced latencies that are
considered acceptable. The frequency of minor garbage collections is com-
pared against what is considered tolerable. The frequency of these latency events
is generally not as important to application stakeholders as their duration.

� The maximum pause time incurred by the application that can be
tolerated by the application’s stakeholders. The maximum latency
requirement(s) are compared against what is measured as the worst case full
garbage collection duration.

� The frequency of the maximum pause time that is considered accept-
able by the application’s stakeholders. The frequency of maximum pause
times is essentially the frequency of full garbage collections. Again, most appli-
cation stakeholders are more interested in the average and maximum pause
times than the frequency at which they occur.

Once the inputs are known, garbage collection duration and frequency statistics
can be collected beginning with the Java heap size determined in the previous sec-
tion “Determine Memory Footprint” along with specifying the throughput garbage
collector enabled via the HotSpot command line option -XX:+UseParallelOldGC
or -XX:+UseParallelGC. By examining the statistics, young generation space

ptg6882136

280 Chapter 7 � Tuning the JVM, Step by Step

and old generation space sizes can be tuned to meet the above inputs. Refining the
young generation space and old generation space sizes through the evaluation of
observed minor garbage collection duration and frequency along with evaluating
worst case full garbage collection duration and frequency are the topics of the next
two subsections.

Refine Young Generation Size

Sizing decisions for the young generation space are made by evaluating garbage collec-
tion statistics and observing minor garbage collection durations and frequency. An exam-
ple of how to size a young generation space using garbage collection statistics follows.

Although the time it takes to perform a minor garbage collection is directly related
to the number of reachable objects in the young generation space, generally the
smaller the young generation space, the shorter the minor garbage collection dura-
tion. Regardless of the impact on the minor garbage collection duration, decreasing
the size of the young generation space increases the frequency of minor garbage
collections. This is because a smaller young generation space fills up in less time at
the same object allocation rate. Likewise, an increase in the young generation space
size decreases the frequency of minor garbage collections.

When examining garbage collection data and observing minor garbage collections
that are too lengthy, the corrective action is to reduce the size of the young generation
space. If minor garbage collections are too frequent, then the corrective action is to
increase the size of the young generation space.

To illustrate with an example, the minor garbage collections shown in
Figure 7-4 were produced with the following HotSpot VM command line options:
-Xms6144m -Xmx6144m -Xmn2048m -XX:PermSize=96m -XX:MaxPermSize=96m
-XX:+UseParallelOldGC.

Figure 7-4 shows the average duration of the minor garbage collections as .054
seconds. The average frequency of those minor garbage collections is one every 2.147
seconds. When calculating the average duration and frequency, the larger the number
of minor garbage collections in the calculation, the better the estimate of the average
duration and average frequency. It is also important to use minor garbage collections
known to have occurred while the application is running in its steady state.

The next step is to compare the observed average minor garbage collection dura-
tion to the application’s average latency requirement. If the observed average minor
garbage collection duration is greater than the application’s latency requirement,
decrease the size of young generation space and run another experiment. Collect
garbage collection statistics and reevaluate the data.

If the observed frequency of minor garbage collections is greater than the applica-
tion’s latency requirement (they occur too frequently), increase the size of the young
generation space and run another experiment. Collect garbage collection statistics
and reevaluate the data.

ptg6882136

Tune Latency/Responsiveness 281

It may require several iterations before you are able to meet the application’s
average latency requirement. As you change the size of the young generation space,
try to keep the size of old generation space the same. An example is described in the
next paragraph.

Using the garbage collection data in Figure 7-4, if the application’s latency requirement
is 40 milliseconds, the observed average minor garbage collection duration from the pre-
ceding example of 54 milliseconds (.054 seconds) is greater than the application’s latency
requirement. The Java heap space configuration used to produce the data in Figure 7-4
was -Xms6144m -Xmx6144m -Xmn2048m -XX:PermSize=96m -XX:MaxPermSize=96.
This means the old generation size is 4096 megabytes (old generation size is -Xmx minus
-Xmn). A decrease in the young generation size by about 10% and keeping old generation
size the same results in the following adjusted HotSpot VM command line options:

-Xms5940m -Xmx5940m -Xmn1844m
-XX:PermSize=96m -XX:MaxPermSize=96 -XX:+UseParallelOldGC

Notice the decrease in value for -Xmn from 2048m to 1844m and the Java heap size
(-Xmx and -Xms) reduction from 6144m to 5940m. Both young generation space
(-Xmn) and Java heap size (-Xmx and -Xms) are reduced by 204 megabytes, about
10% of the 2048 megabytes configured for the previous young generation size.

If the application requirements suggest it can tolerate longer pause times than
what are observed and measured in the garbage collection data, the young generation
size can be increased. Again, try to keep the size of the old generation space constant.

Figure 7-4 Example minor GC average duration and average frequency

Difference between
GC date/time stamps
is GC Frequency

2010-12-05T14:40:29.564-0800: [GC
 [PSYoungGen: 2045989K->249795K(2097152K)]
3634533K->1838430K(6291456K), 0.0543798 secs]
 [Times: user=0.38 sys=0.01, real=0.05 secs]
2010-12-05T14:40:31.949-0800: [GC
 [PSYoungGen: 2047896K->247788K(2097152K)]
3655319K->1859216K(6291456K), 0.0539614 secs]
 [Times: user=0.35 sys=0.01, real=0.05 secs]
2010-12-05T14:40:34.346-0800 [GC
 [PSYoungGen: 2045889K->248993K(2097152K)]
3677202K->1881099K(6291456K), 0.0532377 secs]
 [Times: user=0.39 sys=0.01, real=0.05 secs]
2010-12-05T14:40:36.815-0800 [GC
 [PSYoungGen: 2047094K->247765K(2097152K)]
3696985K->1900882K(6291456K), 0.0543332 secs]
 [Times: user=0.37 sys=0.01, real=0.05 secs]

Minor GC Durations

Average GC Frequency = 2.147 secs Avg Minor GC Duration = .054 secs

ptg6882136

282 Chapter 7 � Tuning the JVM, Step by Step

Regardless of whether the young generation heap size is increased or decreased,
collecting garbage collection statistics and recalculating the average minor gar-
bage collection duration must be done and evaluated against the application’s
latency requirements. It may require several iterations of changing young genera-
tion size.

To illustrate the exercise of increasing the young generation size as a result of an
application’s requirement for minor garbage collection frequency being greater than
the calculated average minor garbage collection frequency, suppose the application’s
requirement for minor garbage collection frequency is one every 5 seconds. In the
example in Figure 7-4, the average minor garbage collection frequency is one every
2.147 seconds. Since the application’s requirement for minor garbage collection fre-
quency is greater than the calculated frequency, the young generation size should be
increased. A rough estimate of how much to increase the young generation size is to
look at the current size of the young generation space and look at the average minor
garbage collection frequency. In this example, it takes on average 2.147 seconds to fill
a 2048 megabyte young generation space. Assuming a steady object allocation rate,
an increase of about 2.3 (5 / 2.17) seconds is needed. In other words, if it takes 2.17
seconds to fill a space of 2048 megabytes, it will take about 5 seconds to fill a space
of 4700 megabytes. Hence, the size of a young generation space needed to meet a 5
second minor garbage collection frequency target is about 4700 megabytes. The fol-
lowing is an updated set of HotSpot VM command line options based on this analysis:

-Xms8796m -Xmx8796m -Xmn4700m
-XX:PermSize=96m -XX:MaxPermSize=96 -XX:+UseParallelOldGC

Notice the increase in both young generation size, -Xmn, and the Java heap size, -Xmx
and -Xms, from their original values of 2048m and 6144m.

Additional general guidelines to keep in mind as the young generation size is
changed are

� The old generation space size should be not be much smaller than 1.5x
the live data size. See the previous section “Determine Memory Footprint”
for live data size definition and additional old generation sizing guidelines.

� Young generation space size should be at least 10% of the Java heap
size, the value specified as -Xmx and -Xms. A very small young generation
size can be counterproductive. It leads to frequent minor garbage collections.

� When increasing the Java heap size, be careful not to exceed the
amount of physical memory available to the JVM. A Java heap
size that consumes enough memory to cause the underlying system to
swap to virtual memory results in poor garbage collector and application
performance.

ptg6882136

Tune Latency/Responsiveness 283

If at this stage, taking into account only minor garbage collection induced latencies,
you are not able to meet the application’s average pause time or latency requirements
through sizing the young generation space, you must either make changes to the
application, change the JVM deployment model to deploy the application across addi-
tional JVMs, or revisit the application’s average pause time latency requirements.

If you can meet the application’s latency requirements focusing only on the minor
garbage collections, then you can proceed to sizing the old generation space in an
effort to meet the application’s worst case pause time and worst case pause time
frequency. This is the topic of the next subsection.

Refine Old Generation Size

The objective of this task is to evaluate the worst case pause time induced by a full
garbage collection and the frequency of full garbage collections.

As in the previous section, “Refine Young Generation Size,” garbage collection
statistics are required. The data of interest are full garbage collection duration and
frequency. The duration of full garbage collections that occur in steady state indicate
the worst case full garbage collection induced pause time for the application. If mul-
tiple full garbage collections occur in steady state, then calculate an average worst
case pause time. More data implies a better estimate.

Calculating the elapsed time between full garbage collections by taking the dif-
ference between full garbage collection date or time stamps provides the worst case
full garbage collection frequency. Figure 7-5 shows an example of two full garbage
collections with durations identified and frequency computed.

Figure 7-5 Example full GC average duration and frequency

Full GC duration

2010-12-05T15:10:11.231-0800: [Full GC
 [PSYoungGen: 455832K->0K(2097152K)]
 [ParOldGen: 4194289K->1401197K(4194304K)]
4650121K->1401197K(6291456K)
 [PSPermGen: 66329K->59470K(98304K)],
1.3370216 secs]
 [Times: user=7.03 sys=0.11, real=1.34 secs]
... minor GC events omitted ...
2010-12-05T15:35:41.853-0800: [Full GC
 [PSYoungGen: 1555832K->0K(2097152K)]
 [ParOldGen: 4194196K->1402217K(4194304K)]
5750028->1402217K(6291456K)
 [PSPermGen: 61351K->59667K(98304K)],
1.4299125 secs]
 [Times: user=7.56 sys=0.09, real=1.43 secs]

Average Full GC Frequency = 25 min, 30.622 secs
*Elapsed time between Full GCs

Average Full GC Duration = 1.383 secs

ptg6882136

284 Chapter 7 � Tuning the JVM, Step by Step

If no full garbage collections are found in the garbage collection data, they should
be induced as described earlier in the “Calculate Live Data Size” subsection. In addi-
tion, an estimate of the full garbage collection frequency should be calculated by
looking at the object promotion rate, the rate that objects get copied from the young
generation space to the old generation space. How to calculate the promotion rate is
described in the next several paragraphs.

 2010-12-05T14:40:29.564-0800: [GC
 [PSYoungGen: 2045989K->249795K(2097152K)]
 3634533K->1838430K(6291456K), 0.0543798 secs]
 [Times: user=0.38 sys=0.01, real=0.05 secs]
 2010-12-05T14:40:31.949-0800: [GC
 [PSYoungGen: 2047896K->247788K(2097152K)]
 3655319K->1859216K(6291456K), 0.0539614 secs]
 [Times: user=0.35 sys=0.01, real=0.05 secs]

Tip

Minor garbage collections immediately and shortly following a full garbage collection should
not be used in this calculation since it may take up to 15 minor garbage collections before
object promotions are observed. The 15 minor garbage collections may be the result of object
aging. Object aging is described in further detail later in this chapter.

Following are several example minor garbage collections. These are used to illus-
trate how to calculate the frequency of full garbage collections.

 2010-12-05T14:40:34.346-0800 [GC
 [PSYoungGen: 2045889K->248993K(2097152K)]
 3677202K->1881099K(6291456K), 0.0532377 secs]
 [Times: user=0.39 sys=0.01, real=0.05 secs]
 2010-12-05T14:40:36.815-0800 [GC
 [PSYoungGen: 2047094K->247765K(2097152K)]
 3696985K->1900882K(6291456K), 0.0543332 secs]
 [Times: user=0.37 sys=0.01, real=0.05 secs]

From the preceding garbage collections, the following is known:

� The Java heap size is 6291456K or 6144 megabytes (6191456 / 1024).
� The young generation size is 2097152K or 2048 megabytes (2097152 / 1024).
� The old generation size is 6144 - 2048 = 4096 megabytes.

ptg6882136

Tune Latency/Responsiveness 285

Subtracting the live data size, calculated earlier as part of the analysis done in
the “Determine MemoryFootprint” section, from the old generation size produces the
amount of available old generation space. For this example, assume the live data size
is 1370 megabytes. An old generation size of 4096 megabytes and a live data size of
1370 megabytes means there are 2726 megabytes of free space in the old generation
(4096 - 1370 = 2726).

How long it takes to fill 2726 megabytes of free space in the old generation is
determined by the young to old generation promotion rate. The promotion rate is
calculated by looking at the increase in the occupancy of the old generation space
along with the date or time stamp at each minor garbage collection. The occupancy
of the old generation space is the difference between the occupancy of the Java heap
after a minor garbage collection minus the occupancy of the young generation space
after that same minor garbage collection. Using the preceding example minor gar-
bage collections, the occupancy of the old generation space after each minor garbage
collection is

1588635K, for the first minor garbage collection

1611428K, for the second minor garbage collection

1632106K, for the third minor garbage collection

1653117K, for the fourth minor garbage collection

The increase in the old generation space size at each garbage collection is

22793K, between the first and second minor garbage collection

20678K, between the second and third minor garbage collection

21011K, between the third and fourth minor garbage collection

The average promoted at each minor garbage collection is about 21494K, or about
21 megabytes.

The remaining data needed to calculate the promotion rate is the minor garbage
collection frequency. In the preceding example garbage collections, the average minor
garbage collection frequency is one every 2.147 seconds. Therefore, the promotion
rate is 21,494K bytes / 2.147 seconds, or about 10,011K bytes (10 megabytes) per
second. The time it takes to fill 2726 megabytes of available old generation space is
272.6 seconds, 2726/10 = 272.6, about 4.5 minutes.

Therefore, based on an analysis of the example garbage collections given earlier,
this application has an estimated worst case full garbage collection frequency of
about one every 4.5 minutes. This estimate can easily be checked by running the
application in steady state for more than 4.5 minutes and observing a full garbage
collection.

ptg6882136

286 Chapter 7 � Tuning the JVM, Step by Step

If the estimated or observed full garbage collection frequency is more than the
application’s requirement for worst case latency frequency, you should increase the
size of the old generation space. This reduces the full garbage collection frequency.
As you increase the size of the old generation space, keep the size of the young gen-
eration space constant.

If You Are Observing Only Full Garbage Collections

When modifying the size of the old generation space, it is possible the old generation size
may become out of balance with the young generation size and result in the application
experiencing only full garbage collections. Usually this occurs when the old generation space
is not large enough to hold all the objects being promoted from the young generation space,
even after a full garbage collection. This situation can be identified in garbage collection
statistics as illustrated here:

 2010-12-06T15:10:11.231-0800: [Full GC
 [PSYoungGen: 196608K->146541K(229376K)]
 [ParOldGen: 262142K->262143K(262144K)]
 458750K->408684K(491520K)
 [PSPermGen: 26329K->26329K(32768K)],
 17.0440216 secs]
 [Times: user=11.03 sys=0.11, real=17.04 secs]
 2010-12-05T15:10:11.853-0800: [Full GC
 [PSYoungGen: 196608K->148959K(229376K)]
 [ParOldGen: 262143K->262143K(262144K)]
 458751K->411102K(6291456K)
 [PSPermGen: 26329K->26329K(32768K)],
 18.1471123 secs]
 [Times: user=12.13 sys=0.12, real=18.15 secs]
 2010-12-05T15:10:12.099-0800: [Full GC
 [PSYoungGen: 196608K->150377K(229376K)]
 [ParOldGen: 262143K->262143K(262144K)]
 458751K->412520K(6291456K)
 [PSPermGen: 26329K->26329K(32768K)],
 17.8130416 secs]
 [Times: user=11.97 sys=0.12, real=17.81 secs]

The key indicator that the old generation space is not large enough is that little space has
been reclaimed in the old generation space (the values to the right of the ParOldGen label),
and a large portion of the young generation space remains occupied after each full garbage
collection. When not enough space is available in the old generation to handle promoted
objects from the young generation, objects “back up” into the young generation space as
observed in the preceding output.

If you are able to meet your application’s worst case latency requirements after
several iterations of sizing the old generation space, you are finished with this JVM
tuning step. You can proceed to the next step in the tuning process presented in the
next major section “Tune Application Throughput.”

ptg6882136

Tune Latency/Responsiveness 287

If you are not able to meet your application’s worst case latency requirements due
to full garbage collection duration being too long, then you should switch to using the
concurrent garbage collector. Increasing the size of the old generation space generally
does not result in a heroic reduction in full garbage collection time with the through-
put garbage collector. The concurrent garbage collector has the capability to garbage
collect the old generation space mostly concurrently while the application is running.
The concurrent garbage collector is enabled with the HotSpot command line option:

Tip

There is a subtle difference between a stop-the-world compacting garbage collection and a
full garbage collection. In CMS, when there is not enough available space in old generation
space to handle object promotions from the young generation space, a stop-the-world
compacting garbage collection occurs only in the old generation space. When a full garbage
collection occurs, both the young generation and old generation space are garbage collected
except when -XX:-ScavengeBeforeFullGC is in use.

The goal with tuning the concurrent garbage collector is to avoid a stop-the-world
compacting garbage collection. However, that is much easier said than done. In some
application deployments they are unavoidable, especially when memory footprint
constraints exist.

The CMS garbage collector requires more fine-tuning compared to other HotSpot
VM garbage collectors—in particular, further fine-tuning young generation space
size and potentially tuning when to initiate the old generation’s concurrent garbage
collection cycle.

When migrating to the concurrent garbage collector from the parallel garbage col-
lector, you can expect slightly longer minor garbage collection durations in situations

-XX:+UseConcMarkSweepGC

Fine-tuning the concurrent garbage collector is described in the next subsection.

Fine-Tune Latency with the Concurrent Garbage Collector

With the concurrent garbage collector, also known as CMS, the old generation gar-
bage collector executes mostly concurrently with application threads. This presents
an opportunity to reduce both the garbage collection induced worst case latency
frequency and the worst case latency duration to the lengthiest minor garbage
collection. CMS does not perform compaction, so this is accomplished by avoiding
a stop-the-world compacting garbage collection of the old generation space. An old
generation overflow initiates a stop-the-world compacting garbage collection.

ptg6882136

288 Chapter 7 � Tuning the JVM, Step by Step

where objects are promoted from the young generation space to the old generation
space due to slower object promotion into old generation. CMS allocates memory in
old generation space from free lists. In contrast, the throughput garbage collector
must only bump a pointer in a thread-local allocation promotion buffer. In addition,
since the old generation garbage collector thread executes mostly concurrently with
application threads, you can expect lower application throughput. However, the worst
case latency frequency should be much less, since unreachable objects in the old
generation space can be garbage collected while the application is running and thus
prevent the old generation space from filling.

With CMS, if the space available in the old generation space is exhausted, a single-
threaded stop-the-world compacting garbage collection occurs. This type of garbage
collection in CMS usually has a longer duration than a full garbage collection with
the throughput garbage collector. As a result, the absolute worse case latency dura-
tion with CMS may be greater than the worst case latency with the throughput gar-
bage collector. Running out of old generation space and experiencing a stop-the-world
compacting garbage collection will catch the attention of your application stake-
holders due to the lengthy disruption in application responsiveness. Therefore, it is
important to avoid running out of old generation space. A general guideline to follow
when migrating to the concurrent garbage collector from the throughput garbage
collector is to increase the size of the old generation space by an additional 20% to
30% to allow the concurrent garbage collector to execute efficiently.

Several forces at work make tuning the concurrent garbage collector challenging.
One is the rate at which objects get promoted from the young generation space to
the old generation space. Another is the rate at which the concurrent old generation
garbage collector thread reclaims space. The third is the fragmenting of the old gen-
eration space as a result of the concurrent garbage collector reclaiming objects that
reside between reachable objects. This creates holes between reachable objects in the
old generation space and thus fragments the available space.

Fragmentation can be addressed by several different means. One is through com-
paction of the old generation space. Compacting the old generation space is accom-
plished with a stop-the-world compacting garbage collection. As mentioned earlier, a
stop-the-world compacting garbage collection can take a long time and is an event to
avoid since it is likely the largest and most significant contributor to an application’s
worst case latency duration. A second means to address fragmentation is to increase
the size of the old generation space. This may not completely address the fragmenta-
tion issue, but it helps delay the amount of time it takes for the old generation space
to become fragmented to a point where a compaction is required. Generally, the more
memory made available to the old generation space, the longer until a compaction
is necessary due to fragmentation. A goal to strive for is making the old generation
space large enough to avoid a heap fragmentation induced stop-the-world compacting
garbage collection during the application’s life cycle. In other words, apply the GC

ptg6882136

Tune Latency/Responsiveness 289

Maximize Memory Principle. An additional way to help deal with fragmentation is
to reduce the rate at which objects get promoted into the old generation space from
the young generation, that is, apply the Minor GC Reclamation Principle.

The tenuring threshold controls when objects are promoted from the young gen-
eration into the old generation. The tenuring threshold, further described later, is
computed internally by the HotSpot VM based on the occupancy of the young genera-
tion space, more specifically the occupancy of the survivor space. The role of survivor
spaces is described next followed by a discussion of the tenuring threshold.

Survivor Spaces Explained

Survivor spaces are part of the young generation space (see Figure 7-6). Additional
details on the eden and survivor spaces can be found in “The Young Generation” sec-
tion of Chapter 3.

The young generation space in all HotSpot garbage collectors is subdivided into
an eden space and two survivor spaces.

Figure 7-6 Eden and survivor spaces

Young
Generation

New Java object allocations Retention / aging of young objects
during minor garbage collections

Eden Survivor Survivor

Old Generation: for older, longer living objects

Permanent Generation: for VM & class meta-data

Promotions of longer lived objects
during minor garbage collections

Tip

In contrast to the concurrent garbage collector, the throughput garbage collector by default
enables a feature called adaptive sizing, which automatically sizes eden and survivor spaces.
But the general operation of how objects are allocated in eden and copied to and between
survivor spaces is the same.

ptg6882136

290 Chapter 7 � Tuning the JVM, Step by Step

One of the survivor spaces is labeled the “from” survivor space, and the other survi-
vor space is labeled the “to” survivor space. The role of the survivor spaces and their
labeling will make more sense shortly.

Eden space is where new Java objects are allocated. For instance, in a Java pro-
gram, a statement such as

Map<String, Long> map = new HashMap<String, Long>();

allocates a new HashMap object and any objects the HashMap constructor allocates in
the eden space. When the eden space becomes full, a minor garbage collection occurs.
Any live objects are copied from the eden space into the “to” survivor space along
with any surviving objects in the “from” survivor space. Upon completion of the minor
garbage collection, the eden space is empty, the “from” survivor space is empty, and
the “to” survivor space contains the live objects. Then the survivor spaces swap their
labels in preparation for the next minor garbage collection. The now empty “from”
survivor space takes on the “to” label, and the “to” survivor space takes on the “from”
label. Therefore, at the end of a minor garbage collection both the eden space and
one of the survivor spaces are empty. The other survivor space holds the live objects
that survived the minor garbage collection.

If during a minor garbage collection, the “to” survivor space is not large enough to
hold all of the live objects being copied from the eden space and the “from” survivor
space, the overflow will be promoted to the old generation space. Overflowing into the
old generation space may cause the old generation space to grow more quickly than
desired and result in an eventual stop-the-world compacting full garbage collection.
Again, a stop-the-world compacting full garbage collection is something to avoid as
much as possible when tuning a Java application with low latency requirements. In
other words, try to adhere to the Minor GC Reclamation Principle.

Avoiding survivor space overflow is accomplished by sizing the survivor spaces so
they are large enough to hold surviving objects long enough to age for some period
of time. Effective aging results in only long-lived objects being promoted to the old
generation space.

Tip

Aging is the means by which objects are retained in the young generation until they are no
longer reachable, so as to preserve old generation space for longer-lived objects.

The survivor spaces are sized using the HotSpot command line option:

-XX:SurvivorRatio=<ratio>

ptg6882136

Tune Latency/Responsiveness 291

The <ratio> must be a value greater than 0. -XX:SurvivorRatio=<ratio>
expresses the ratio of space between each survivor space and the eden space. The
following equation can be used to determine the survivor space size:

survivor space size = -Xmn<value>/(-XX:SurvivorRatio=<ratio> + 2)

The reason for the + 2 in the equation is there are two survivor spaces. The larger
the value specified as the ratio, the smaller the survivor space size.

To illustrate, suppose the young generation size is specified as -Xmn512m and
-XX:SurvivorRatio=6. With these two settings, the young generation space
will have two survivor spaces sized at 64 megabytes each and 384 megabytes
of eden space. 512/(6 + 2) = 64 megabytes for each of the two survivor spaces
leaves 384 megabytes for the eden space.

Using the same young generation size, -Xmn512m , but changing to
-XX:SurvivorRatio=2 results in survivor space sizes of 128 megabytes each and
an eden space of 256 megabytes. 512/(2 + 2) = 128 megabytes for each survivor
space leaving 256 megabytes for eden space.

For a given young generation size, decreasing the survivor ratio increases the
size of survivor spaces and decreases the size of the eden space. Likewise, increasing
the survivor ratio decreases the size of the survivor spaces and increases the size
of the eden space. It is important to recognize that decreasing the size of the eden
space results in more frequent minor garbage collections. In contrast, increasing the
size of the eden space results in less frequent minor garbage collections. It is also
important to recognize that the more frequently garbage collections occur, the more
quickly objects age.

To fine-tune the survivor space sizes and refine the young generation heap size,
monitor the tenuring threshold. The tenuring threshold determines how long objects
are retained in the young generation’s survivor spaces. The tenuring threshold, how
to monitor to it, and how to tune survivor spaces are described next.

Tenuring Threshold Explained

The term “tenuring” is synonymous with promoting. In other words, tenuring means
object promotion into the old generation space. The HotSpot VM calculates a tenur-
ing threshold at each minor garbage collection to determine when an object will be
promoted. The tenuring threshold is an object age. An object’s age is the number
of minor garbage collections it has survived. When an object is first allocated, its
age is 0. After the next minor garbage collection, if an object survives in the young
generation, its age is 1. If it survives a second minor garbage collection, its age is
2, and so on. Objects in the young generation space whose age exceeds the HotSpot

ptg6882136

292 Chapter 7 � Tuning the JVM, Step by Step

VM calculated tenuring threshold are promoted to the old generation space. In other
words, the tenuring threshold determines how long objects are retained, or aged, in
the young generation space.

Tip

Effective object aging in the young generation to prevent them from being prematurely
promoted to the old generation space reduces the rate that the old generation occupancy
increases. This reduces the frequency at which the CMS garbage collection cycle must execute
and also reduces the likelihood of fragmentation.

The tenuring threshold calculation is based on the amount of space required to
hold reachable objects in the young generation space and the target survivor space
occupancy after a minor garbage collection. The young generation garbage collector
used with CMS, called “ParNew” GC,2 calculates the tenuring threshold. There is
also a HotSpot VM command line option, -XX:MaxTenuringThreshold=<n>, that
can be used to ask the HotSpot VM to promote objects to the old generation space
only after an object’s age exceeds the value of <n>. The internally calculated tenuring
threshold never exceeds the value of the max tenuring threshold. The max tenuring
threshold can be set to a value ranging from 0–15 for Java 5 Update 6 and later, 0–31
for Java 5 Update 5 and earlier.

2. “ParNew GC” is explicitly enabled using -XX:+UseParNewGC. It is automatically enabled
when using CMS, -XX:+UseConcMarkSweepGC.

Tip

It is not recommended to set the max tenuring threshold value to 0. This causes objects to be
immediately promoted from young generation to old generation on the next minor garbage
collection after an object has been allocated. This will grow the old generation space very
rapidly and result in frequent full garbage collections.

It is also not recommended to set the max tenuring threshold to a value larger than the possible
maximum. That will result in objects being retained in survivor spaces until survivor spaces
overflow. If they overflow, objects are promoted to the old generation nondiscriminantly, that
is, they are not promoted based on their age. As a result, short-lived objects may be promoted
before longer-lived objects, which prevents effective object aging.

The HotSpot VM uses the max tenuring threshold as its calculated tenuring
threshold when the target survivor space occupancy is at or below what the HotSpot
VM attempts to maintain. See the “Tuning Target Survivor Space Occupancy” side-
bar for more information. If the HotSpot VM believes it cannot maintain the target

ptg6882136

Tune Latency/Responsiveness 293

survivor space occupancy, it uses a tenuring threshold lower than the maximum to
preserve the target survivor space occupancy. Any objects older than the tenuring
threshold are promoted to the old generation space. In other words, when the amount
of space consumed by surviving objects exceeds the target survivor space occupancy,
an overflow situation occurs. An overflow may cause objects to be promoted to the
old generation too soon and result in the old generation space filling more quickly
than desired, which in turn results in the concurrent garbage collector running more
frequently, reducing application throughput, and increasing the probability of frag-
mentation. All of which may lead to more frequent stop-the-world compacting gar-
bage collections. Remember, a stop-the-world compacting garbage collection of the
old generation space is a high latency garbage collection induced event.

Which objects are promoted in an overflow situation are determined by evaluating
their ages against the tenuring threshold. Objects older than the tenuring threshold are
promoted to the old generation space. Therefore, it is important to monitor the tenur-
ing threshold to avoid survivor space overflow. This is the topic of the next subsection.

Monitoring the Tenuring Threshold

As mentioned earlier, the max tenuring threshold, not to be confused with the inter-
nally calculated tenuring threshold, can be set using the HotSpot VM command line
option -XX:MaxTenuringThreshold=<n>. Determining the optimal value requires
monitoring the tenuring distribution, or object age distribution, using the HotSpot
VM command line option:

-XX:+PrintTenuringDistribution

The output from -XX:+PrintTenuringDistribution shows how effectively
objects age in the survivor spaces. The pattern to watch for in the output produced by
-XX:+PrintTenuringDistribution is that the number of bytes surviving at each
object age decreases as the object age increases and whether the tenuring threshold
calculated by the HotSpot VM is equal to or stays close to the value set for the max
tenuring threshold.
-XX:+PrintTenuringDistribution produces tenuring distribution infor-

mation at each minor garbage collection. It can also be used in combination with
other garbage collection command line options such as -XX:+PrintGCDateStamps,
-XX:+PrintGCTimeStamps, and -XX:+PrintGCDetails. When fine-tuning survi-
vor space sizes for effective object aging, you should include -XX:+PrintTenuring
Distribution statistics in your garbage collection data. It is also useful to capture
tenuring distribution data in production environments to obtain a log to help iden-
tify application events should a stop-the-world compacting garbage collection occur.

ptg6882136

294 Chapter 7 � Tuning the JVM, Step by Step

Here is an example of the output produced from -XX:+PrintTenuring
Distribution:

Desired survivor size 8388608 bytes, new threshold 1 (max 15)
- age 1: 16690480 bytes, 16690480 total

In this example the max tenuring threshold is set to 15, indicated by (max 15).
The internally calculated tenuring threshold is 1, indicated by new threshold 1.
Desired survivor size 8388608 bytes is the size of one of the survivor spaces
times the target survivor ratio. The target survivor ratio is a value the HotSpot VM
uses as the target occupancy percentage of the survivor space. You can read more
on how to use the desired survivor size information later in the chapter. Below the
header information is a listing of object ages. There is a row printed for each object
age with the number of bytes at that age, 16690480 bytes for age 1 in this example.
There is also a total number of bytes reported in each row. When there is more than
one age row, the value for the total is the cumulative number of bytes for that age row
and the preceding rows. Example output showing more than one age row is shown
a little later.

In the preceding example output, since the desired survivor size (8388608) is
less than the number of total surviving bytes (16690480), a survivor space overflow
occurred, that is, some objects were promoted to old generation as a result of this
minor garbage collection. A survivor space overflow suggests survivor spaces may be
too small. In addition, since the max tenuring threshold is 15 and the HotSpot VM
internally calculated a tenuring threshold of 1, it further suggests survivor spaces
are too small.

Tip

In general, observing a new tenuring threshold value that is consistently less than the max
tenuring threshold or observing a desired survivor size that is smaller than the number of
total surviving bytes (the value for the last row of object ages and the far right column) are
indications that the survivor spaces are too small.

If you observe that survivor spaces are too small, increase their size. A procedure
to determine how to size survivor spaces is described next.

Sizing Survivor Spaces

There is an important concept to keep in mind when changing the size of survivor spaces.
If the size of the young generation space is not changed when changing the survivor space

ptg6882136

Tune Latency/Responsiveness 295

size, an increase in survivor space size decreases the size of the eden space. Decreasing
the size of the eden space increases the frequency of minor garbage collections. There-
fore, if the current young generation size is pushing up against the application’s minor
garbage collection frequency requirements, the size of the eden space should be kept the
same when increasing the size of survivor space. In other words, the young generation
size should be increased whenever the size of the survivor spaces is increased.

If there is room for increased minor garbage collection frequency, then there is
a choice to be made between using some of the eden space to increase the survivor
space, or making the young generation space larger. It is generally a better choice,
if there is memory available, to increase the size of young generation rather than
reduce the size of the eden space. By keeping the eden size constant, the minor gar-
bage collection frequency is subject to less change as a result of increasing the size
of the survivor spaces.

Using the output from -XX:+PrintTenuringDistribution, the total number
of bytes for all object ages along with the target survivor space occupancy can be
used to calculate a survivor space size to use with your application. Repeating the
previous example:

Desired survivor size 8388608 bytes, new threshold 1 (max 15)
- age 1: 16690480 bytes, 16690480 total

The total number of surviving bytes is 16690480. The concurrent garbage collector
by default uses a target survivor space occupancy of 50%. Using this information,
the survivor spaces should be sized to a value of at least 33,380,960 bytes, that is,
16690480/50% = 33,380,960. 33,380,960 is about 32 megabytes. This calculation
provides the estimated survivor space size needed to age objects more effectively and
prevent overflow. To obtain a better estimate of the survivor space size to use, you
should monitor the tenuring distribution over a period of time while the application
is running in steady state and use the additional total surviving bytes data as a bet-
ter estimate of the survivor space size to use.

To age objects effectively for the application in this example, the survivor space
size should be increased to at least 32 megabytes. If the following set of HotSpot
command line options produced the example print tenuring threshold output data
given previously,

-Xmx1536m -Xms1536m -Xmn512m -XX:SurvivorRatio=30

and there is a desire to maintain the minor garbage collection frequency close to what
had been observed, then increasing the survivor space sizes to 32 megabytes requires
an updated set of HotSpot command line options such as

ptg6882136

296 Chapter 7 � Tuning the JVM, Step by Step

where the size of the young generation space is increased, the size of the eden space
is kept about the same, and the survivor space size is increased. Notice that both
the size of the Java heap, -Xmx and -Xms, and young generation space, -Xmn, are
increased by 32 megabytes. In addition, -XX:SurvivorRatio=15 sizes both sur-
vivor spaces at 32 megabytes each (544/(15 + 2) = 32). That leaves the eden space
the same size as the previous configuration at 480 megabytes (512 - 16 - 16 = 480
for the first configuration and 544 - 32 - 32 = 480 for the second configuration).

If there are constraints that do not allow for an increase in the young genera-
tion size, then an increase in survivor space size comes at the expense of reducing
the eden size. Here is an example that keeps the young generation size the same
but increases the size of survivor spaces from 16 megabytes to 32 megabytes each
and decreases the size of the eden space from 480 megabytes to 448 megabytes
(512/(14 + 2) = 32 and 512 - 32 - 32 = 448).

-Xmx1568m -Xms1568m -Xmn544m -XX:SurvivorRatio=15

-Xmx1536m -Xms1536m -Xmn512m -XX:SurvivorRatio=14

Again, remember that reducing the eden space size results in more frequent minor gar-
bage collections. But objects will be retained in the young generation for a longer period
of time relative to the original heap sizing due to the increase in survivor space size.

Suppose running the same application again with the revised heap size where
the eden size is kept constant, that is, using the following set of HotSpot command
line options,

-Xmx1568m -Xms1568m -Xmn544m -XX:SurvivorRatio=15

produced the following tenuring distribution:

Desired survivor size 16777216 bytes, new threshold 15 (max 15)
- age 1: 6115072 bytes, 6115072 total
- age 2: 286672 bytes, 6401744 total
- age 3: 115704 bytes, 6517448 total
- age 4: 95932 bytes, 6613380 total
- age 5: 89465 bytes, 6702845 total
- age 6: 88322 bytes, 6791167 total
- age 7: 88201 bytes, 6879368 total
- age 8: 88176 bytes, 6967544 total
- age 9: 88176 bytes, 7055720 total
- age 10: 88176 bytes, 7143896 total
- age 11: 88176 bytes, 7232072 total
- age 12: 88176 bytes, 7320248 total

ptg6882136

Tune Latency/Responsiveness 297

In this tenuring distribution output, the survivor space is not overflowing since the
total surviving bytes, 7320248, the last column, last row, is less than the desired
survivor size of 16777216 and the tenuring threshold is equal to the max tenuring
threshold. This suggests that objects are aging effectively and there is no survivor
space overflow.

In this example, since there are few objects reclaimed beyond age 3, you might
consider testing a configuration where the max tenuring threshold is set to 3, that
is, -XX:MaxTenuringThreshold=3. Such a set of command line options looks like

-Xmx1568m -Xms1568m -Xmn544m -XX:SurvivorRatio=15
-XX:MaxTenuringThreshold=3

The trade-off between this configuration and the previous one is that the latter
may avoid some unnecessary copying of objects between the “from” and “to” survivor
spaces at each minor garbage collection. Looking at the tenuring distribution across
many minor garbage collections during steady state suggests whether objects even-
tually get promoted to the old generation, or whether they eventually are garbage
collected. If you observe tenuring distributions in your garbage collections with a
similar pattern to the one shown previously, which rarely show object ages as high
as 15 with no survivor space overflow, you should leave the max tenuring threshold
at its default maximum value of 15. In this situation, the objects at ages where it
appears little is being reclaimed are not long-lived objects since they are eventually
garbage collected because they never reach the max tenuring threshold of age 15.
They are garbage collected in a minor garbage collection since they remain in the
young generation space rather than being promoted to the old generation space. With
the concurrent collector, any objects promoted to the old generation space that are
eventually garbage collected increase the probability of fragmentation and/or the
probability of a stop-the-world compacting garbage collection. Neither of these is
desirable. It is generally better to err on the side of copying objects too many times
between the survivor spaces than it is to promote objects to the old generation too
quickly.

You may have to repeat the steps of monitoring tenuring distribution, updating
survivor spaces, or in general reconfiguring young generation space size several
times until you are satisfied with the application’s latency due to minor garbage col-
lections. If you find minor garbage collection durations are too long, you should start
decreasing the size of the young generation space until you are able to meet the appli-
cation’s minor garbage collection duration latency requirements. Although reducing
the size of the young generation space may promote objects to the old generation
space more quickly and contribute to a higher probability of fragmentation, if the
concurrent garbage collector can keep up with the rate at which objects are promoted,
this situation may be better than the consequences of not meeting the application’s

ptg6882136

298 Chapter 7 � Tuning the JVM, Step by Step

latency requirements. If you are not able to meet the application’s minor garbage
collection duration latency or frequency requirements, you must either revisit the
application’s requirements, make some application changes, or possibly change JVM
deployment models to lessen the load on the JVM instance.

If you are able to meet application latency requirements for minor garbage collec-
tion duration and frequency, you can continue with the next step of tuning the initia-
tion of the CMS garbage collection cycle. Tuning the initiation of the CMS garbage
collection cycle is presented in the subsection “Initiating the CMS Collection Cycle”
later in the chapter.

Tuning Target Survivor Space Occupancy

The target survivor space occupancy is the survivor space occupancy the HotSpot VM
attempts to enforce after a minor garbage collection. It can be tuned with the HotSpot VM
command line option -XX:TargetSurvivorRatio=<percent>. The value to specify
with this command line option is actually a percentage of survivor space occupancy, rather
than a ratio. Its default value is 50.

Through extensive testing of a wide variety of different types of application workloads by
the HotSpot VM engineering team, a 50% target survivor space occupancy tends to work
best for most applications since it helps absorb spikes in surviving objects seen at minor
garbage collections.

Tuning the target survivor occupancy is rarely required. However, if your application has a
relatively consistent object allocation rate, you may consider raising the target survivor space
occupancy to something as high as 80 or 90. This can help reduce the amount of survivor space
needed to age objects. The challenge with setting -XX:TargetSurvivorRatio=<percent>
higher than the default is that the HotSpot VM may not be able to better adapt object aging
in the presence of spikes in object allocation rates, which can lead to promoting objects
earlier than desired. Using CMS, promoting objects too soon can contribute to increasing old
generation occupancy, which may lead to a higher probability of fragmentation since some
promoted objects may not be long-lived objects and must be garbage collected in a future
concurrent garbage collection cycle. Remember, fragmentation is a situation to avoid since
it contributes to the eventual likelihood of a stop-the-world compacting garbage collection.

Initiating the CMS Collection Cycle

Once the young generation space size, including eden and survivor spaces, has been
refined to meet application minor garbage collection induced latency requirements,
attention can shift to tuning the CMS garbage collector in an attempt to avoid worst
case latency duration and minimize worst case latency frequency. The goal is to
maintain available old generation space and consequently avoid stop-the-world com-
pacting garbage collections.

ptg6882136

Tune Latency/Responsiveness 299

Stop-the-world compacting garbage collections are the worst case garbage collec-
tion induced latency. In some applications it may not be possible to entirely avoid
them, but the tuning advice offered in this section at least reduces their frequency.

Successful tuning of the CMS garbage collector requires being able to garbage
collect objects in the old generation space at a rate that is at least as fast as the rate
that objects get promoted from the young generation space. Not being able to meet
this criteria is what is termed “losing the race.” The consequence of losing the race is
experiencing a stop-the-world compacting garbage collection. The key to not losing
the race is a combination of having a large enough old generation space and initiat-
ing the start of the CMS garbage collection cycle soon enough to allow it to reclaim
space at a rate faster than the promotion rate.

The initiation of a CMS cycle is based on the occupancy of old generation space.
If the CMS cycle starts too late, it will lose the race. It does not reclaim objects rap-
idly enough to avoid running out of old generation space. If the CMS cycle starts too
early, it introduces unnecessary overhead and impacts application throughput. It
is generally better to initiate the CMS cycle too early rather than too late since the
consequences of starting it too late are worse than starting it too early.

The HotSpot VM tries to adaptively figure out at what occupancy it should initi-
ate the start of a CMS garbage collection cycle. There are some cases where it does
not do a good enough job to avoid stop-the-world compacting garbage collections. If
you observe stop-the-world compacting garbage collections, you can tune when the
CMS cycle should start. Stop-the-world compacting garbage collections in CMS are
identified in garbage collection output by concurrent mode failure. The following is
an example:

174.445: [GC 174.446: [ParNew: 66408K->66408K(66416K), 0.0000618
secs]174.446: [CMS (concurrent mode failure): 161928K->162118K(175104K),
4.0975124 secs] 228336K->162118K(241520K)

The meaning of all the output fields is not as important as the concurrent mode fail-
ure. If you are observing concurrent mode failures in your garbage collection output,
you can instruct the HotSpot VM to initiate the start of the CMS cycle earlier using
the command line option:

 -XX:CMSInitiatingOccupancyFraction=<percent>

The value specified is the percentage of old generation occupancy at which the CMS
garbage collection cycle should start. For instance, if you would like the CMS cycle to
start at an old generation space occupancy of 65%, you set -XX:CMSInitiating
OccupancyFraction=65. A second HotSpot command line option should be used
in conjunction with -XX:CMSInitiatingOccupancyFraction=<percent> called

ptg6882136

300 Chapter 7 � Tuning the JVM, Step by Step

-XX:+UseCMSInitiatingOccupancyOnly instructs the HotSpot VM to always use
the -XX:CMSInitiatingOccupancyFraction as the occupancy of the old genera-
tion space to initiate a CMS cycle. If -XX:+UseCMSInitiatingOccupancyOnly
is not used, the HotSpot VM uses the -XX:CMSInitiatingOccupancyFraction
as the occupancy percentage to start only the first CMS cycle. It then attempts to
adaptively adjust when to start the CMS cycle for subsequent CMS cycles, that is,
it no longer uses the specified -XX:CMSInitiatingOccupancyFraction after the
first CMS cycle.

-XX:+UseCMSInitiatingOccupancyOnly

Tip

When specifying when to initiate the CMS cycle, it is important to use both -XX:CMSInitiating
OccupancyFraction=<percent> and -XX:+UseCMSInitiatingOccupancyOnly
together.

The occupancy specified with -XX:CMSInitiatingOccupancyFraction should
be larger than the occupancy percentage of the old generation corresponding to the
live data size. Remember from the “Determine Memory Footprint” section earlier in
the chapter that the live data size for an application is the heap occupancy after a
full garbage collection. If -XX:CMSInitiatingOccupancyFraction is not larger
than the occupancy percentage at the live data size, the CMS collector will run con-
stantly. As a general guideline, -XX:CMSInitiatingOccupancyFraction should
be a percentage of old generation occupancy corresponding to at least 1.5x the live
data size. For instance, if the following Java heap configuration is in use

-Xmx1536m -Xms1536m -Xmn512m

then the old generation size is 1024 megabytes (1536 - 512 = 1024). If the live data
size for the application is 350 megabytes, then the threshold of old generation space
occupancy that the CMS cycle should be started should be around 525 megabytes,
or about 51% occupancy (525/1024 = 51%). This is a starting point, and it will be
further refined through monitoring garbage collection statistics. The updated com-
mand line options for initiating the CMS cycle at 51% old generation occupancy are

-Xmx1536m -Xms1536m -Xmn512m
-XX:CMSInitiatingOccupancyFraction=51
-XX:+UseCMSInitiatingOccupancyOnly

ptg6882136

Tune Latency/Responsiveness 301

How early or late the CMS cycle should start depends on the rate that objects are
promoted from the young generation space to the old generation space, that is, the
growth rate of the old generation space. If the old generation space fills up slowly,
you can start the CMS cycle later. If the old generation space fills up quickly, you
should start the CMS cycle earlier, but not lower than the occupancy percentage of
the live data size. Rather than starting the CMS cycle lower than the live data size,
you should increase the size of the old generation space.

Knowing whether the CMS cycle starts too early or too late can be identified by
evaluating the garbage collection data. Here is an example where the CMS cycle
starts too late. For ease of reading, the output has been trimmed to show garbage
collection type, heap occupancy, and duration.

[ParNew 742993K->648506K(773376K), 0.1688876 secs]
[ParNew 753466K->659042K(773376K), 0.1695921 secs]
[CMS-initial-mark 661142K(773376K), 0.0861029 secs]
[Full GC 645986K->234335K(655360K), 8.9112629 secs]
[ParNew 339295K->247490K(773376K), 0.0230993 secs]
[ParNew 352450K->259959K(773376K), 0.1933945 secs]

Notice the Full GC shortly after the CMS-initial-mark. The CMS-initial-
mark is one of several phases reported during a CMS cycle. All the phases of a
CMS cycle are described in “The Mostly-Concurrent GC: Latency Matters” section
of Chapter 3.

Here is an example where the CMS cycle is started too early. For ease of reading,
the output has been trimmed to show garbage collection type, heap occupancy, and
duration.

[ParNew 390868K->296358K(773376K), 0.1882258 secs]
[CMS-initial-mark 298458K(773376K), 0.0847541 secs]
[ParNew 401318K->306863K(773376K), 0.1933159 secs]
[CMS-concurrent-mark: 0.787/0.981 secs]
[CMS-concurrent-preclean: 0.149/0.152 secs]
[CMS-concurrent-abortable-preclean: 0.105/0.183 secs]
[CMS-remark 374049K(773376K), 0.0353394 secs]
[ParNew 407285K->312829K(773376K), 0.1969370 secs]
[ParNew 405554K->311100K(773376K), 0.1922082 secs]
[ParNew 404913K->310361K(773376K), 0.1909849 secs]
[ParNew 406005K->311878K(773376K), 0.2012884 secs]
[CMS-concurrent-sweep: 2.179/2.963 secs]
[CMS-concurrent-reset: 0.010/0.010 secs]
[ParNew 387767K->292925K(773376K), 0.1843175 secs]
[CMS-initial-mark 295026K(773376K), 0.0865858 secs]
[ParNew 397885K->303822K(773376K), 0.1995878 secs]

The beginning of a CMS cycle is indicated by a CMS-initial-mark and the
end by CMS-concurrent-sweep and CMS-concurrent-reset. Notice that the

ptg6882136

302 Chapter 7 � Tuning the JVM, Step by Step

heap occupancy reported in the first CMS-initial-mark is 298458K. Then notice
that the ParNew minor garbage collections report little change in heap occupancy
between CMS-initial-mark and CMS-concurrent-reset. The heap occupancy
at the completion of a ParNew minor garbage collection is the value to the right of
the ->. In this example, very little garbage is being collected during a CMS cycle
as indicated by the small drop in heap occupancy between CMS-initial-mark
and CMS-concurrent-reset. The corrective action here is to start the CMS
cycle at a higher old generation occupancy percentage using -XX:CMSInitiating
OccupancyFraction and -XX:+UseCMSInitiatingOccupancyOnly. Based on
the initial occupancy at the CMS-initial-mark of 298458K, and a Java heap size
of 773376K, it appears the CMS cycle is starting at about 35% to 40% occupancy,
(298458K/773376K = 38.5%). Using a setting of -XX:CMSInitiatingOccupancy
Fraction=50 and -XX:+UseCMSInitiatingOccupancyOnly would force the CMS
cycle to start at a higher heap occupancy.

Here is an example where a CMS cycle is reclaiming a large amount of old gen-
eration space, yet not experiencing a stop-the-world compacting garbage collection,
that is, no concurrent mode failures. Again, for ease of reading, the output has been
trimmed to show garbage collection type, heap occupancy, and duration.

[ParNew 640710K->546360K(773376K), 0.1839508 secs]
[CMS-initial-mark 548460K(773376K), 0.0883685 secs]
[ParNew 651320K->556690K(773376K), 0.2052309 secs]
[CMS-concurrent-mark: 0.832/1.038 secs]
[CMS-concurrent-preclean: 0.146/0.151 secs]
[CMS-concurrent-abortable-preclean: 0.181/0.181 secs]
[CMS-remark 623877K(773376K), 0.0328863 secs]
[ParNew 655656K->561336K(773376K), 0.2088224 secs]
[ParNew 648882K->554390K(773376K), 0.2053158 secs]
[ParNew 489586K->395012K(773376K), 0.2050494 secs]
[ParNew 463096K->368901K(773376K), 0.2137257 secs]
[CMS-concurrent-sweep: 4.873/6.745 secs]
[CMS-concurrent-reset: 0.010/0.010 secs]
[ParNew 445124K->350518K(773376K), 0.1800791 secs]
[ParNew 455478K->361141K(773376K), 0.1849950 secs]

In this example, the occupancy at the beginning of the CMS cycle indicated by
CMS-initial-mark is 548460K. Between the start and end of the CMS cycle, indi-
cated by the CMS-concurrent-reset, there is a rather dramatic drop in the occu-
pancy reported in the ParNew minor garbage collections. In particular, there is a drop
from 561336K to 368910K just prior to the end of the CMS-concurrent-sweep. This
suggests that about 190 megabytes were garbage collected during the CMS cycle
(561336K - 368910K = 192426K = 187.91 megabytes). Also notice the occupancy
reported at the first ParNew minor garbage collection after CMS-concurrent-sweep
is 350518K. This suggests that more than 190 megabytes have been collected during
the CMS cycle (561336K - 350518K = 210818K = 205.88 megabytes).

ptg6882136

Tune Latency/Responsiveness 303

If you decide to fine-tune the start of the CMS cycle, be sure to try several differ-
ent old generation occupancy percentages. Monitoring the garbage collection data
and analyzing them leads you to what is the most appropriate for your application.

Explicit Garbage Collections

If you observe full garbage collections, which are initiated by an explicit call to
System.gc(), there are two ways to deal with them when using the concurrent
garbage collector:

 1. You can request the HotSpot VM to execute them as a concurrent garbage
collection cycle using the HotSpot VM command line option:

-XX:+ExplicitGCInvokesConcurrent

or

-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses

The first requires Java 6 or later. The second requires Java 6 Update 4 or
later. It is generally better to use -XX:+ExplicitGCInvokesConcurrentAnd
UnloadsClasses if the JDK version you are using supports it.

 2. You can ask the HotSpot VM to ignore explicit calls to System.gc() by using
the Hotspot command line option:

-XX:+DisableExplicitGC

This command line option also ignores explicit calls to System.gc() in the
other HotSpot VM garbage collectors.

Be careful when disabling explicit garbage collection. Doing so may have a non-
trivial performance impact on the Java application. There may also be situations
where timely object reference processing is required and garbage collections are
not happening frequently enough for that to occur. Applications using Java RMI
may be subject to this. It is advisable when explicitly disabling explicit garbage
collection to have a reason for doing so. Likewise, it is advisable to have a reason
for using System.gc() in an application.

ptg6882136

304 Chapter 7 � Tuning the JVM, Step by Step

Explicit garbage collections can be identified in the garbage collection output
rather easily. The garbage collection output contains text indicating that the full
garbage collection is the result of an explicit call to System.gc(). The following is
an example of such a full garbage collection:

2010-12-16T23:04:39.452-0600: [Full GC (System)
 [CMS: 418061K->428608K(16384K), 0.2539726 secs]
 418749K->4288608K(31168K),
 [CMS Perm : 32428K->32428K(65536K)],
 0.2540393 secs]
 [Times: user=0.12 sys=0.01, real=0.25 secs]

Notice the (System) label following the Full GC text. This indicates that System.
gc() induced the full garbage collection. If you observe an explicit full garbage collection
in the garbage collection logs, determine why it is happening and then decide whether it
should be disabled, whether the call should be removed from the source code, or whether
it makes sense to specify an invocation of a CMS concurrent garbage collection cycle.

Concurrent Permanent Generation Garbage Collection

Full garbage collections may also occur as a result of a full permanent generation
space. Monitoring the garbage collection data looking for full garbage collections and
then observing the occupancy of the permanent generation space identifies whether
they occur as a result of permanent generation space filling up. Here is an example
full garbage collection initiated by permanent generation space filling up:

2010-12-16T17:14:32.533-0600: [Full GC
 [CMS: 95401K->287072K(1048576K), 0.5317934 secs]
 482111K->287072K(5190464K),
 [CMS Perm : 65534K->58281K(65536K)], 0.5319635 secs]
 [Times: user=0.53 sys=0.00, real=0.53 secs]

Notice the occupancy of the permanent generation space, identified by the CMS Perm
label. The permanent generation size is the value between the parentheses, 65536K.
The permanent generation occupancy before the full garbage collection is the value
to the left of the ->, 65533K. The permanent generation occupancy after the full
garbage collection is the value to the right of the ->, 58281K. Seeing that the per-
manent generation occupancy before the full garbage collection, 65534K, is near the
permanent generation size, 65536K, suggests that this full garbage collection was
triggered by the permanent generation running out of space. Also notice that the old
generation space is not close to running out of space and that there is no evidence of
a CMS cycle being active, which later would indicate that it has lost the race.

ptg6882136

Tune Latency/Responsiveness 305

The HotSpot VM by default does not garbage collect the permanent generation
space with CMS despite the CMS Perm label reported in the garbage collection out-
put. To enable CMS permanent generation garbage collection, you must specify the
following HotSpot VM command line option:

-XX:+CMSClassUnloadingEnabled

If you are using Java 6 Update 3 or earlier, you must also specify the following com-
mand line option in addition to -XX:+CMSClassUnloadingEnabled:

-XX:+CMSPermGenSweepingEnabled

You can control the occupancy percentage of the permanent generation space to initi-
ate CMS permanent generation garbage collection using

-XX:CMSInitiatingPermOccupancyFraction=<percent>

This option takes a percentage as an argument in the same fashion as -XX:CMS
InitiatingOccupancyFraction. It is the percentage of permanent genera-
tion occupancy at which the CMS cycle should start. It also requires the use
of -XX:+CMSClassUnloadingEnabled. If you want -XX:CMSInitiatingPerm
OccupancyFraction to always be used as the percentage of permanent genera-
tion occupancy to initiate a CMS cycle, you must also specify:

-XX:+UseCMSInitiatingOccupancyOnly

CMS Pause Time Tuning

Two phases of a CMS cycle are stop-the-world phases where application threads
are blocked. These two phases are the initial mark phase and the remark phase.
Although the initial mark phase is single threaded, it rarely takes long to execute,
usually much less than any other garbage collection pause. The remark phase is
multithreaded. The number of threads used in the remark phase can be controlled
by the following HotSpot VM command line option:

-XX:ParallelGCThreads=<n>

As of Java 6 Update 23, it defaults to the number returned by the Java API
Runtime.availableProcessors() if the number returned is less than or equal

ptg6882136

306 Chapter 7 � Tuning the JVM, Step by Step

to 8; otherwise, it defaults to 5/8 the number returned by Runtime.available
Processors(). In cases where multiple applications are running on the same sys-
tem, it is advisable to set the number of parallel garbage collection threads to a
number lower than the default. Otherwise, garbage collections may intrude on the
performance of other applications as a result of a large number of garbage collection
threads executing at the same time.

The duration of the remark phase can in some cases be reduced by specifying

-XX:+CMSScavengeBeforeRemark

This command line option forces the HotSpot VM to perform a minor garbage collec-
tion prior to a CMS remark. Doing a minor garbage collection just prior to a remark
can minimize the amount of work for the remark phase by reducing the number of
objects in the young generation space that may be reachable from the old generation
space.

If the application has a large number of Reference or finalizable objects to be pro-
cessed, specifying the following HotSpot VM command line option can help reduce
garbage collection duration:

-XX:+ParallelRefProcEnabled

This option can be used in combination with other HotSpot VM garbage collectors.
It uses multiple rather than a single reference processing thread. This option does
not enable many threads to run method finalizers. It uses many threads to discover
finalizable objects that need to be enqueued for notification.

Next Steps

On completion of this step of the tuning process you have either determined that
you are not able to meet application latency requirements or have been able to meet
application latency requirements using the throughput or concurrent garbage col-
lector. If you are not able to meet application latency requirements, you can consider
using some of the additional performance command line options described in the
“Additional Performance Command Line Options” section later in this chapter. Other-
wise, you must either revisit application latency requirements, make changes to the
application, possibly doing some profiling to identify problematic areas, or consider
alternative JVM deployment models to spread the load across more JVM instances.
If you are able to meet application latency requirements, you can continue to the
next step in the tuning process, presented in the next section, “Tune Application
Throughput.”

ptg6882136

Tune Application Throughput 307

Tune Application Throughput

If you have made it this far through the tuning process, it is good to know that this
is the final step. In this step you measure application throughput and fine-tune the
JVM for high throughput.

The main input into this step is the application’s throughput performance
requirements. An application’s throughput is something measured at the appli-
cation level, not at the JVM level. Thus, the application must report some kind
of throughput metric, or some kind of throughput metric must be derived from
the operations it is performing. The observed application throughput can then
be compared to the application’s throughput requirements. When the observed
application throughput meets or exceeds the throughput requirements, you are
finished with the tuning process. If you need additional application throughput
to meet the throughput requirements, then you have some additional JVM tun-
ing work to do.

Another important input into this step is the amount of memory that can be made
available to the deployed Java application. As the GC Maximize Memory Principle
says, the more memory that can be made available for the Java heap, the better the
performance. This is true not only for throughput performance, but also for latency
performance.

It is possible that the application’s throughput requirements cannot be met. In
that case, the application’s throughput requirements must be revisited, application
changes must be made, or a change in the JVM deployment model is required. Once
one or more of those alternatives have been explored, you can iterate through the
tuning process again.

In arriving at this step, you either settled on using the throughput garbage collec-
tor enabled via -XX+UseParallelOldGC or -XX:+UseParallelGC, or you switched
to the concurrent garbage collector, CMS, as part of the previous step, Determine
and Tune Application Latency, described in the “Tune Latency/Responsiveness” sec-
tion earlier in the chapter. If you switched to using CMS, the options for increasing
application throughput are presented next. If you are using the throughput garbage
collector, the means to achieve additional throughput are described after those for
using CMS.

CMS Throughput Tuning

The options for obtaining additional application throughput when using CMS are
pretty much limited to the following alternatives or combination of alternatives:

� Explore using some of the additional command line options presented in the
“Additional Performance Command Line Options” section.

ptg6882136

308 Chapter 7 � Tuning the JVM, Step by Step

� Increase the size of the young generation space. Increasing the size of the young
generation space reduces the minor garbage collection frequency, which reduces
the total number of minor garbage collections required over the same period of
time.

� Increase the size of the old generation space. Increasing the size of the old gen-
eration space decreases the CMS cycle frequency and reduces the probability of
fragmentation, which reduces the likelihood and frequency of concurrent mode
failures along with stop-the-world compacting garbage collections.

� Further refine the young generation heap sizes as described in the previous sec-
tion “Tune Latency/Responsiveness.” Refining the young generation’s eden and
survivor spaces for optimal object aging to reduce the amount of objects being
promoted from young generation to old generation reduces the total number of
CMS cycles. But there are trade-offs to consider when refining eden and survivor
space sizes as described in the “Tune Latency/Responsiveness” section.

� Further refine the initiating of the CMS cycle by starting it later as described
in the previous section, “Tune Latency/Responsiveness.” Starting the CMS cycle
later may result in less frequent CMS cycles. But a consequence of starting the
CMS cycle later is it introduces a higher probability of experiencing a concur-
rent mode failure and stop-the-world compacting garbage collection.

Any of these choices, or any combination of choices, causes the garbage collector to
use fewer CPU cycles, leaving more CPU cycles to execute the application. The first
two alternatives offer the likelihood of realizing more throughput improvement with
lower risk of a high latency induced stop-the-world compacting garbage collection.

As a guideline, overhead with CMS, including minor garbage collection times
should be less than 10%. You may be able to drive the overhead down to as little
as 1% to 3%. Generally, if you are currently observing garbage collection overhead
with CMS at 3% or less, there probably is little additional throughput performance
improvement to be realized without a lot of effort.

Throughput Garbage Collector Tuning

The goal to accomplish in fine-tuning the throughput garbage collector for perfor-
mance throughput is to avoid full garbage collections as much as possible or ideally
avoid them indefinitely during steady state. This requires optimal object aging, which
is accomplished through explicit fine-tuning of survivor spaces. You can make the
eden space larger, which reduces minor garbage collection frequency and ensures
there is sufficient old generation space to hold the application’s live data size. Add a
little additional old generation space to deal with situations where objects may not be
optimally aged and some non-long-lived objects get promoted into the old generation
space. Since object aging is done by counting the number of minor garbage collections

ptg6882136

Tune Application Throughput 309

an object has survived and object aging is limited to a count of 15 for Java 5 Update
16 and later 31 for previous JDKs, making the eden space larger decreases the fre-
quency of minor garbage collections, which increases the length of time an object can
age, assuming survivor spaces are not overflowing.

The HotSpot VM’s throughput garbage collector, enabled via
-XX:+UseParallelOldGC and -XX:+UseParallelGC, offers the best throughput of
all the HotSpot VM garbage collectors. The throughput garbage collector by default uti-
lizes a feature called adaptive sizing. Adaptive sizing automatically attempts to size the
young generation’s eden and survivor spaces for optimal object aging based on object
allocation and survival rates. See Figure 7-6 for a depiction of eden and survivor spaces.
The intention of adaptive sizing is to provide ease of use, that is, easy JVM tuning, yet
offer reasonable throughput performance. Adaptive sizing works well for most applica-
tions. However, disabling adaptive sizing and fine-tuning eden space, survivor spaces,
and old generation space sizes is an option for applications in search of that last bit of
throughput. Disabling adaptive sizing does cost some flexibility with changing applica-
tion behavior, either within a run of the application, or as its data changes over time.

To disable adaptive sizing, use

-XX:-UseAdaptiveSizePolicy

Note the - symbol after the -XX:. This indicates that the feature described by Use-
AdaptiveSizePolicy is to be disabled. Only the throughput garbage collector sup-
ports adaptive sizing. Attempting to enable or disable adaptive sizing on garbage
collectors other than the throughput garbage collector (-XX:+UseParallelOldGC
or -XX:UseParallelGC) results in no effect, that is, it is a “no-op.”

An additional HotSpot VM command line option to produce more details
on survivor space occupancy, whether survivor spaces overflowed and
object promotions from the young to old generation in the garbage col-
lection logs, is -XX:+PrintAdaptiveSizePolicy . It is best used in
conjunction with -XX:+PrintGCDetails and either -XX:+PrintGCDateStamps
or -XX:+PrintGCTimeStamps. Here is an example of the garbage collection output
produced with -XX:+PrintGCDateStamps, -XX:PrintGCDetails, -XX:-UseAdap-
tive SizePolicy (disable adaptive sizing), and -XX:+PrintAdaptiveSizePolicy:

2010-12-16T21:44:11.444-0600:
 [GCAdaptiveSizePolicy::compute_survivor_space_size_and_thresh:
 survived: 224408984
 promoted: 10904856
 overflow: false
 [PSYoungGen: 6515579K->219149K(9437184K)]
 8946490K->2660709K(13631488K), 0.0725945 secs]
 [Times: user=0.56 sys=0.00, real=0.07 secs]

ptg6882136

310 Chapter 7 � Tuning the JVM, Step by Step

The additional information begins with the text, GCAdaptiveSizePolicy. The
value to the right of the survived label is the amount of surviving bytes in the
“to” survivor space. In other words, it is the occupancy of the “to” survivor space
after the minor garbage collection. In this example, the survivor space occupancy
is 224,408,984 bytes. The value to the right of the promoted label is the number
of bytes promoted from the young generation space to the old generation space,
10,904,856 bytes. The text to the right of the overflow label indicates whether
surviving objects overflowed into the old generation space; in other words, whether
enough survivor space is available to hold the surviving objects from garbage col-
lecting the eden space and “from” survivor space. For reaching optimal performance
throughput, it is desirable for survivor spaces to not overflow while the application
is running in steady state.

To begin fine-tuning, you should begin by disabling adaptive sizing and capture
additional survivor space statistics in the garbage collection logs using both
-XX:-UseAdaptiveSizePolicy and -XX:+PrintAdaptiveSizePolicy. This
provides some initial data to drive the tuning decisions. Suppose, for example, the
previous set of command line options used are

-Xmx13g -Xms13g -Xmn4g -XX:SurvivorRatio=6
-XX:+UseParallelOldGC -XX:PrintGCDateStamps -XX:+PrintGCDetails

The set of command line options should be updated to include disabling adaptive
sizing and the capture of additional survivor space statistics:

-Xmx13g -Xms13g -Xmn4g -XX:SurvivorRatio=6
-XX:+UseParallelOldGC -XX:PrintGCDateStamps -XX:+PrintGCDetails
-XX:-UseAdaptiveSizePolicy -XX:+PrintAdaptiveSizePolicy

First look for full garbage collections during application steady state. Including date
or time stamps can be helpful in identifying when the application transitions from
an initialization phase to a steady state phase. For example, if you know the applica-
tion takes 30 seconds to complete its initialization phase and begin its steady state
phase, you can look for the garbage collections that occur after those 30 seconds have
elapsed.

Observing full garbage collections in steady state may suggest that short-lived
objects may be getting promoted to the old generation space. If there are full garbage
collections occurring in steady state, first confirm that the old generation space is
sized at about 1.5x the live data size, the occupancy of the old generation space after
a full garbage collection. If need be, increase the size of the old generation space to
preserve the 1.5x general guideline. This ensures you have a reasonable amount

ptg6882136

Tune Application Throughput 311

of head room to work with should the application experience unexpected spikes in
object allocation rates that result in short-lived objects getting promoted to old gen-
eration or there is some other unexpected event that results in objects getting pro-
moted too quickly. Having this additional head room will delay, or possibly prevent,
a full garbage collection from occurring during steady state application execution.

After confirming sufficient old generation space is available, start looking at each
minor garbage collection occurring in steady state. First look to see whether survivor
spaces are overflowing. If survivor spaces are overflowing on a minor garbage collec-
tion, the output shows the overflow field as true; otherwise, the overflow field will be
false. An example where a survivor space is overflowing is

2010-12-18T10:12:33.322-0600:
 [GCAdaptiveSizePolicy::compute_survivor_space_size_and_thresh:
 survived: 446113911
 promoted: 10904856
 overflow: true
 [PSYoungGen: 6493788K->233888K(9437184K)]
 7959281K->2662511K(13631488K), 0.0797732 secs]
 [Times: user=0.59 sys=0.00, real=0.08 secs]

If survivor spaces are overflowing in steady state, objects are promoted to the old
generation space before they have an opportunity to fully age and die. In other words,
it is likely objects are getting promoted into the old generation space too quickly.
Frequent survivor space overflows tend to lead to frequent full garbage collections.
Increasing survivor space size prevents overflow and therefore reduces the frequency
of full garbage collections. How to tune survivor space size is the next topic.

Tuning Survivor Spaces

The objective of tuning survivor space size is to retain or age short-lived objects in the
young generation as long as possible before they are promoted to the old generation
space. Begin by looking at each minor garbage collection occurring in steady state,
in particular the number of survived bytes. Consider ignoring data from several
minor garbage collections as the application transitions from an initialization state
to steady state since there may be some long-lived objects allocated in the initializa-
tion phase requiring some additional aging before being promoted to old generation.
For most applications, ignoring 5 to 10 minor garbage collections as the application
enters steady state usually covers this case.

The number of survived bytes at each minor garbage collection is identi-
fied in each minor garbage collection as part of the additional data printed with
-XX:+PrintAdaptiveSizePolicy. In the following example output, the number
of survived bytes is 224,408,984.

ptg6882136

312 Chapter 7 � Tuning the JVM, Step by Step

Using the maximum number of survived bytes along with knowing the target sur-
vivor space occupancy, you can determine the worst case survivor space size to age
objects most effectively during steady state. If a target survivor space occupancy is
not specified by -XX:TargetSurvivorRatio=<percent>, the target survivor space
occupancy defaults to 50%.

Tune survivor spaces for the worst case scenario first. This is done by finding the
maximum survived bytes in minor garbage collections between full garbage collec-
tions occurring in steady state, ignoring the first 5 to 10 minor garbage collections
after entering application steady state. Finding the maximum survived bytes can be
simplified by writing an awk or perl script to process the data or by pulling the data
into a spreadsheet.

Sizing survivor spaces for effective object aging is unfortunately not as simple
as merely setting the survivor space size to a value at or slightly higher than the
maximum survived bytes obtained from the garbage collection logs. There are other
things to keep in mind. Increasing survivor space size without increasing the size
of the young generation space results in a smaller eden space. A decrease in the
eden space size increases the frequency of minor garbage collections. An increase
in minor garbage collection frequency decreases the length of time an object has to
age in survivor spaces. As a result, objects are subject to promotion to old genera-
tion sooner, causing the old generation to fill up faster and eventually provoking a
full garbage collection. Therefore, you should try to keep the size of the eden space
constant when increasing the size of survivor spaces. You should increase the size of
the young generation by the amount of the survivor space increase yet maintain the
old generation size. Increasing young generation space at the expense of old genera-
tion space has its consequences. If the live data size is greater than the size of the
old generation, the application will likely experience nonstop full garbage collections
and may also throw OutOfMemoryErrors. Therefore, be careful when reconfiguring
spaces so you do not take too much from the old generation space. If the application
footprint requirements allow it, and there is sufficient available memory, the best
option is increasing the size of the Java heap (-Xms and -Xmx) rather than taking
from the old generation space.

Also, remember the HotSpot VM by default targets survivor space occupancy after
a minor garbage collection at 50%. If the -XX:TargetSurvivorRatio=<percent>
command line option is in use, then it uses <percent> as the target survivor space

2010-12-16T21:44:11.444-0600:
 [GCAdaptiveSizePolicy::compute_survivor_space_size_and_thresh:
 survived: 224408984
 promoted: 10904856
 overflow: false
 [PSYoungGen: 6515579K->219149K(9437184K)]
 8946490K->2660709K(13631488K), 0.0725945 secs]
 [Times: user=0.56 sys=0.00, real=0.07 secs]

ptg6882136

Tune Application Throughput 313

occupancy. If the survivor space occupancy trends above this target, objects are pro-
moted to the old generation before they have reached their maximum age. To calculate
the minimum survivor space required to effectively age the maximum survived bytes,
the maximum survived bytes must be divided by the target survivor space occupancy,
50%, or the percent specified with -XX:TargetSurvivorRatio=<percent>.

To illustrate with an example, consider the following command line options:

-Xmx13g -Xms13g -Xmn4g -XX:SurvivorRatio=6
-XX:+UseParallelOldGC -XX:-UseAdaptiveSizePolicy
-XX:PrintGCDateStamps -XX:+PrintGCDetails -XX:+PrintAdaptiveSizePolicy

The overall JVM heap size is 13 gigabytes. The young generation space size is 4 gigabytes.
The old generation space size is 9 gigabytes (13 - 4 = 9). The survivor spaces each
have a size of 512 megabytes (4 gigabytes/(6 + 2) = .5 gigabytes = 512 megabytes).
Suppose an analysis of the garbage collection logs finds the maximum bytes sur-
vived during application steady state as 495,880,312 bytes, about 473 megabytes
(495,880,312/(1024 * 1024) = 473). Since there is no explicit use of -XX:Target
SurvivorRatio=<percent> in the set of command line options, the target survivor
space occupancy is the default 50%. A minimum survivor space size to set, or one
that is slightly higher, based on the worst case survived bytes in this example is
495,880,312/50% = 991,760,624 bytes, about 946 megabytes.

From the initial command line options above, a 4 gigabyte young generation space
is divided into two survivor spaces at 512 megabytes each and an eden space at 3
gigabytes (4 - (.5 * 2) = 3). The analysis of the worst case survived bytes suggests
survivor spaces should be at least 946 megabytes each. A 1024 megabyte survivor
space, in other words 1 gigabyte, is pretty close to the 946 megabytes needed for each
survivor space. To preserve the rate at which object ages are incremented, that is,
the frequency of minor garbage collections, the eden size must remain at or near the
same size of 3 gigabytes. Hence, the young generation space must be sized with or
near 1024 megabytes for each survivor space along with 3 gigabytes of eden space for
a total young generation space of 5 gigabytes. In other words, the young generation
size should be 1024 megabytes, or 1 gigabyte, larger than was specified in the initial
configuration. Changing only -Xmn4g to -Xmn5g results in a 1 gigabyte reduction
in the old generation space. The ideal configuration is increasing the Java heap size
(-Xmx and -Xms) by 1 gigabyte. But if memory footprint requirements or the amount
of memory available on the system do not allow for it, then ensure the resulting old
generation space is comfortably larger than the live data size. A general guideline to
follow is the old generation size should be 1.5x larger than the live data size.

Assuming the application’s footprint requirements allow it and there is enough
memory available, an updated command line for increasing the size of the survivor

ptg6882136

314 Chapter 7 � Tuning the JVM, Step by Step

spaces to accommodate the worst case bytes survived during steady state while
maintaining eden space and old generation space size is

-Xmx14g -Xms14g -Xmn5g -XX:SurvivorRatio=3
-XX:+UseParallelOldGC -XX:-UseAdaptiveSizePolicy
-XX:PrintGCDateStamps -XX:+PrintGCDetails -XX:+PrintAdaptiveSizePolicy

This sizes old generation space at 9 gigabytes (14 - 5 = 9), same size as before;
young generation space at 5 gigabytes, 1 gigabyte (1024 megabytes) larger than
before; survivor spaces at 1 gigabyte (1024 bytes) each, (5/(3 + 2) = 1); and eden
space at 3 gigabytes (5 - (1 * 2) = 3).

You may have to do several resizing iterations until you achieve application peak
throughput that fits within the application’s memory footprint requirements. The
peak throughput is expected to be found in a configuration that is most effective at
aging objects in the survivor spaces.

As a general guideline, garbage collection overhead with the throughput garbage
collector should be less than 5%. If you are able to drive the overhead down to as
little as 1% or less, you may not be able to do much better without doing some very
extensive or specialized JVM tuning in addition to what is presented in this chapter.

If you are not able to increase the size of the young generation space while main-
taining the size of the eden space and are either unable to maintain the size of the old
generation space or are concerned with falling too close to the live data size for the old
generation space size or are bounded by the amount of memory you can make available
for the Java heap, there is an additional alternative to explore. When looking at the
maximum survived bytes at each minor garbage collection in steady state, calculate
the minimum, maximum, average, standard deviation, and median survived bytes.
These calculations offer information about the application’s object allocation rate, that
is, is it fairly steady without wide swings, or does it experience wide swings? If it does
not have wide swings, that is, there is not a large gap between minimum and maxi-
mum or the standard deviation is small, try several configurations raising the target
survivor occupancy percentage (-XX:TargetSurvivorRatio=<n>) from its default of
50, to 60, 70, 80, or possibly 90. This is an option to consider in the presence of memory
constraints, that is, application memory footprint requirements or other limitations.
Setting the target survivor occupancy higher than the default of 50 for applications
having wide swings in object allocations can, however, result in survivor space overflow.

Tuning Parallel GC Threads

The number of throughput garbage collector threads should also be tuned based on
the number of applications running on the same system and the underlying hardware
platform. As mentioned in the “CMS Pause Time Tuning” subsection earlier in the

ptg6882136

Tune Application Throughput 315

chapter, in cases where multiple applications are running on the same system, it is
advisable to set the number of parallel garbage collection threads to a number lower
than the default using the command line option -XX:ParallelGCThreads=<n>.

Otherwise, garbage collections may intrude heavily on the performance of the other
applications due to a large number of garbage collection threads executing at the same
time. As of Java 6 Update 23, the number of parallel garbage collection threads defaults
to the number returned by the Java API Runtime.availableProcessors() if the
number returned is less than or equal to 8; otherwise, it defaults to 5/8 the number
returned by Runtime.availableProcessors(). A general guideline for the number
of parallel garbage collection threads to set in the presence of multiple applications on
the same system is taking the total number of virtual processors (the value returned
by Runtime.availableProcessors()) and dividing it by the number of applications
running on the system, assuming that load and Java heap sizes are similar among the
applications. If the load or Java heap sizes differ substantially, then some weighting of
the number of parallel garbage collection threads for each Java application is a better
approach.

Deploying on NUMA Systems

If the application is deployed on a NUMA (Non-Uniform Memory Architecture) sys-
tem, an additional HotSpot VM command line option that can be used with the
throughput garbage collector is

-XX:+UseNUMA

This command line option leverages the relationship of CPU to memory location
to allocate objects in memory local to where the allocating thread is executing. The
premise at work here is that the thread that allocates the object is the one that is
most likely to access it in the near future. By allocating objects in local memory, it
takes less time to fetch the object from memory by the same thread than if the object
had been allocated in remote memory.

The -XX:+UseNUMA command line option should only be used when a JVM spans
a topology of CPU to memory where access times from CPU to memory differ. For
example, if a JVM is deployed in a processor set on a NUMA system, but the proces-
sor set does not contain a CPU to memory topology such that access times differ, then
-XX:+UseNUMA should not be used.

Next Steps

If you have reached this point of the JVM tuning process and you are not able
to meet the application’s throughput requirements, you can explore using the

ptg6882136

316 Chapter 7 � Tuning the JVM, Step by Step

command line options presented in the section “Additional Performance Com-
mand Line Options” later in the chapter. If none of the additional command line
options in that section allow you to meet your application’s throughput per-
formance requirements, then you must either revisit application performance
requirements, change the application, or change the JVM deployment model.
Once one or more of those alternatives are chosen, you can again iterate through
the tuning process.

Edge cases where some of the general JVM tuning guidelines may not apply are
described in the next section.

Edge Cases

In some situations the general guidelines presented in the step-by-step JVM tuning
process do not apply. This section explores those possibilities.

Some applications have very large object allocation rates with a small number of
long-lived objects. Such applications may require a much larger young generation
space than old generation space. An example of such an application is the SPEC
benchmark SPECjbb2005.

Some applications experience a small number of object promotions. These applica-
tions may not require an old generation space much larger than the live data size
since the growth of old generation space occupancy is very slow.

Some applications with low latency requirements using the CMS collector run
well with a small young generation space to keep minor garbage collection induced
latencies short and a large old generation space. In such a configuration, it is likely
objects will be promoted to the old generation quickly rather than aging effectively in
survivor spaces. Instead, CMS garbage collects these objects after they are promoted.
The likelihood of fragmentation of the old generation space is mitigated by a large
old generation space.

Additional HotSpot command line options that may offer application improved
performance are described in the next section.

Additional Performance Command Line Options

Several additional HotSpot VM command line options not mentioned previously in
this chapter may offer a Java application improved latency or throughput perfor-
mance through JIT compiler code generation optimizations and other HotSpot VM
performance capabilities. These optimizations and features along with the HotSpot
VM command line options that enable them are presented in this section.

ptg6882136

Additional Performance Command Line Options 317

Latest and Greatest Optimizations

When new performance optimizations are integrated into the HotSpot VM they are
usually introduced under the command line option -XX:+AggressiveOpts.

New optimizations are introduced under this command line option as a way to
isolate the latest and greatest optimizations from those that have proved stable over
time. Applications that are more interested in stability over performance can choose
to not use this command line option because the introduction of new optimizations
may result in unexpected JVM behavior. It also allows for applications in search of
every bit of performance they can get to take on a little more risk using a JVM con-
figuration that enables the new optimizations.

As new optimizations demonstrate stability, they are made the default. It may be
several update releases before they become the default.

Using the -XX:+AggressiveOpts command line option should be considered if
the application stakeholders are looking for additional performance and are will-
ing to accept the additional small risk associated with enabling the most recent
optimizations.

Escape Analysis

Escape analysis is a technique that evaluates the scope of a Java object. In particular,
if a Java object allocated by some executing thread can ever be seen by a different
thread, the object “escapes.” If a Java object does not escape, additional optimiza-
tion techniques can be applied. Hence, the optimization technique is called escape
analysis.

Escape analysis optimizations in the HotSpot VM are enabled with the following
command line option:

-XX:+DoEscapeAnalysis

It was introduced in Java 6 Update 14 and is automatically enabled with
-XX:+AggressiveOpts. It is enabled by default beginning with Java 6 Update 23,
but otherwise disabled in previous Java 6 Updates.

The HotSpot VM JIT compiler can apply any of the following optimization tech-
niques through escape analysis:

� Object explosion. Object explosion is a technique where an object’s fields
are allocated in places other than the Java heap and can potentially be elimi-
nated. For example, an object’s fields can be placed directly in CPU registers
or object allocation can be done on the stack rather than the Java heap.

ptg6882136

318 Chapter 7 � Tuning the JVM, Step by Step

� Scalar replacement. Scalar replacement is an optimization technique to
reduce memory accesses. Consider the following Java class that acts as a holder
for the related values of a length and width of a rectangle:

 public class Rectangle {
 int length;
 int width;
 }

The HotSpot VM can optimize the allocation and use of a nonescaping Rectangle
class instance by allocating both the length and width fields directly in CPU
registers without allocating a Rectangle object. As a result there is no need to
dereference a Rectangle object pointer to load its length and width fields into
CPU registers each time those fields are accessed. The net effect is a reduction
in memory accesses.

� Thread stack allocation. Thread stack allocation, as the name implies, is an
optimization technique that allocates an object in a thread’s stack frame rather
than the Java heap. An object that never escapes can be allocated in a thread’s
stack frame since no other thread will ever see the object. Thread stack alloca-
tion reduces the number of objects allocated to the Java heap, which reduces
the frequency of garbage collection.

� Eliminate synchronization. If an object allocated by a thread never escapes
and the thread locks the allocated object, the lock can be eliminated by the JIT
compiler since no other thread ever sees the allocated object.

� Eliminate garbage collection read/write barriers. If an object allocated
by a thread never escapes, it is reachable only from thread-local roots, so stores
of its address into other objects do not need a read or write barrier. A read or
write barrier is only needed if the object can be seen by a different thread, which
usually occurs if the allocated object is assigned to a field of some other object
that can be seen by another thread, and thus escapes.

Biased Locking

Biased locking is an optimization technique that biases an object to the thread that
last acquired the lock. In uncontended lock situations where only one thread ever
locks the object, near lock-free overhead can be realized.

Biased locking was introduced in Java 5 Update 6. It is enabled with the HotSpot
VM command line option -XX:+UseBiasedLocking.

Java 5 HotSpot JDKs require the explicit enabling of biased locking to use the
feature. Biased locking is automatically enabled with -XX:+AggressiveOpts in
Java 5 HotSpot VMs. In Java 6 HotSpot JDKs, biased locking is enabled by default.

ptg6882136

Additional Performance Command Line Options 319

Experience has shown this feature is useful for most Java applications. However,
some applications do not perform well using it—for example, applications where the
thread that acquires a lock is usually not the same as the thread that acquired it last.
An example is an application where locking activity is dominated by locking around
a worker thread pool and worker threads. In this family of Java applications, since a
stop-the-world safepoint operation is required to revoke a bias, it may be beneficial
to explicitly disable biased locking by specifying -XX:-UseBiasedLocking. If you
suspect your application may fit this family of Java applications you should conduct
a performance experiment to compare the performance of biased locking enabled
(-XX:+UseBiasedLocking) versus disabled (-XX:-UseBiasedLocking).

Large Pages

Memory in a computer system is divided into fixed sized blocks called pages. Memory
accesses by a program translate a virtual memory address to a physical memory
address. Virtual to physical memory address mappings are held in a page table. To
reduce the cost of accessing a page table on every memory access, a fast cache of vir-
tual to physical address translations is often used. This cache is called a translation
lookaside buffer, or TLB for short.

Accessing a TLB to satisfy a virtual to physical address mapping request is much
faster than walking the page tables to find the mapping. A TLB usually has a fixed
number of entries it can hold. An entry in a TLB is a mapping of a memory address
range based on the page size. Therefore, a larger page size allows for a larger range of
memory addresses per entry and per TLB. With a wider range of addresses represented
in a TLB, fewer address translation requests miss the address range found in the TLB.
When a request for an address translation is not found in the TLB, it is called a TLB
miss. When a TLB miss occurs, walking the page table in memory is usually required.
Walking the page table is an expensive operation compared to finding the address
translation in the TLB. Hence, the benefit of using large pages is reduced TLB misses.

The HotSpot VM has support for using large pages on Oracle Solaris (also referred to
as Solaris hereafter), Linux, and Windows. Usually processors support several different
page sizes. Page sizes can also be different based on a processor or processor family. In
addition, operating system configuration may be required to utilize large pages.

The procedure required to use large pages in the HotSpot VM for Solaris, Linux,
and Windows is described in the next subsections.

Large Pages on Solaris

Using large pages on Solaris is enabled by default. It can also be
specified with the command line option -XX:+UseLargePages.

ptg6882136

320 Chapter 7 � Tuning the JVM, Step by Step

On Solaris, large pages work with no additional specialized operation system
configuration.

On Solaris SPARC processors, several different page sizes are available depend-
ing on the processor. The default page size on all SPARC processors is 8 kilobytes.
UltraSPARC-III and UltraSPARC-IV processors also support 4 megabyte pages.
UltraSPARC@IV+ supports up to 32 megabyte pages. At the time of this writing,
SPARC T-series supports up to 256 megabyte pages.

On Intel and AMD systems, page sizes range from 4 kilobytes, to 2 megabytes for
x64, to 4 megabytes through page size extension, to 1 gigabyte on recent AMD64 and
Intel Xeon and Core systems.

A list of page sizes supported on a platform can be obtained using the Solaris
pagesize -a command. Here is an example output from the Solaris pagesize -a
command on a system running an UltraSPARC T2 processor:

$ pagesize -a
8192
65536
4194304
268435456

The values reported by the pagesize command are in bytes. The output shows 8
kilobyte, 64 kilobyte, 4 megabyte, and 256 megabyte pages are possible page sizes.

The HotSpot VM can also be configured to use a specific page size with the
command line option -XX:LargePageSizeInBytes=<n>[g|m|k]

The value of <n> is the size and the trailing g, m, or k represents gigabytes,
megabytes, and kilobytes. Therefore, to use 256 megabyte pages, you specify
-XX:LargePageSizeInBytes=256m. This command line option is useful when
you want to explicitly specify the page size to use. If the underlying platform
does not support the page size specified, the HotSpot VM falls back to using the
default page size for the given platform.

Large Pages on Linux

As of this writing, using large pages on Linux requires operating system configuration
modifications in addition to using the command line option -XX:+UseLargePages.
The Linux modifications required can vary depending on the Linux distribution and
Linux kernel. To enable large pages on Linux it is advisable to consult a Linux admin-
istrator or your Linux distribution documentation for the appropriate changes. Once
the Linux operating system configuration changes have been made, the command
line option -XX:+UseLargePages must be used. For example:

ptg6882136

Bibliography 321

If large pages are not set up properly, the HotSpot VM will still accept
-XX:+UseLargePages as a valid command line option, but it will report it was not
able to acquire large pages and will fall back to using the default page size for the
underlying platform.

Large Pages on Windows

Use of large pages on Windows requires changing Windows security settings to lock
pages into memory for the user running the Java application. This is done through
the Group Policy Editor. To launch the Group Policy Editor and make this configura-
tion change, follow these steps:

 1. From the Start menu, select Run and type gedit.msc. This opens the Group
Policy editor.

 2. In the Group Policy editor, expand the Computer Configuration. Then expand
Windows Settings, expand Security Settings, expand Local Policies, and select
the User Rights Assignment folder.

 3. Double-click on the Lock page in memory entry in the right panel.

 4. In the Local Security Policy Setting dialog, click the Add button.

 5. In the Select Users or Groups dialog, add the account name of the user who
will run the Java application.

 6. Click the Apply and OK buttons to apply the changes. Then quit the Group
Policy editor.

After changing the configuration to lock pages in memory, remember to reboot to
activate the policy change.

Then add -XX:+UseLargePages to the set of command line options used to run
the application. For example:

$ java -server -Xmx1024m -Xms1024m -Xmn256m -XX:+UseLargePages ...

Bibliography

Printezis, Tony, and Charlie Hunt. “Garbage Collection Tuning in the Java HotSpot
Virtual Machine.” http://developers.sun.com/learning/javaoneonline/sessions/2009/
pdf/TS-4887.pdf.

Printezis, Tony, and Charlie Hunt. “Step-by-Step: Garbage Collection Tuning in the
HotSpot Virtual Machine.” JavaOne 2010 Conference, San Francisco, California.

$ java -server -Xmx1024m -Xms1024m -Xmn256m -XX:+UseLargePages ...

http://developers.sun.com/learning/javaoneonline/sessions/2009/pdf/TS-4887.pdf
http://developers.sun.com/learning/javaoneonline/sessions/2009/pdf/TS-4887.pdf

ptg6882136

322 Chapter 7 � Tuning the JVM, Step by Step

Goetz, Brian, Tony Printezis, and John Coomes. “Inside Out: A Modern Virtual
Machine Revealed.” http://developers.sun.com/learning/javaoneonline/sessions/2009/
pdf/TS-5427.pdf.

“How to: Enable the Lock Pages in Memory Option” (Windows). http://msdn.micro-
soft.com/en-us/library/ms190730.aspx.

Hohensee, Paul, and David Dagastine Keenan. “High Performance Java Technology
in a Multi-core World. JavaOne 2007 Conference, San Francisco, California.

“Dot-Com & Beyond.” Sun Professional Services, Built to Last: Designing for Sys-
temic Qualities. Sun Professional Services.com Consulting, 2001.

ISO 8601:2004. International Organization for Standardization. http://www.iso.org/
iso/catalogue_detail?csnumber=40874.

Masamitsu, Jon. “What the Heck’s a Concurrent Mode?” http://blogs.sun.com/
jonthecollector/entry/what_the_heck_s_a.

http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://developers.sun.com/learning/javaoneonline/sessions/2009/pdf/TS-5427.pdf
http://developers.sun.com/learning/javaoneonline/sessions/2009/pdf/TS-5427.pdf
http://msdn.microsoft.com/en-us/library/ms190730.aspx
http://msdn.microsoft.com/en-us/library/ms190730.aspx
http://blogs.sun.com/jonthecollector/entry/what_the_heck_s_a
http://blogs.sun.com/jonthecollector/entry/what_the_heck_s_a

ptg6882136

323

8
Benchmarking Java
Applications

It is a common practice to evaluate the performance of an application or make
inferences about the performance of an application through the use of benchmarks.
Benchmarks are programs specifically developed to measure the performance of one
or more elements of a computing system. In the context of Java software, bench-
marks are Java programs intended to measure the performance of one or more ele-
ments of a system where the Java program is being executed. These elements can
include the entire hardware and software stack or be limited to a small segment of
functionality in a Java program. The latter is often described as a micro-benchmark
since it has a much narrower focus. Benchmarks used to make the broader evalua-
tion of a system’s performance, that is, the entire hardware and software stack, are
often industry standard benchmarks such as those developed under the collabora-
tion of industry competitors such as those developed at SPEC (Standard Perfor-
mance Evaluation Corporation). In contrast, micro-benchmarks tend to be created by
developers since micro-benchmarks have a narrow or specific performance question
to be analyzed.

Developing benchmarks, especially micro-benchmarks, to execute in a modern
Java Virtual Machine (JVM) introduces numerous challenges that can often lead
an observer and a developer of a benchmark to improper or incorrect conclusions
due to one or more of the many runtime optimizations that can be made by modern
JVMs such as the Java HotSpot VM (also referred to as HotSpot VM hereafter). The
development of Java benchmarks, including micro-benchmarks, is largely an art.
This chapter describes several potential issues to be aware of when writing Java
benchmarks, including micro-benchmarks, and how to identify potential issues with a

ptg6882136

324 Chapter 8 � Benchmarking Java Applications

micro-benchmark along with tips to effectively write Java benchmarks. Additionally,
how to identify performance improvements or regressions with benchmarks through
the use of the design of experiments and statistical methods to improve confidence
in arriving at conclusions are also presented. To gain the most from this chapter, it
may be helpful to read or review the “HotSpot VM JIT Compilers” section of Chapter
3, “JVM Overview.” Doing so will help you learn about some of the complex optimiza-
tions a modern JVM’s JIT compiler can perform on a Java application.

Challenges with Benchmarks

This section presents several unintentional mistakes developers experience when
developing Java benchmarks or Java micro-benchmarks. Remember that bench-
marks measure a much broader area of a system than micro-benchmarks, which
measure specific portions, or small segments of functionality.

Benchmark Warm-up

One of the most common unintentional errors made by developers of Java bench-
marks and Java micro-benchmarks is not including a warm-up period, or not hav-
ing a sufficiently long warm-up period where a JVM’s JIT compiler can identify
and produce optimizations. A warm-up period provides the HotSpot VM’s JIT
compiler the opportunity to collect information about a running program and
make intelligent dynamic optimization decisions based on the “hot” code paths
taken by the executing program. By default, the HotSpot Server VM executes
a block of Java byte code 10,000 times before the HotSpot Server JIT compiler
produces native machine code for that block of Java bytecode. The HotSpot Cli-
ent VM begins producing native machine code at 1,500 iterations. Since HotSpot
Client and HotSpot Server JIT compilers produce native machine code after
an application has been running for a period of time, the JIT compiler may be
actively produce native machine code during a measurement interval of an exe-
cuting benchmark. Additionally, HotSpot’s JIT compilers consume some CPU
cycles to make optimization decisions to generate native machine code. As a
result, an experiment that involves executing a benchmark that does not include
a warm-up period or a long enough warm-up period has a high probability of
reporting inaccurate findings.

A strategy to ensure the JIT compiler has ample opportunity to determine the best
optimizations and produce native machine code is to incorporate into the benchmark
or micro-benchmark a sufficient warm-up period. This warm-up period should be
long enough that the benchmark or micro-benchmark has reached benchmark steady
state and JIT compiler steady state.

ptg6882136

Challenges with Benchmarks 325

A good way to ensure a HotSpot JIT compiler has reached steady state, finished its
optimizations, and generated optimized code for a benchmark is to execute a run of the
benchmark with the HotSpot VM command line option -XX:+PrintCompilation
along with instrumenting the benchmark to indicate when it has completed the
warm-up period. -XX:+PrintCompilation causes the JVM to print a line for each
method as it optimizes or deoptimizes. Following is a small portion of output pro-
duced by -XX:+PrintCompilation on a micro-benchmark.

Tip

During warm-up, it is important to execute the code paths that will be measured during the
measurement interval. One of the advantages of a JIT compiler is that runtime feedback can
be used to optimize for the common case. If parts of a micro-benchmark are not executed
during warm-up, the JIT compiler may presume that the code is infrequently executed and
concentrate on optimization opportunities elsewhere.

 11 java.util.Random::nextInt (60 bytes)
 12 java.util.Random::next (47 bytes)
 13 java.util.concurrent.atomic.AtomicLong::get (5 bytes)
 14 java.util.HashSet::contains (9 bytes)
 15 java.util.HashMap::transfer (83 bytes)
 16 java.util.Arrays$ArrayList::set (16 bytes)
 17 java.util.Arrays$ArrayList::set (16 bytes)
 18 java.util.Collections::swap (25 bytes)
 19 java.util.Arrays$ArrayList::get (7 bytes)
 20 java.lang.Long::<init> (10 bytes)
 21 java.lang.Integer::longValue (6 bytes)
 22 java.lang.Long::valueOf (36 bytes)
 23 java.lang.Integer::stringSize (21 bytes)
 24 java.lang.Integer::getChars (131 bytes)

For a detailed explanation of the output produced by -XX:+PrintCompilation,
see Appendix A, “HotSpot VM Command Line Options of Interest.” Being able to
understand the meaning of the output generated from -XX:+PrintCompilation
is not as important as when the information is emitted. The goal in the context of
developing a benchmark is to not see any output from -XX:+PrintCompilation
while the benchmark is executing in a measurement interval.

Tip

-XX:+PrintCompilation used in conjunction with instrumentation reporting when the
warm-up cycle is completed helps identify whether the benchmark you are executing is
indeed executing with JIT compiled native machine code. In addition, specifying different
warm-up period lengths can provide additional evidence that the JIT compiler has reached
steady state.

ptg6882136

326 Chapter 8 � Benchmarking Java Applications

An example that illustrates the use of a warm-up period and instrumentation for a
micro-benchmark follows. Specifics of what is being benchmarked are deliberately not
included. The example’s intent is to illustrate the usefulness of adding instrumentation to
be able to identify when the benchmark has completed the warm-up period and when the
JIT compiler has reached steady state, that is, when it has completed its optimizations.

 public static void main(String[] args) {
 int warmUpCycles = 1000000;
 int testCycles = 50000000;
 SimpleExample se = new SimpleExample();
 System.err.println(“Warming up benchmark ...”);
 long nanosPerIteration = se.runTest(warmupCycles);
 System.err.println(“Done warming up benchmark.”);
 System.err.println(“Entering measurement interval ...”);
 nanosPerIteration = se.runTest(testCycles);
 System.err.println(“Measurement interval done.”);
 System.err.println(“Nanoseconds per iteration : +
 nanosPerIteration);
 }

 private long runTest(int iterations) {
 long startTime = System.nanoTime();
 // Execute the test ‘iterations’ number of times.

 // Deliberately leaving out specifics of what is
 // being performance tested in this benchmark.

 long elapsedTime = System.nanoTime();
 return (elapsedTime – startTime)/iterations;
 }

In the preceding example there may be an issue in the length of time to execute
the method runTest(). It may not be sufficiently long enough, which can result in a
small or misleading nanoseconds per iteration value. This topic is further discussed
in a later section of this chapter, “Use of Time Java APIs.” In addition, if you are
observing -XX:+PrintCompilation output during the measurement interval, JIT
compiler activity is taking place and the benchmark has not reached JIT compiler
steady state. This can usually be corrected by increasing the length of the warm-up
period and possibly adding multiple warm-up periods.

Tip

A good idiom for effective micro-benchmark implementations is to use and execute the same
method(s) during warm-up periods(s) as those executed during the measurement interval.

After observing no output from -XX:+PrintCompilation indicating the JIT
compiler has completed its optimizations prior to executing in the measurement

ptg6882136

Challenges with Benchmarks 327

interval(s) on several executions of the benchmark, the benchmark should be exe-
cuted several times without -XX:+PrintCompilation to observe if the reported
performance results are consistent. If they are not consistent, the benchmark may
be suffering from another challenge of creating benchmarks or micro-benchmarks.

Garbage Collection

The impact of garbage collection pauses is often overlooked in the execution of bench-
marks, especially micro-benchmarks. Since garbage collections can pause application
threads, or consume CPU cycles concurrently, results from executing a benchmark
experiencing garbage collections can lead to incorrect conclusions (unless it is the
performance of garbage collectors, which is the purpose of the benchmark). Therefore
it is important to tune the garbage collector and size the Java heap appropriately
for the benchmark being executed. The ideal situation is to avoid garbage collections
during the measurement interval of a benchmark. For some benchmarks it may not
be possible to avoid garbage collections. In either case, it is important to tune the
JVM’s garbage collector for that benchmark’s workload to minimize its impact on
the reported performance results. For micro-benchmarks it is important to avoid a
garbage collection during the measurement interval since micro-benchmarks usually
are short in execution time and usually do not require a large Java heap. If garbage
collections cannot be avoided in a micro-benchmark, the serial garbage collector,
-XX:+UseSerialGC, should be used along with explicitly setting the initial heap
size, -Xms, the maximum heap size, -Xmx, to the same value and explicitly setting
the young generation heap size using -Xmn.

Tip

A common practice used in micro-benchmarks, which are subject to garbage collections
during a measurement interval is to call System.gc() several times prior to entering
the measurement interval. System.gc() is called several times since Java objects with
finalizers may require multiple garbage collections to be freed. In addition, the System.
runFinalization() API can be called explicitly to help in asking the JVM to complete the
execution of finalize() methods on unreachable objects whose finalizers are waiting to
be executed or partially executed.

To tune the JVM’s garbage collector for a benchmark, other than a micro-benchmark,
which may incur garbage collections during its measurement interval, tune the JVM
as described in Chapter 7, “Tuning the JVM, Step by Step.”

To observe the behavior of the garbage collector when executing a benchmark
use the -verbose:gc JVM command line flag to get an indication of the impact of
garbage collection on the benchmark’s performance. As mentioned earlier, the ideal

ptg6882136

328 Chapter 8 � Benchmarking Java Applications

situation is for the benchmark to complete its performance measurement interval
without experiencing a garbage collection. Adding -verbose:gc to the command
line along with adding instrumentation that indicates the phase of the benchmark
shows whether garbage collections are occurring during the measurement inter-
val. This is a similar approach as described in the previous section “Benchmark
Warm-up.”

Use of Time Java APIs

Until the introduction of the System.nanoTime() Java API, most Java benchmarks
or micro-benchmarks used the System.currentTimeMillis() Java API to take a
time stamp at the beginning and end of a measurement interval and then calculated
the difference between the end time and start time to report an elapsed time it took
to execute the code of interest.

There is a degree of accuracy issue with using the Java API System.
currentTimeMillis() and System.nanoTime(). Although the value returned by
System.currentTimeMillis() is the current time in milliseconds, the accuracy
of the value at a millisecond level depends on the operating system. The Java API
specification for System.currentTimeMillis() explicitly states that although the
value returned is a millisecond, the granularity of the returned value depends on
the underlying operating system. This specification provides the opportunity to use
operating system APIs that may report milliseconds, but updates to the millisecond
counter may occur at lesser intervals such as every 30 millisecond intervals. The spec-
ification is intentionally loose so that the Java API could be satisfied across a wide
range of operating systems, some of which may not be able to report millisecond accu-
racy. The issue with using the Java API System.nanoTime() is similar. Although
the method provides nanosecond precision, it does not provide nanosecond accuracy.
The Java API specification for System.nanoTime() states there is no guarantee
about how frequently the values returned by System.nanoTime() are updated.

Hence, when using System.currentTimeMillis() to measure elapsed time, the
measurement interval needs to be sufficiently large enough such that the degree of
accuracy of System.currentTimeMillis() does not matter. In other words, the
measurement interval needs to be large relative to a millisecond (i.e., many seconds
or possibly as much as minutes). The same applies to using System.nanoTime(). For
example, depending on the underlying operating system, System.nanoTime(), as
described in the Java API specification, returns the current value of the most precise
available system timer. The most precise available system timer may not have nano-
second accuracy. It is advisable to know the granularity and accuracy of these two Java
APIs for the platform or operating system where the benchmark will be executed. If
you do not know, if the source code is available, looking at the underlying implementa-
tion of these two Java APIs to gain an understanding of the granularity and accuracy

ptg6882136

Challenges with Benchmarks 329

should be considered, especially if the measurement intervals are narrow or very
small relative to a millisecond, if you are using System.currentTimeMillis(), or
nanosecond, if you are using System.nanoTime().

Tip

It is a good practice to use System.nanoTime() to obtain start and end time stamps
for measurement intervals in micro-benchmarks. Then report the elapsed time difference
between the end and start time stamps or report the elapsed nanoseconds per iteration of the
operation of interest, or alternatively report the number of iterations per second. The most
important criterion is to ensure the micro-benchmark has run long enough to reach steady
state and the measurement interval is long enough.

Optimizing Away Dead Code

Modern JVMs have the capability to identify code that is never called through the
form of static analysis, through runtime observation, and through a form of light-
weight profiling. Since micro-benchmarks rarely produce significant output, it is
often the case some portions of micro-benchmark code can be identified as dead
code by a JVM’s JIT compiler. In extreme cases the code of interest being measured
could be completely optimized away without the creator or executor of the micro-
benchmark knowing. The following micro-benchmark, which attempts to measure the
time it takes to calculate the twenty-fifth Fibonacci1 number is an example where a
modern JVM’s JIT compiler can find dead code and eliminate it.

public class DeadCode1 {

 final private static long NANOS_PER_MS = 1000000L;
 final private static int NUMBER = 25;

 // Non-recursive Fibonacci calculator
 private static int calcFibonacci(int n) {
 int result = 1;
 int prev = −1;
 int sum = 0;
 for (int i = 0; i <= n; i++) {
 sum = prev + result;
 prev = result;
 result = sum;
 }

1. Fibonacci, also known as Leonardo di Pisa, in his thirteenth century book Liber abaci posed
the following question: Two young rabbits, one of each sex, are placed on an island. A pair of rab-
bits do not reproduce until they are two months old. After they are two months old, each pair of
rabbits produces another pair each month. What is an equation that models the number of pairs
of rabbits on the island after n months, assuming no rabbits die? The Fibonacci sequence. [1]

ptg6882136

330 Chapter 8 � Benchmarking Java Applications

 return result;
 }

 private static void doTest(long iterations) {
 long startTime = System.nanoTime();
 for (long i = 0; i < iterations; i++)
 calcFibonacci(NUMBER);
 long elapsedTime = System.nanoTime() - startTime;
 System.out.println(” Elapsed nanoseconds -> ” +
 elapsedTime);
 float millis = elapsedTime / NANOS_PER_MS;
 float itrsPerMs = 0;
 if (millis != 0)
 itrsPerMs = iterations/millis;
 System.out.println(” Iterations per ms ---> ” +
 itrsPerMs);
 }

 public static void main(String[] args) {
 System.out.println(”Warming up ...”);
 doTest(1000000L);
 System.out.println(”Warmup done.”);
 System.out.println(”Starting measurement interval ...”);
 doTest(900000000L);
 System.out.println(”Measurement interval done.”);
 System.out.println(”Test completed.”);
 }
}

Notice in this example there is a warm-up period of one million iterations and a
measurement interval of 900 million iterations. However, in doTest(), the call to
method calcFibonacci(int n) can be identified as dead code and subsequently
optimized into a no-op and eliminated. A no-op is defined as an operation or sequence
of operations that has no effect on the state or output of a program. A JIT compiler
could potentially see that no data computed in calcFibonacci() escapes that
method and may eliminate it. In other words, the JIT compiler can determine that
calcFibonacci() is a no-op and can eliminate the call to it as a performance opti-
mization. The preceding micro-benchmark executed with a Java 6 HotSpot Server
VM on a 2GHz AMD Turion running Oracle Solaris 10 produced the following output:

Warming up ...
 Elapsed nanoseconds -> 282928153
 Iterations per ms -> 3546.0
Warmup done.
Starting measurement interval ...
 Elapsed nanoseconds -> 287452697
 Iterations per ms -> 313588.0
Measurement interval done.

Test completed.

ptg6882136

Challenges with Benchmarks 331

Comparing the iterations per millisecond during the warm-up period and measure-
ment interval suggests the HotSpot Server JIT compiler has managed to increase
the performance of calculating the twenty-fifth Fibonacci number by almost 9,000%.
A speed up of 9,000% does not make sense. This is pretty strong evidence something
is wrong with the implementation of this micro-benchmark.

If this benchmark is updated with the following modifications the reported itera-
tions per millisecond change drastically:

 1. Modify the doTest() method to store the returned result of the called method,
calcFibonacci(int n).

 2. Print the stored result returned from the called calcFibonacci(int n)
method after the elapsed time has been calculated in the doTest() method.

An updated implementation follows:

public class DeadCode2 {

 final private static long NANOS_PER_MS = 1000000L;
 final private static int NUMBER = 25;

 private static int calcFibonacci(int n) {
 int result = 1;
 int prev = −1;
 int sum = 0;
 for (int i = 0; i <= n; i++) {
 sum = prev + result;
 prev = result;
 result = sum;
 }
 return result;
 }

 private static void doTest(long iterations) {
 int answer = 0;
 long startTime = System.nanoTime();
 for (long i = 0; i < iterations; i++)
 answer = calcFibonacci(NUMBER);
 long elapsedTime = System.nanoTime() - startTime;
 System.out.println(” Answer -> ” + answer);
 System.out.println(” Elapsed nanoseconds -> ” +
 elapsedTime);
 float millis = elapsedTime / NANOS_PER_MS;
 float itrsPerMs = 0;
 if (millis != 0)
 itrsPerMs = iterations/millis;
 System.out.println(” Iterations per ms ---> ” +
 itrsPerMs);
 }

Continued

ptg6882136

332 Chapter 8 � Benchmarking Java Applications

Executing this modified version produces the following output:

Warming up ...
 Answer -> 75025
 Elapsed nanoseconds -> 28212633
 Iterations per ms -> 35714.0
Warmup done.
Starting measurement interval ...
 Answer -> 75025
 Elapsed nanoseconds -> 1655116813
 Iterations per ms -> 54380.0
Measurement interval done.

Test completed.

Now, the difference between the reported iterations per millisecond between
warm-up and measurement interval is about 150%. Observing a speed up of
150% is more believable than the 9,000% observed in the earlier version of the
micro-benchmark. But if this version of the micro-benchmark is executed with
-XX:+PrintCompilation, there appears to be some compilation activity occurring
during the measurement interval.

Executing the preceding modified micro-benchmark version with the addition of
-XX:+PrintCompilation shows the following output:

Warming up ...
 1 DeadCode2::calcFibonacci (31 bytes)
 1% DeadCode2::doTest @ 9 (125 bytes)
 1% made not entrant DeadCode2::doTest @ 9 (125 bytes)
 Answer -> 75025
 Elapsed nanoseconds -> 38829269
 Iterations per ms -> 26315.0
Warmup done.
Starting measurement interval ...
 2 DeadCode2::doTest (125 bytes)
 2% DeadCode2::doTest @ 9 (125 bytes)
 Answer -> 75025
 Elapsed nanoseconds -> 1650085855
 Iterations per ms -> 54545.0
Measurement interval done.

Test completed.

 public static void main(String[] args) {
 System.out.println(”Warming up ...”);
 doTest(1000000L);
 System.out.println(”Warmup done.”);
 System.out.println(”Starting measurement interval ...”);
 doTest(900000000L);
 System.out.println(”Measurement interval done.”);
 System.out.println(”Test completed.”);
 }
}

ptg6882136

Challenges with Benchmarks 333

The way to eliminate the compilation activity reported during a measurement
interval is to add a second warm-up period. A second warm-up period can also help
show whether the benchmark is indeed fully warmed by comparing the second warm-
up period’s iterations per millisecond to that which is reported by the measurement
interval. Although compilation activity occurs during the second warm-up interval,
if the second warm-up period is very long relative to the compilation activity time,
then the iterations per millisecond should be close to the measurement interval
iterations per millisecond.

The following is a modified version of the micro-benchmark that includes a second
warm-up period of the same length as the measurement interval.

public class DeadCode3 {

 final private static long NANOS_PER_MS = 1000000L;
 final private static int NUMBER = 25;

 private static int calcFibonacci(int n) {
 int result = 1;
 int prev = −1;
 int sum = 0;
 for (int i = 0; i <= n; i++) {
 sum = prev + result;
 prev = result;
 result = sum;
 }
 return result;
 }

 private static void doTest(long iterations) {
 int answer = 0;
 long startTime = System.nanoTime();
 for (long i = 0; i < iterations; i++)
 answer = calcFibonacci(NUMBER);
 long elapsedTime = System.nanoTime() - startTime;
 System.out.println(” Answer -> ” + answer);
 System.out.println(” Elapsed nanoseconds -> ” +
 elapsedTime);
 float millis = elapsedTime / NANOS_PER_MS;
 float itrsPerMs = 0;
 if (millis != 0)
 itrsPerMs = iterations/millis;
 System.out.println(” Iterations per ms ---> ” +
 itrsPerMs);
 }

 public static void main(String[] args) {
 System.out.println(”Warming up ...”);
 doTest(1000000L);
 System.out.println(”1st warmup done.”);
 System.out.println(”Starting 2nd warmup ...”);
 doTest(900000000L);

Continued

ptg6882136

334 Chapter 8 � Benchmarking Java Applications

 System.out.println(”2nd warmup done.”);
 System.out.println(”Starting measurement interval ...”);
 doTest(900000000L);
 System.out.println(”Measurement interval done.”);
 System.out.println(”Test completed.”);
 }
}

The output from executing the modified version with -XX:+PrintCompilation
follows:

By adding the second warm-up period, compilation activity no longer occurs in the
measurement interval. In addition, comparing the iterations per millisecond in the
second warm-up period to that of the measurement interval, the cost of the compila-
tion activity during the second warm-up period is very small, less than 700 iterations
per millisecond, or about a 1.5% difference.

To reduce the chances of code in micro-benchmarks from being identified as being
dead code or drastically simplified, the following programming practices should be
integrated:

� Make the computation nontrivial.
� Print computation results immediately outside the measurement interval or

store the computed results for printing outside the measurement interval.

To make the computation nontrivial pass in arguments to the methods being mea-
sured and return a computation result from methods being measured. Additionally,

Warming up ...
 1 DeadCode3::calcFibonacci (31 bytes)
 1% DeadCode3::doTest @ 9 (124 bytes)
 1% made not entrant DeadCode3::doTest @ 9 (124 bytes)
 Answer -> 75025
 Elapsed nanoseconds -> 40455272
 Iterations per ms -> 25000.0
1st warmup done.
Starting 2nd warmup ...
 2 DeadCode3::doTest (124 bytes)
 2% DeadCode3::doTest @ 9 (124 bytes)
 Answer -> 75025
 Elapsed nanoseconds -> 1926823821
 Iterations per ms -> 46728.0
2nd warmup done.
Starting measurement interval ...
 Answer -> 75025
 Elapsed nanoseconds -> 1898913343
 Iterations per ms -> 47418.0
Measurement interval done.
Test completed.

ptg6882136

Challenges with Benchmarks 335

vary the number of iterations used in the measurement interval within the benchmark
or alternatively in different runs of the benchmark. Then compare the iterations per sec-
ond values to see whether they remain consistent as the number of iterations is varied
while also tracking the behavior of the JIT compiler with -XX:+PrintCompilation.

Inlining

The HotSpot VM Client and Server JIT compilers both have the ability to inline
methods. This means that the target method at a call site is expanded into the call-
ing method. This is done by the JIT compiler to reduce the call overhead in calling
methods and results in faster execution. In addition, the inlined code may provide
further optimization opportunities in that the combined code may be simplified or
eliminated in ways not possible without inlining. Inlining can also produce surprising
observations in micro-benchmarks. This section presents an example that illustrates
what can happen to a micro-benchmark as a result of inlining optimization decisions
made by the HotSpot Client JIT compiler.

Consider the following micro-benchmark, which attempts to measure the per-
formance of String.equals(String s) when both String objects are the same
String object.

public class SimpleExample {

 final private static long ITERATIONS = 5000000000L;
 final private static long WARMUP = 10000000L;
 final private static long NANOS_PER_MS = 1000L * 1000L;

 private static boolean equalsTest(String s) {
 boolean b = s.equals(s);
 return b;

 }

 private static long doTest(long n) {
 long start = System.nanoTime();
 for (long i = 0; i < n; i++) {
 equalsTest(”ABC”);
 }
 long end = System.nanoTime();
 return end - start;
 }

 private static void printStats(long n, long nanos) {
 float itrsPerMs = 0;
 float millis = nanos/NANOS_PER_MS;
 if (millis != 0) {
 itrsPerMs = n/(nanos/NANOS_PER_MS);
 }

Continued

ptg6882136

336 Chapter 8 � Benchmarking Java Applications

Based on the information presented in the “Optimizing Away Dead Code” section
earlier in this chapter, the SimpleExample.equalsTest(“ABC”) method call from
within the for/loop in method doTest() could be optimized away into dead code
since the result of the call to method SimpleExample.equalsTest(String s)
never escapes the SimpleExample.doTest(long n) method. However, executing
the preceding micro-benchmark with a Java 6 HotSpot Client VM suggests this is
not the case. The following output is from a Java 6 HotSpot Client VM executing the
preceding micro-benchmark using -XX:+PrintCompilation.

Warming up ...
 1 java.lang.String::hashCode (60 bytes)
 2 java.lang.String::charAt (33 bytes)
 3 java.lang.String::equals (88 bytes)
 4 SimpleExample::equalsTest (8 bytes)
 1% SimpleExample::doTest @ 7 (39 bytes)
1st warm up done.
Elapsed time in ms -> 96
Iterations / ms ----> 104166
 5 java.lang.String::indexOf (151 bytes)
Starting 2nd warmup ...
 6 SimpleExample::doTest (39 bytes)
2nd warm up done.
 Elapsed time in ms -> 95
 Iterations / ms ----> 105263
Starting measurement interval ...
Measurement interval done.

 System.out.println(” Elapsed time in ms -> ” + millis);
 System.out.println(” Iterations / ms ----> ” + itrsPerMs);
 }

 public static void main(String[] args) {
 System.out.println(”Warming up ...”);

 long nanos = doTest(WARMUP);
 System.out.println(”1st warm up done.”);
 printStats(WARMUP, nanos);

 System.out.println(”Starting 2nd warmup ...”);
 nanos = doTest(WARMUP);
 System.out.println(”2nd warm up done.”);
 printStats(WARMUP, nanos);

 System.out.println(”Starting measurement interval ...”);
 nanos = doTest(ITERATIONS);
 System.out.println(”Measurement interval done.”);
 System.out.println(”Test complete.”);
 printStats(ITERATIONS, nanos);
 }
}

ptg6882136

Challenges with Benchmarks 337

The preceding output shows there is small improvement in the iterations per
millisecond between the first warm-up period and the second warm-up period
or measurement interval. It is less than 20%. The output also shows JIT com-
piler optimizations were performed for String.equals(), SimpleExample.
equalsTest(), and SimpleExample.doTest(). Although the JIT compiler has
performed optimizations for those methods, it may not have optimized any part
of the micro-benchmark into dead code. To gain a further understanding of what
is happening with a micro-benchmark and the JIT compiler, a HotSpot debug
VM can be used. A HotSpot debug VM has additional instrumentation enabled
within it so more can be learned about what the JVM is doing as it is executing
a program.

Tip

HotSpot debug VMs with support for Java 6 and later can be downloaded from the OpenJDK
open source project on java.net at https://openjdk.dev.java.net.

With a HotSpot debug VM, additional information about the optimizations and deci-
sions made by the JIT compiler can be observed. For example, with a HotSpot debug
VM a micro-benchmark executed with the -XX:+PrintInlining command line
option reports which methods have been inlined. Executing this micro-benchmark
with a HotSpot debug VM using -XX:+PrintInlining, as shown in the following
example, indicates String.equals(String s) is not inlined since the String.
equals(String s) method is too large.

 - @ 2 java.lang.String::equals (88 bytes) callee is too large
 @ 16 SimpleExample::equalsTest (8 bytes)
 - @ 2 java.lang.String::equals (88 bytes) callee is too large

The output suggests that increasing the inlining size could result in the String.
equals(Object o) being inlined since the output says 88 bytes of byte code
from String.equals(Object o) is too large to be inlined. The following output
shows the effect of increasing the inlining size to 100 bytes of bytecode using the
HotSpot command line option -XX:MaxInlineSize=100 to inline the String.
equals(Object o) method. The micro-benchmark reported results change rather
dramatically as illustrated in the following example.

Test complete.
 Elapsed time in ms -> 42870
 Iterations / ms ----> 116631

https://openjdk.dev.java.net

ptg6882136

338 Chapter 8 � Benchmarking Java Applications

Warming up ...
 1 java.lang.String::hashCode (60 bytes)
 2 java.lang.String::charAt (33 bytes)
 3 java.lang.String::equals (88 bytes)
 4 SimpleExample::equalsTest (8 bytes)
 1% SimpleExample::doTest @ 7 (39 bytes)
1st warm up done.
Elapsed time in ms -> 21
Iterations / ms ----> 476190
 5 SimpleExample::doTest (39 bytes)
2nd warm up done.
 6 java.lang.String::indexOf (151 bytes)
Elapsed time in ms -> 18
Iterations / ms ----> 555555
Test complete.
Elapsed time in ms -> 8768
Iterations / ms ----> 570255

The output again reports the same methods are JIT compiled. But compar-
ing the elapsed time reported to execute the warm-up periods and measurement
interval to the time reported to execute the warm-up periods and measurement
interval when -XX:MaxInlineSize=100 is not specified is quite different. For
example, previously 96, 95, and 42,870 milliseconds were reported, respectively.
But after specifying -XX:MaxInlineSize=100, reported elapsed times dropped
to 21, 18, and 8,768 milliseconds, respectively. What happened? Can inlining pos-
sibly increase the performance of a method that much? The HotSpot debug VM
can be used to confirm the String.equals(Object o) method is inlined when
-XX:MaxInlineSize=100 is added by using -XX:+PrintInlining and executing
the micro-benchmark. The following output confirms the String.equals(Object o)
method is indeed inlined, which was not inlined in a previous run when not explicitly
setting -XX:MaxInlineSize=100.

Based on the reported elapsed time and iterations per millisecond, the micro-
benchmark is now starting to look like a candidate for a modern VM JIT com-
piler identifying dead code and eliminating it as an optimization, similar to
what was discussed in the “Optimizing Away Dead Code” section earlier in
this chapter. Setting the inlined size so that String.equals(Object o)
was inlined resulted in the JIT compiler identifying dead code in the micro-
benchmark and optimizing it away. Capturing a profile of both configurations,
one using -XX:MaxInlineSize=100 and one without, using a profiler such

 @ 2 java.lang.String::equals (88 bytes)
 @ 16 SimpleExample::equalsTest (8 bytes)
 @ 2 java.lang.String::equals (88 bytes)

ptg6882136

Challenges with Benchmarks 339

as Oracle Solaris Studio Performance Analyzer where the generated assembly
code can be viewed, can show that the HotSpot Client JIT compiler will indeed
identify dead code and optimize away the call to String.equals(Object
o). For tips on how to capture a profile and view assembly language instruc-
tions generated by the HotSpot JIT compilers with Oracle Solaris Studio
Performance Analyzer, see Chapter 5, “Java Application Profiling,” and Chap-
ter 6, “Java Application Profiling Tips and Tricks.” The generated assembly
code can also be viewed using a HotSpot debug VM and adding the HotSpot
-XX:+PrintOptoAssembly command line option. The generated assembly
code is printed as standard output by default and can be saved to a file by
redirecting standard output to a file.

If the same micro-benchmark is executed in a HotSpot Server VM, the reported
performance will be similar to that seen by the HotSpot Client VM when explicitly
setting -XX:MaxInlineSize=100. The HotSpot Server VM’s JIT compiler in its
default configuration will inline and identify dead code in this micro-benchmark
since its uses more aggressive inlining policies. This does not imply you should
always use the HotSpot Server VM or go through an exercise of collecting inlining
data from a debug HotSpot VM and then trying to set -XX:MaxInlineSize to an
optimal size for your application. Both the HotSpot Server VM and HotSpot Client
VM have undergone rigorous performance testing of a large number of benchmarks
and workloads. It is only after careful analysis of the performance data has the
default inlining size been chosen.

Obviously the micro-benchmark presented in this section would require
some modifications to more accurately measure the performance of a String.
equals(Object o) operation where the object being compared is the same String
as those modifications described earlier in the “Optimizing Away Dead Code” sec-
tion. But that is not the intent of this section. Rather, the purpose of this section
is to illustrate the potential effect inlining can have on the observed results of a
micro-benchmark. Using a HotSpot debug VM to observe inlining decisions made
by HotSpot can help avoid some of the pitfalls that may occur as a result of inlining
decisions made by the HotSpot JIT compiler. Additionally, capturing profiles with
Oracle Solaris Studio Performance Analyzer and viewing the generated assembly
code can help identify whether the JIT compiler is identifying dead code and opti-
mizing away that dead code.

When developing a micro-benchmark to model the behavior of a larger benchmark
or application, be aware of the potential impact inlining can have on the results of a
micro-benchmark implementation. If a micro-benchmark does not sufficiently model
a target operation of interest, where methods in the micro-benchmark may or may
not get inlined in a similar way as they would in a target application can lead to
some misleading conclusions.

ptg6882136

340 Chapter 8 � Benchmarking Java Applications

Deoptimization

JIT compilers are widely known for their capability to perform optimizations. But
there are situations when JIT compilers perform deoptimizations. For example, once
a Java application starts running, methods become hot; the JIT compiler makes
optimization decisions based on what it has learned from the executing program.
Sometimes the optimization decisions may turn out to be incorrect. When the JIT
compiler notices it has made an incorrect decision in a previous optimization, the
JIT compiler performs a deoptimization. Often, a JIT compiler deoptimization will,
a short time later, be followed by a reoptimization once a number of execution times
threshold has been reached. The mere fact that deoptimizations occur suggests that
such an event could happen while executing a benchmark or micro-benchmark. Not
recognizing that a deoptimization event has occurred may result in an incorrect
performance conclusion. In this section an example is provided in which initial opti-
mizations made by a HotSpot Server JIT compiler are followed by deoptimizations
and reoptimizations.

The following is a declaration for a Shape interface, which has one method called
area(). Below the Shape interface are class declarations for Square, Rectangle,
and RightTriangle, which implement the Shape interface.

// Shape interface
public interface Shape {
 public double area();
}

// Square class
public class Square implements Shape {

 final private double side;

 public Square(double side) {
 this.side = side;
 }

 private Square(){side = 0;}

 public double area() {
 return side * side;
 }
}

// Rectangle class
public class Rectangle implements Shape {

 final private double length, width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

ptg6882136

Challenges with Benchmarks 341

Consider the following micro-benchmark implementation, which has the objective
to compare the time it takes to calculate the area for each of the Shapes: Square,
Rectangle, and RightTriangle.

 private Rectangle(){length = width = 0;}

 public double area() {
 return length * width;
 }
}

// RightTriangle class
public class RightTriangle implements Shape {

 final private double base, height;

 public RightTriangle(double base, double height) {
 this.base = base;
 this.height = height;
 }

 private RightTriangle(){base = height = 0;}

 public double area() {
 return .5 * base * height;
 }
}

public class Area {
 final static long ITERATIONS = 5000000000L;
 final static long NANOS_PER_MS = (1000L * 1000L);
 final static StringBuilder sb = new StringBuilder();

 private static void printStats(String s, long n,
 long elapsedTime){
 float millis = elapsedTime / NANOS_PER_MS;
 float rate = 0;
 if (millis != 0) {
 rate = n / millis;
 }
 System.out.println(s + ”: Elapsed time in ms -> ” + millis);
 System.out.println(s + ”: Iterations per ms --> ” + rate);
 }

 private static long doTest(String str, Shape s, long n) {
 double area = 0;
 long start = System.nanoTime();
 for (long i = 0; i < n; i++) {
 area = s.area();
 }
 long elapsedTime = System.nanoTime() - start;
 sb.append(str).append(area);

Continued

ptg6882136

342 Chapter 8 � Benchmarking Java Applications

This implementation uses two warm-up periods along with a measurement
interval for calculating the area of a Square, Rectangle, and RightTriangle.
Both elapsed time in milliseconds and the number of iterations per millisecond are
reported in each interval. As shown in the following output, executing this micro-
benchmark with Java 6 HotSpot Server VM produces some surprising results. When
comparing the elapsed time and iterations per millisecond between the first warm-up
period and the second warm-up period, the performance of calculating a Square’s
area has decreased by about 29%. Additionally, comparing the elapsed time and
iterations per millisecond between the first warm-up period and the measurement
interval also shows a decrease of about 29%.

 System.out.println(sb.toString());
 sb.setLength(0);
 return elapsedTime;
 }

 public static void main(String[] args) {
 String areaStr = ” Area: ”;
 Shape s = new Square(25.33);
 Shape r = new Rectangle(20.75, 30.25);
 Shape rt = new RightTriangle(20.50, 30.25);

 System.out.println(”Warming up ...”);
 long elapsedTime = doTest(areaStr, s, ITERATIONS);
 printStats(” Square”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, r, ITERATIONS);
 printStats(” Rectangle”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, rt, ITERATIONS);
 printStats(” Right Triangle”, ITERATIONS, elapsedTime);
 System.out.println(”1st warmup done.”);

 System.out.println(”Starting 2nd warmup ...”);
 elapsedTime = doTest(areaStr, s, ITERATIONS);
 printStats(” Square”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, r, ITERATIONS);
 printStats(” Rectangle”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, rt, ITERATIONS);
 printStats(” Right Triangle”, ITERATIONS, elapsedTime);
 System.out.println(”2nd warmup done.”);

 System.out.println(”Starting measurement intervals ...”);
 elapsedTime = doTest(areaStr, s, ITERATIONS);
 printStats(” Square”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, r, ITERATIONS);
 printStats(” Rectangle”, ITERATIONS, elapsedTime);
 elapsedTime = doTest(areaStr, rt, ITERATIONS);
 printStats(” Right Triangle”, ITERATIONS, elapsedTime);
 System.out.println(”Measurement intervals done.”);
 }
}

ptg6882136

Challenges with Benchmarks 343

The observed decrease in performance is the result of the JIT compiler making some
initial optimization decisions that later turned out to be incorrect. For example, there
are optimizations a modern JIT compiler can make when it observes only one class
implementing an interface. When executing this micro-benchmark, the JIT compiler
first performed an aggressive optimization thinking only Square implemented the
Shape interface. As the micro-benchmark began calculating the area for the Rect-
angle, the JIT compiler had to undo the aggressive optimization it performed previ-
ously when calculating the Square’s area. As a result, a deoptimization occurred and
a subsequent reoptimization was performed. Being able to identify whether deopti-
mizations are occurring can be identified using -XX:+PrintCompilation. When
-XX:+PrintCompilation output contains the text “made not entrant,” it is an indi-
cation a previous compilation optimization is being discarded and the method exe-
cutes in the interpreter until it is executed enough times to trigger a recompilation.

The following output is from executing the Area micro-benchmark with a Java 6
HotSpot Server VM with -XX:+PrintCompilation.

Warming up ...
 Area: 641.6089
 Square: Elapsed time in ms -> 11196
 Square: Iterations per ms --> 446588
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17602
 Rectangle: Iterations per ms --> 284058
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33894
 Right Triangle: Iterations per ms --> 147518
1st warmup done.
Starting 2nd warmup ...
 Area: 641.6089
 Square: Elapsed time in ms -> 15766
 Square: Iterations per ms --> 317138
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17679
 Rectangle: Iterations per ms --> 282821
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33339
 Right Triangle: Iterations per ms --> 149974
2nd warmup done.
Starting measurement intervals ...
 Area: 641.6089
 Square: Elapsed time in ms -> 15750
 Square: Iterations per ms --> 317460
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17595
 Rectangle: Iterations per ms --> 284171
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33477
 Right Triangle: Iterations per ms --> 149356
Measurement intervals done.

ptg6882136

344 Chapter 8 � Benchmarking Java Applications

Several deoptimizations occurred during the execution of the Area micro-bench-
mark. The preceding output indicates the deoptimizations are an artifact of the
three virtual call sites for Shape.area() of which Square, Rectangle, and
RightTriangle implement coupled with the way this micro-benchmark is written.
Although deoptimizations are possible with virtual call sites, what is shown in this
example is not intended to suggest to software developers to avoid writing software
that utilizes interfaces and multiple classes implementing that interface. The intent
is to illustrate a pitfall that can occur with the creation of micro-benchmarks and
show it is difficult to know what the JIT compiler is doing as it attempts to improve
the performance of an application.

Warming up ...
 1 com.sun.example.Square::area (10 bytes)
 1% Area::doTest @ 11 (78 bytes)
 Area: 641.6089
 Square: Elapsed time in ms -> 11196
 Square: Iterations per ms --> 446588
 2 Area::doTest (78 bytes)
 1% made not entrant Area::doTest @ 11 (78 bytes)
 2% Area::doTest @ 11 (78 bytes)
 3 com.sun.example.Rectangle::area (10 bytes)
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17602
 Rectangle: Iterations per ms --> 284058
 2 made not entrant Area::doTest (78 bytes)
 4 com.sun.example.RightTriangle::area (14 bytes)
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33894
 Right Triangle: Iterations per ms --> 147518
1st warmup done.
Starting 2nd warmup ...
 Area: 641.6089
 Square: Elapsed time in ms -> 15766
 Square: Iterations per ms --> 317138
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17679
 Rectangle: Iterations per ms --> 282821
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33339
 Right Triangle: Iterations per ms --> 149974
2nd warmup done.
Starting measurement intervals ...
 Area: 641.6089
 Square: Elapsed time in ms -> 15750
 Square: Iterations per ms --> 317460
 Area: 627.6875
 Rectangle: Elapsed time in ms -> 17595
 Rectangle: Iterations per ms --> 284171
 Area: 310.0625
 Right Triangle: Elapsed time in ms -> 33477
 Right Triangle: Iterations per ms --> 149356
Measurement intervals done.

ptg6882136

Challenges with Benchmarks 345

An improvement to the implementation of this micro-benchmark would be to call
each area() method of Square, Rectangle, and RightTriangle one right after
the other in the warm-up intervals rather than attempting to warm up each Shape’s
area() individually. This allows the JIT compiler to see all three implementations
of the Shape.area() interface prior to making aggressive optimization decisions.

Micro-benchmark Creation Tips

Creating Java micro-benchmarks can be difficult to create or model what you intend
to performance measure as a result of the optimizations performed by JIT compil-
ers. Many optimizations are performed by the JIT compiler, many more than the
several presented in this chapter. In fact, an entire book could be dedicated to the
subject. Additionally, not only the type of optimization but also when the optimiza-
tion is made transparent to most stakeholders of a Java application. While this is a
nice attribute, or feature of a JIT compiler, it can greatly complicate the creation of
effective micro-benchmarks to truly measure what they intend to measure. However,
some general guidelines and principles can help avoid some of the common pitfalls
in writing micro-benchmarks. Following is a list of guidelines.

 1. Identify exactly what you want to know and design an experiment to answer
what you want to know. Do not get distracted with artifacts that are not
important to what you really want to know.

 2. Make sure the work being done in the measurement interval is always the same
constant amount of work.

 3. Compute and report multiple metrics such as elapsed time, iterations per unit of
time, or unit of time per iteration. Report these metrics after warm-up period(s)
and after the measurement interval.

 Be aware of the accuracy and granularity of how time is measured, especially
when using System.currentTimeMillis() and System.nanoTime().

 Execute multiple runs varying the amount of cycles or duration of the
measurement interval. Then compare the elapsed time metrics and pay close
attention to the iterations per unit of time or unit of time per iteration metric.

Tip

Software developers should concentrate their efforts on good software architecture, design,
and implementation and not worry about trying to outsmart a modern JIT compiler. If a
change to a software architecture, design, or implementation is needed to overcome some
artifact of a JIT compiler, it should be considered a bug or deficiency of the JIT compiler.

ptg6882136

346 Chapter 8 � Benchmarking Java Applications

The latter metric should be nearly the same as the duration of measurement
interval is changed so long as the benchmark has reached steady state and has
been sufficiently warmed up.

 4. Make sure the micro-benchmark has reached steady state prior to the
measurement interval. A general guideline to follow is to ensure the micro-
benchmark has been running for at least 10 seconds. Use of HotSpot’s
-XX:+PrintCompilation can help confirm the benchmark has reached
steady state along with inserting instrumentation that indicates the execution
phase of the micro-benchmark. The goal is to have the micro-benchmark fully
warmed prior to the measurement interval and that further optimizations or
deoptimizations are not occurring during the measurement interval.

 5. Run multiple iterations of the benchmark to ensure the observed results are
repeatable. Running multiple iterations can provide additional confidence to
your findings.

 6. As you execute the experiments and observe results, question whether the
results make sense. If the results are unexpected or suspicious, investigate or
revisit the design of the experiment to validate the observed results.

 7. Avoid creating dead code in the micro-benchmark by making computations
nontrivial, passing arguments that change on occasion to methods of interest,
returning results from a method of interest, and printing computation results
outside the measurement interval.

 8. Be aware of the effect inlining may have on the micro-benchmark. If suspicious
of the observed results, use a HotSpot debug VM to observe the inlining
decisions made by a HotSpot JIT compiler and use the -XX:+PrintInlining
and -XX:+PrintCompilation command line options.

 9. Make sure other applications are not intruding on the system when executing
the micro-benchmark. Small or simple applications added to a desktop window
manager such as a weather applet or stock ticker can intrude on the system
while executing a micro-benchmark.

 10. When wanting to know exactly what the JIT compiler is generating for optimized
code, use Oracle Solaris Studio Performance Analyzer or a HotSpot debug VM
along with -XX:+PrintOptoAssembly to view the generated assembly code.

 11. Micro-benchmarks with small data sets or data structures can become cache
sensitive. The micro-benchmark may report results that vary from run to run
or vary from machine to machine.

 12. For micro-benchmarks that utilize multiple threads, realize that thread
scheduling may not be deterministic, especially under heavy load.

ptg6882136

Design of Experiments 347

Design of Experiments

Designing an experiment to observe, quantify, or evaluate performance is a criti-
cal step in performance testing and developing benchmarks. It is also a step often
overlooked or a step in which insufficient time is spent. The design of an experiment
determines what claims or inferences about performance will be able to be made. An
incorrect or incomplete design may fail to provide answers to the question or ques-
tions initially set forth.

The design of an experiment must clearly state the question to be answered. For
example, a potential question might initially begin as being able to identify whether
a given benchmark could realize a performance improvement from increasing the
size of the HotSpot VM young generation heap space by 100 megabytes. But that
question is incomplete. For example, what constitutes a performance improvement?
Is any observable increase regardless of magnitude the question to be answered? Is
it important to know, or be able to estimate, the magnitude of the improvement? How
much of an improvement is important to the stakeholders? Is an improvement of 1%
or greater considered to be important? Is 5% or greater considered to be important? Is
there any concern about measuring a potential regression? Or, is it sufficient to know
there is an improvement and not a regression? Being able to identify an improvement
is a different question from being able to identify a regression or alternatively being
able to identify both an improvement or a regression.

Hence, it is important when stating the question to be answered by an experiment,
to quantify in some manner what is considered important. Continuing to use the
example of increasing the size of the young generation space on a HotSpot VM by
100 megabytes, the question to be answered might be rephrased as, Does increasing
the young generation heap space on a HotSpot VM version 1.6.0-b105 by 100 mega-
bytes improve the score of the SPECjbb2005 benchmark by at least 1% or more on
an Oracle X4450 system configured with two dual-core Intel Xeon 7200 processors
and 16G of PC205300 667 MHz ECC fully buffered DDR2 DIMMs running Oracle
Solaris 10 x64 update 4.

Tip

The more explicit the problem statement, the easier it is to construct a hypothesis, build an
experiment to test the hypothesis, and be able to draw good conclusions toward answering
the questions in the problem statement.

Once the problem statement is clearly stated, the next step of formulating a hypoth-
esis that provides an answer to the problem statement can begin. Formulating a
good hypothesis is important to the ability to make inferences about findings. For
example, using the example problem statement, a possible hypothesis would be, Is

ptg6882136

348 Chapter 8 � Benchmarking Java Applications

the improvement from making this change at least 1%. The first step might be to
execute a version of the SPECjbb2005 benchmark using a baseline young generation
heap space configuration. Then execute a version of the SPECjbb2005 benchmark
only changing the baseline young generation space configuration by increasing that
value by 100 megabytes. Then compute the difference between the observed scores
for the baseline configuration versus a specimen that increased the young genera-
tion heap space by 100 megabytes. If the observed difference happens to be greater
than or equal to 1% of the baseline score, then the hypothesis would be considered
true. Otherwise, the hypothesis would be considered false. Contrast this example
hypothesis with a problem statement and hypothesis that wants to know if there is
an improvement regardless of the magnitude in the SPECjbb2005 score by increasing
the size of the young generation space by 100 megabytes. The hypothesis for this lat-
ter problem statement could be taking the difference between observed scores. Then
if the difference is greater than 0, the hypothesis would be considered true; otherwise,
it would be considered false. Consider the likelihood for each of these two hypotheses
of incorrectly accepting a given hypothesis as true when indeed it is false. Addition-
ally, consider the likelihood of rejecting a given hypothesis as false when it indeed
is true. Considering the number of outcomes that may render a difference in scores
being greater than 0, and the number of outcomes with differences in scores greater
than or equal to 1%, it should be obvious the population of differences in scores being
greater than or equal to 1% is much smaller than the population of differences in
scores being greater than 0. Hence, the probability of drawing the right conclusion
greatly depends on the problem statement and the hypothesis. This illustrates the
importance of quantifying the performance improvement that is considered to be
important in the problem statement.

To improve confidence in the inferences or conclusions being drawn from an exper-
iment, statistical methods can be used.

Use of Statistical Methods

Statistical methods incorporate the mathematical science of statistics as a means (no
pun intended) to help design an experiment around the question(s) to be answered
and arrive at conclusions or make inferences about the data collected. In the context
of benchmarking, applying or using statistical methods is a way to strengthen the
design of an experiment and subsequently add a level of confidence to the inferences
or conclusions drawn from an experiment.

It is important to keep in mind that in some experiments statistical methods are
not required to convince stakeholders of a conclusion or an outcome of an experiment.
In other situations statistical methods may help in gaining confidence in drawing
conclusions from an experiment. Note, however, that using statistical methods will

ptg6882136

Use of Statistical Methods 349

not provide the ability to prove a hypothesis is absolutely true. Rather statistical
methods help in quantifying to a certain level of confidence, a probability, that a
given hypothesis is true.

This section provides general advice the authors believe is beneficial when using
statistical methods in performance testing Java applications. The intent is not to
present an in-depth discussion of statistical methods or cover all the details of statis-
tical analysis. Statistics textbooks may use as many as three, four, or more chapters
to cover the statistics material found in this section.

Compute an Average

One of the challenges with performance testing and performance tuning is being able
to identify if a change of some kind somewhere in an application—whether at the
application level, JVM level, operating system level, or hardware level—results in a
performance improvement or regression. To help identify performance improvements
or regressions, performance engineers often execute benchmarks multiple times and
compute an average of the metric of interest for both a baseline (prior to any change)
and a specimen (after a change). The average, also called a mean and denoted as x
can be calculated using the following formula:

X =
1
n

a
n

i=1
Xi

Hence, the average for the baseline is the sum of all observations from executing the
baseline divided by the number of baseline executions. Likewise, the average for the speci-
men is the sum of all observations from executing the specimen divided by the number of
specimen executions. Once the average has been calculated for a baseline and specimen,
a difference between the baseline average and specimen average can be computed to
estimate the difference between baseline and specimen. The resulting value from a
difference between two averages is also known as the difference in means.

Compute a Standard Deviation

In addition to computing an average for a baseline and specimen, a measure of a
baseline or specimen’s variability can be evaluated by computing a sample standard
deviation. The sample standard deviation can be calculated using the following for-
mula where s is the sample standard deviation, n is the number of observations in
the sample, x is the ith observation, and x is the average.

s = A
1

n - 1 a
n

i=1
(Xi - X)2

The magnitude of the sample standard deviation provides a quantifiable measure
of the variability between scores reported for a baseline or specimen in the same
units of measure as the observations and average.

ptg6882136

350 Chapter 8 � Benchmarking Java Applications

Calculate a Confidence Interval

With a sample standard deviation and an average, an estimate can be made as to a
baseline’s or specimen’s true average within a range to a certain probability or level
of confidence, called a confidence interval. The higher the confidence level for a given
sample standard deviation and average, the wider the confidence interval, or range
of values for estimating the true average. Likewise, the lower the confidence level
the narrower the confidence interval. This should be intuitive since an increase in
the level of confidence necessitates a wider range of values to deal with the increased
probability the true average lies within a given range. Another strategy that can nar-
row a confidence interval or increase the level of confidence in estimating a range
of values for the true average is to increase the number of observations or runs of
the experiment. It stands to reason that by increasing the number of observations
in an experiment, more information is gathered about what is being measured, and
as a result additional confidence in the estimate of the true average for a baseline
or specimen is realized. Looking at the equation for computing an average, sample
standard deviation and confidence interval also provide evidence that increasing the
number of observations can narrow the width of a confidence interval.

Tip

Regardless of the statistical method chosen, the larger the sample size or number of
observations, more information will be provided to the experiment and analysis.

The level of confidence chosen is a decision left to the stakeholders or designer of
an experiment. Most statisticians choose confidence levels at 90%, 95%, or 99%. It
should be noted that no one confidence level is necessarily right or wrong.

A confidence interval estimating the true average is calculated using the follow-
ing formula where: x is the average, s is the sample standard deviation, n is the
sample size, ta/2 is the t-value for n - 1 degrees of freedom for a given a, which is
1 - confidence level chosen (i.e., 95%).

X { ta2 # ¢ s

2n
≤

Tip

Tables containing t-values for samples sizes at different a levels can be found in statistics
textbooks and on the Internet.

Another possible approach using statistical methods to add confidence in identify-
ing performance improvements or regressions is to compare the confidence intervals

ptg6882136

Use of Statistical Methods 351

that estimate the true average for a baseline and specimen. If there is no overlap
between the confidence intervals, then an appropriate conclusion would be to claim
there is indeed a difference in performance between the baseline and specimen at the
specified level of confidence. Being able to estimate the magnitude of the difference
between a baseline and specimen average requires calculating a confidence interval
on the difference of means between the baseline and specimen.

A confidence interval for estimating the true difference in means of a baseline and
specimen can be calculated using the following formula where X1 is the average for
sample 1, X2 is the average for sample 2, s is the pooled sample standard deviation
of sample 1 and sample 2, n1 is the sample size of sample 1, n2 is the sample size of
sample 2, ta2 is the t-value for n1 + n2 - 2 degrees of freedom for a given a, which is
1 - confidence level chosen (i.e., 95%).

(X1 - X2) { ta2 # s # A
1
n1

+
1
n2

As mentioned earlier, s in the preceding formula is a pooled standard deviation of
sample 1 and sample 2’s standard deviations. The pooled standard deviation is defined:

s = B
(n1 - 1) # s1

2 + (n2 - 1) # s2
2

(n1 + n2 - 2)
s1 and s2 are the sample standard deviations for sample 1 and sample 2. n1 and

n2 are the sample sizes for sample 1 and sample 2.
A confidence interval on the true difference of means communicates to a given level

of confidence that the true difference between baseline and specimen is within a range
of values calculated by the confidence interval. Keep in mind that it may not be impor-
tant to the stakeholders to have an estimate for the true difference in performance. The
stakeholders may only be interested in knowing whether there is sufficient evidence to
infer there is a difference in mean performance equal to or greater than some number
or value, not an estimate of the true mean difference. The criteria of whether estimat-
ing the magnitude of the true difference, or whether a difference of some value or
greater exists is important, should be specified earlier in the design of the experiment.

Use of Hypothesis Tests

Another statistical methods approach is to use hypothesis testing such as a t-test to
compare results between a baseline to specimen. In this approach, a hypothesis, more
formally known as a null hypothesis, is formulated based on a problem statement,
that is, what you want to know. Then data is collected and a t-statistic is calculated
based on the collected observations. The t-statistic is compared to a value obtained
from a Student’s t-distribution for an a (alpha) and degrees of freedom. a is the risk
level at which you are willing to incorrectly accept the null hypothesis as true when
it is really false, also known in statistical terms as a Type I Error. One of the most
common a levels chosen by statisticians is 0.05. Other common a levels chosen are

ptg6882136

352 Chapter 8 � Benchmarking Java Applications

0.10 and 0.01. The degrees of freedom when comparing a baseline to specimen is the
total number of observations in both samples - 2 since the t-statistic calculation
uses observations from both the baseline and specimen. To illustrate this approach
with an example, suppose you want to know if increasing the JVM maximum heap
size from 1500 megabytes to 1800 megabytes increases the number of messages
per second an application is processing by at least 1%. A possible hypothesis in this
example could be whether the difference in means between a baseline (a configura-
tion that uses a JVM maximum heap size of 1500 megabytes) and a specimen (a
configuration that uses a JVM maximum heap size of 1800 megabytes) is greater
than 1% of the baseline messages per second throughput.

Tip

When forming a null hypothesis it is generally a poor decision to test for no difference in
means or that a baseline and specimen are equal. Most statistical methods are designed to
test that the difference between means is significantly different than what is observed by
chance. Claiming there is no difference between a baseline and specimen is different from
claiming there is insufficient information to conclude or infer a difference exists. In short,
statistically it is difficult to show there is no difference in means.

Once a null hypothesis is specified, a number of samples should be collected run-
ning the same workload as a baseline and specimen. Then the baseline and specimen
averages, standard deviations, and difference of means should be calculated along
with calculating t using the following formula.

t =
X1 - X2

SX1 - X2

 where SX1 - X2
= B

(n1 - 1) # s1
2 + (n2 - 1) # s2

2

(n1 + n2 - 2)
¢ 1

n1
+

1
n2
≤

In the preceding formula, X1 and X2 are the averages for sample 1 and sample 2, s1
and s2 are the sample standard deviations for sample 1 and sample 2, and n1 and n2
are the sample sizes for sample 1 and sample 2.

Using a t-table, found in many statistics textbooks or on the Internet, locate the
t-value in the t-table for the degrees of freedom (total number of observations in the
two samples - 2) for an a of 0.05. You can alternatively choose a different a or risk
level that you and your experiment’s stakeholders are willing to accept such as 0.01.
If the calculated t using the preceding formula is greater than the t-value found in
the t-table, then you can conclude to 1 - a confidence there is a difference of at least
1% or more improvement in the messages per second throughput by increasing the
JVM maximum heap size from 1500 megabytes to 1800 megabytes.

Continuing with the previous example, suppose you have selected an a of 0.05 for this
experiment and have collected a total of 20 observations, 10 baseline observations, and
10 specimen observations, along with calculating a t at 3.44 using the preceding formula.
The t-value in a t-table for an a of 0.05 and 18 degrees of freedom (20 observations - 2)

ptg6882136

Use of Statistical Methods 353

is 1.734. Since the calculated t-statistic of 3.44 is greater than the t-value found in the
t-table for an a of 0.05, you can conclude there is at least a 1% improvement in the mes-
sage throughput by increasing the JVM maximum heap size from 1500 megabytes to
1800 megabytes. In a situation where you find that the calculated t is less than or equal
to the t-value found in the t-table, there are two possible explanations. Either there is
indeed not a 1% improvement in the message throughput, or you do not have enough
information to claim an improvement of 1% or more. The latter possibility is also known
in statistical terms as a Type II Error. The contributing factors to experiencing a Type II
Error are high variability in the observations and a small number of observations. An
experiment having a large number of observations and small variability is less likely
to experience a Type II Error. Another important note, if the hypothesis of this example
was slightly different such that you wanted to know if there was an improvement or
a regression of 1% or more, not just an improvement of 1% or more, the t-table lookup
would use 0.025, one-half the 0.05 a level in the table lookup rather than 0.05 since the
hypothesis reflects either an improvement or a regression. In other words, the hypoth-
esis requires what is called a two-tailed test. A one-tailed test is what you use when you
want to know only about either an improvement or regression exclusively.

Software packages and software libraries, such as Apache Commons, can perform
statistical calculations including the ability to report a p-value based on a set of
observations. A p-value is the probability of rejecting a null hypothesis when the null
hypothesis is in fact true. As mentioned earlier, a null hypothesis is formulated based
on what you want to learn from your experiment or problem statement. In statistical
terms, the p-value represents the probability of making what is called a Type I Error.
A Type I Error is an outcome where the null hypothesis is accepted as true when
it is indeed false. The quantity 1 - p@value is the probability of accepting the null
hypothesis as true if the null hypothesis is in fact true. To illustrate the concepts with
an example, suppose the calculated p-value is .03. The probability of making a Type I
Error is .03. In other words, there is a 3% chance that the null hypothesis is accepted
as true when it is indeed false. In addition, there is a 97% (1 - the p-value) chance,
or you are 97% confident that there exists at least a 1% or greater improvement in
the messages per second throughput performance of the application as a result of
increasing the maximum Java heap size from 1500 megabytes to 1800 megabytes.

Tip

It is important to realize that you cannot claim or make the inference that you are 97%
confident that the magnitude of the performance improvement is the calculated difference
in means. This is not the hypothesis tested. Rather, the hypothesis tested is whether there
was an improvement of at least 1% or more in the message throughput. In other words, a
magnitude of 1% or more is what was tested, not the magnitude of the difference in means.
An estimate of the true mean difference, if desired, could be calculated using a confidence
interval as described earlier in this section.

ptg6882136

354 Chapter 8 � Benchmarking Java Applications

When using statistical software packages and software libraries it is a good practice to
double-check the reported values with calculations done by hand. Often software packages
and software libraries have multiple or similar statistics routines that can lead to confu-
sion in deciding which routine is appropriate for your analysis. Additionally, some software
packages or libraries provide routines for one-tailed tests only. You may have to adjust the
a given to these routines based on what the software is assuming, one- or two-tailed tests.

Tips for Using Statistical Methods

It is important to recognize the presence of any of the following: small sample sizes,
high variability within samples, the desire to observe a small magnitude of an
improvement or regression, and using a small a, impacts the ability to show there is
indeed statistical significant evidence to claim an improvement or regression exists,
or that no improvement or regression exists. In other words, the smaller sample
size, the higher the variability, the smaller the magnitude of an improvement or
regression you deem as important, or the higher the desired confidence level in the
experiment’s outcome, the more likely it is you will arrive at a conclusion that there
is not sufficient information to claim there is a statistically significant conclusion.
Likewise, the larger the sample size, the smaller the variability within the samples,
the larger the magnitude of the improvement or regression you deem as important, or
the lower the confidence level that a performance improvement or regression exists,
the more likely it is you will be able to claim a statistically significant conclusion.

The following list offers additional advice when using statistical methods:

 1. Realize that using statistical methods gives you the ability to quantify your
findings to some level of confidence. Statistical methods will not provide 100%
proof that a hypothesis is true or a hypothesis is false.

 2. Make sure you clearly define what you want to learn. This helps in choosing an
appropriate statistical method and analysis.

 3. There is not one specific statistical method or analysis that will always be the
best for every experiment. Often multiple analyses or methods can render the
same conclusion. Do not get too hung up on the details of the method or analysis.
Choose a method that best answers what you want to know.

 4. Keep the statistical analysis simple. The more complex the methods and
analysis techniques, the more difficult it will be to explain the findings to others
who have interest in the results.

 5. The larger the sample size or the number of observations, the less likely it is
that an incorrect conclusion will be drawn.

 6. Ask yourself if the results and conclusions you are arriving at as a result of
doing the analysis make sense. If they do not make sense, double-check the

ptg6882136

Bibliography 355

data, confirm what you are seeing is indeed correct, confirm the methods you
are using make sense, and validate any assumptions that you may have made.
Some adverse or unexpected event may have occurred while executing the
experiment and as a result may be leading you to an inaccurate conclusion.

 7. Realize some experiments do not require statistical methods to arrive at a
proper conclusion. For example, if the purpose of the experiment is to determine
whether there is at least a 1% improvement as a result of some change and
the observed difference from a single observation of a baseline and specimen
is 10%, then statistical methods are probably not necessary to conclude there
is at least 1% improvement realized with the change. Keep in mind that if the
10% improvement is suspicious, you should double-check the data, the system
configuration, and so on to confirm some adverse event has not occurred. Hence,
a second or third execution of both the baseline and specimen may be needed to
add sufficient confidence without relying on statistical methods.

Reference

[1] Rosen, Kenneth H. Discrete Mathematics and Its Applications, First Edition.
Copyright AT&T Information Systems, Inc., publisher McGraw-Hill, Inc., 1988.

Bibliography

Apache Commons. http://commons.apache.org/. The Apache Software Foundation.
Forest Hill, MD.

Snedecor, George W., and William G. Cochran. Statistical Methods, Eighth Edition.
Iowa State University Press, Ames, IA, 1989.

http://commons.apache.org/

ptg6882136

This page intentionally left blank

ptg6882136

357

9
Benchmarking
Multitiered
Applications

The Java Enterprise Edition (referred to as Java EE hereafter), is a widely used
platform for the deployment of distributed multitiered enterprise applications. These
applications are often the public face of the business on the Internet and a well-
designed, user-friendly online presence is critical to the success of the business. The
ability to serve large numbers of concurrent users on a 24 * 7 basis is a necessity, and any
disruption or poor quality of service can lead to permanent loss of customers. Per-
formance, scalability, and reliability considerations should be incorporated into the
design and development of enterprise applications so that they can provide a rich
user experience.

The performance capability of applications is studied through the use of bench-
marks. In this chapter, some of the general principles behind developing benchmarks
for multitiered applications are discussed. The first part looks at some of the char-
acteristics of these applications and how benchmarks can be designed to meet the
requirements of simulating complex user interactions. The second part deals with
performance analysis of applications as well as monitoring and tuning of the Java
EE container in which these applications are deployed.

Benchmarking Challenges

Chapter 8, “Benchmarking Java Application,” discussed some of the challenges faced
while developing Java SE benchmarks. Benchmarking enterprise applications brings
a set of additional challenges due to the distributed and complex nature of these

ptg6882136

358 Chapter 9 � Benchmarking Multitiered Applications

applications. Some of the application characteristics that need to be addressed while
developing enterprise benchmarks are as follows:

� Multitiered nature of enterprise applications. Enterprise applications
are often multitiered systems with the presentation tier, application tier, and
persistence tier deployed on physically or logically separated systems. The
distributed nature of the application makes the benchmark more complex to
develop and deploy as well as makes it more difficult to isolate performance
bottlenecks. Issues relating to network connectivity between the different com-
ponents is another factor that needs to be taken into consideration while bench-
marking distributed systems.

� User scaling. Applications are required to support large numbers of concur-
rent requests reliably while maintaining the overall quality of service. User
demand increases as the business grows, and applications servicing these cus-
tomers should be capable of meeting the increased user load. The term “user
scalability” is used to define the capability of a system to scale up to meet
increased user load. It is important to have a clear understanding of how the
application behaves to increasing load and also to identify the limits of the
application beyond which the performance may degrade substantially. For
example, an application that performs well on a database with a small data set
may perform poorly as the size of the database increases. Large user scalability
studies are difficult to carry out due to the high resource requirements (may
require a large number of machines connected on a high speed network) and
the time and effort involved.

� Vertical and horizontal scaling. Enterprise applications are usually dis-
tributed across multiple JVMs and/or hardware nodes. Highly scalable systems
are designed in such a way that each tier can scale independently to meet the
growing customer demand. The load is balanced to the various systems through
the use of hardware or software load balancers. The two main modes of scaling,
horizontal and vertical, are characterized by how the application responds to
the addition of hardware resources. In vertical scaling, a single instance of the
application meets the increased demand by fully utilizing the additional CPU and
memory resources provided to it. A horizontally scaled application on the other
hand, meets growing customer demand by increasing the number of application
instances on an existing system or on additional hardware nodes. Understanding
the scalability characteristics of an application is essential and must be an inte-
gral part of the performance analysis. As in the case of user scalability studies,
large scale horizontal and vertical scalability studies can be expensive due to the
high resource requirements. However, in most cases, it is possible to understand
the scalability characteristics from a study with a limited number of nodes and
extrapolating it to larger clusters of machines.

ptg6882136

Benchmarking Challenges 359

� Access by different types of clients. The applications maybe accessed by a
wide variety of clients including cell phones, PDAs, browsers, standalone clients,
and Web service clients just to name a few, using a wide variety of communica-
tion protocols. Simulating different clients is an important consideration while
developing benchmarks, especially if these invocations traverse different code
paths. The presence of various types of caches (browser cache, proxy cache, etc.)
between the client device and the server makes modeling the access pattern by
clients more complex.

� Secure interactions. Applications often need to support both secure and
nonsecure access. It is important to understand the impact of enabling secu-
rity to the overall performance of the application. Defining benchmarks with
the appropriate mix of secure and nonsecure transactions requires good
insight into the application usage pattern, which may not be available in all
cases.

� Session maintenance. User states maintained as part of the application
are sometimes required to be saved into a persistent store to account for loss of
data in case of a system failure. Maintaining the shopping cart in a persistent
HTTP session is a well-known example of this. Session persistence is an expen-
sive operation and is an important performance characteristic to be studied.
Several factors affect the performance of these highly available applications,
which increases the complexity of the benchmark.

� Service availability. Availability of an application is defined as the per-
centage of time it is operational and is typically defined in nines notation. For
example, 2-nines availability corresponds to 99% up time (or a downtime of
8.76 hours/year), and 5-nines availability translates to 99.999% up time (or
5 minutes/year). The service and data availability requirements vary over a
wide range depending on how critical the application is. Benchmarking the
applications under various scenarios, including the injection of failure condi-
tions, allows estimation of the availability rating of the application. Due to the
large number of components often distributed over multiple tiers, obtaining an
accurate estimate of the availability of an enterprise application is a complex
and difficult task.

� Difference in payload sizes. Size of the payload that is processed/trans-
mitted is one of the most important factors that affect the performance of
enterprise applications. For similar requests, the response payload size may
vary depending on different parameters. For example, a request to get an
invoice may result in a small invoice consisting of one line item or one with
thousands of line times. It is important that benchmarks are designed in such
a way that changes in application behavior can be easily studied for varying
payload sizes.

ptg6882136

360 Chapter 9 � Benchmarking Multitiered Applications

� Load due to asynchronous requests. Business applications are often
required to handle asynchronous requests (e.g., user requests posted to mes-
sage queues, asynchronous Web service invocations, etc.) while servicing exist-
ing users. Processing these asynchronous requests requires additional system
resources, which may affect the response time characteristics of the other user
requests. It is important to add simulated asynchronous requests into the
benchmark so that the effect of these interactions can be studied.

� Presence of firewalls. For security purposes, firewalls are often present
between the different tiers and can affect the overall performance. In the initial
phase of the performance analysis where the focus may be on identifying perfor-
mance bottlenecks in the software, performance tests can often be done without
the firewalls. It is a good practice to do an evaluation of the performance impact
of these systems in a deployed configuration before the system goes live.

� Dependence on external entities. Some enterprise applications have to
communicate with external entities as part of their request processing. A Web
2.0 mashup that obtains part of its data from an external Web service is an
example of this. One challenge faced in the benchmarking of such applications is
the lack of predictability of the results due to the dependence of the benchmark
on entities outside the benchmark setup. Replacing the external entity with an
emulator that is deployed within benchmark setup is often required to address
this issue.

It should be noted that for most applications, only a subset of the previously
mentioned features is applicable. Since the purpose of the benchmark is to study
the application behavior as closely as possible, it is important that the benchmark
addresses all relevant aspects of the application.

Enterprise Benchmark Considerations

This section looks at some of the important considerations in the design of an
enterprise benchmark. The discussion uses the example of benchmarking a Web
application. However, these principles can be applied to the benchmarking of other
enterprise applications as well. Performance considerations for designing enterprise
applications are not considered here but are discussed in later chapters.

Defining the System Under Test (SUT)

One important aspect to consider is defining the boundaries of the system under test
(SUT, commonly pronounced as “sut”). This may seem obvious but is often overlooked.
The importance of defining a SUT is to ensure that we are actually measuring what

ptg6882136

Enterprise Benchmark Considerations 361

is deemed important. This is especially critical for the benchmarking of one or more
components of a multitier application.

Tip

The SUT should include components whose performance is to be measured and exclude
external systems that the application depends on but are not part of the performance
evaluation. The overall performance of the system as measured by the benchmark should
be limited by the performance of one of the components within the SUT and not by any of
the external systems.

Take the example of a Web application that accesses data from a database. Depend-
ing on the scope of the benchmark, the database may or may not be part of the SUT.
If the benchmark is designed to analyze the performance of the Web application
including the database interaction, then the database should be considered to be part
of the SUT. Under these circumstances, the overall performance of the system may
be limited by either the application server or the database.

Alternatively, consider a scenario in which a benchmark is used to compare the
performance of an application deployed on application servers from different vendors.
Since the purpose of this study is to evaluate the performance of the application
server tier, the SUT would consist of only the application server, and the database
would be considered external to the SUT. In this case, a valid benchmark result would
require the overall performance to be limited by the application server and not by
the database. If the database turns out to be the bottleneck, the benchmark should
be rerun after tuning the database so that it is not the limiting factor.

Developing Micro-benchmarks

A combination of micro- and macro-benchmarks is often required to study the perfor-
mance of complex enterprise applications distributed over multiple tiers. The purpose
of the micro-benchmark is to evaluate the performance characteristics of a small
section of the application while the macro-benchmark is used to analyze the perfor-
mance of the entire system.

There are several advantages in developing micro-benchmarks that focus on specific
user scenarios. They are easy to develop, and their limited scope allows easy identifica-
tion of performance bottlenecks. It is most effective to develop micro-benchmarks for
the most common use cases. However, keep in mind that micro-benchmarks may at
times identify false positive bottlenecks. These bottlenecks may be an artifact of the
benchmarking process itself (e.g., several concurrent users simultaneously accessing
the same Web page leading to lock contention; in the real world scenario, the concur-
rent access may be limited due to users carrying out different activities), or the overall

ptg6882136

362 Chapter 9 � Benchmarking Multitiered Applications

impact of this issue may be trivial when the whole application is taken into consid-
eration. In other words, the micro-benchmark use case may be a small percentage of
all the interactions and may not be significant in the global scope.

Tip

Develop micro-benchmarks for the most common use cases to identify performance
bottlenecks. It is a good practice to carry out a thorough evaluation of the impact of the
performance problem identified by the micro-benchmark before investing significant
resources in analyzing and fixing it.

Micro-benchmarks are the first step in the performance evaluation process. Since
these benchmarks typically address only a single interaction at a time, they are not
useful in evaluating the overall performance of an application where multiple compo-
nents interact with each other. A more complex macro-benchmark that evaluates the
performance of the entire application in a realistic fashion is required for this. The
steps involved in the development of such a macro-benchmark are discussed next.

Defining the User Interaction Model

A macro-benchmark simulates a real world user load, which allows us to understand
the performance characteristics of an application. The first step in benchmark devel-
opment is defining the user interaction model, which describes the paths traversed by
the user as he or she uses the application. A Markov chain is often used to simulate
user interactions in a realistic fashion.

An easy-to-understand description of Markov chain is provided in Wikipedia as
follows:

Markov chain is a discrete-time stochastic process with the Markov property. Having
the Markov property means that, given the present state, future states are independent
of the past states. In other words, the present state description fully captures all the
information that can influence the future evolution of the process. Thus, given the pres-
ent, the future is conditionally independent of the past. At each time instant the system
may change its state from the current state to another state, or remain in the same state,
according to a certain probability distribution. The changes of state are called transi-
tions, and the probabilities associated with various state-changes are termed transition
probabilities.

It is easier to explain the Markov chain with an example. Figure 9-1 shows the
interaction model for a simple online store that supports the browsing of a catalog
and purchasing an item. A shopper, who acts as the client in this interaction model,
starts by accessing the home page (interaction: home). The shopper then browses

ptg6882136

Enterprise Benchmark Considerations 363

through the specials, visits the most popular items, or searches for an item and
browses through the results using the page navigational aids (interactions: next-
Page, previousPage). A small set of shoppers continue to shop by adding items into
the shopping cart. From the shopping cart page, the shopper may decide to go back
to the search results, buy the items, or go back to the home page. Typically, only a
small percentage of shoppers add items to the shopping cart and a smaller percent-
age ultimately buys the product. To fully capture the application usage pattern, an
accurate model needs to be constructed. Developing such a model is often a difficult
task that requires access pattern analysis, input from business experts, and so on.

A variety of tools are available in the market that can capture the interaction
paths. Most of them have the capability to capture the key clicks as a user navigates
the Web site, and this can later be replayed to simulate the interaction. JMeter
(http://jakarta.apache.org/jmeter/), the Open Source load testing tool from the Apache
Software Foundation, is one of the most popular tools in this area. Other options
include the use of Live HTTP Headers or Firebug plug-in for Firefox or Developer
Tools for Chrome. The main challenge in developing the model is getting an accurate
estimate of the state transition probabilities. The task of estimating transition prob-
abilities may be simpler for preexisting applications since it may be possible to glean
the user interaction data using Web analytics tools. It is a good practice to define the
various transition probabilities as configurable parameters since it will enable easy
simulation of different user interaction scenarios.

Figure 9-1 User interaction model using a Markov chain

Client
Home
Page

home

most
popular

Most
Popular

home

buy

Specials

Search
Results

search

specials
nextPage

previousPage

Shopping
Cart

Order
Confirm

addTo
ShoppingCart

addTo
ShoppingCart

addTo
ShoppingCart

http://jakarta.apache.org/jmeter/

ptg6882136

364 Chapter 9 � Benchmarking Multitiered Applications

If an application supports different types of clients, Web browsers, RMI and Web
service clients, mobile devices, and so on, and the application behavior is different
for the different client requests, the model should incorporate the different interac-
tions. As in the case of transition probabilities, it is a good practice to include the
proportion of the various client types as configurable parameters. This allows the
performance of each client type to be studied in isolation by setting its proportion to
100% and others to 0%.

Browsers/proxies cache scripts, style sheets, and images and different client types
need to be taken into account while developing Web benchmarks. Clients that repre-
sent visitors who do not have the resources cached need to make subsequent requests
to fetch the necessary artifacts, whereas clients that represent visitors with cached
content need to fetch only the dynamic content. The load impact of noncached users
may be heavier than that of the cached users and hence these two types of users have
to be treated differently in the benchmark. Performance results from Yahoo! have
shown that roughly half of Yahoo!’s users have an empty cache. To get an accurate
proportion for your Web application, some experimentation may be required.

Tip

The first step in benchmark development is to define the user interaction model. A Markov
chain can be used to simulate user interactions in a realistic fashion.

Tip

It is important to incorporate different client access patterns into the benchmark including
the presence of browser/proxy caches.

Navigation of any Web site by real users includes delays between subsequent
requests, often described as the think time. The think time may vary depending
on the resource that is accessed; a user likely spends more time filling out a form
than reading a simple page. In an enterprise benchmark, the think time is defined
as the elapsed time between the completion of one request and the start of the next
request. This delay can either be a fixed value throughout the benchmark or a value
calculated based on a probability density function that allows a certain amount of
randomness to be injected into the benchmark. For example, the think time could be
a randomly selected value from a set of uniformly distributed values between min
and max with a mean of (min + max)/2. Use of a negative exponential distribution
is recommended since it most closely models Web user interaction.

ptg6882136

Enterprise Benchmark Considerations 365

As mentioned, think time is an important parameter for Web users. However, for
asynchronous interactions, say, a Web service or JMS client, the rate at which mes-
sages are injected into the system, injection rate, may be the more important criteria.
The performance of asynchronous applications is often defined in terms of the high-
est injection rate it can support without failures. Injection rate is often described in
terms of cycle time as follows:

Tip

Incorporate think time between successive requests to simulate user delay. The recommended
probability density function for the think time is the negative exponential distribution.

Tip

It is recommended that asynchronous interactions be modeled using injection rate, the
maximum rate at which requests can be processed by the application.

injection rate = 1 / cycle time

Cycle time defines the elapsed time between the start of one request and the start
of the next one. Cycle time includes the invocation time for a request (amount of time
elapsed between the start of the request and the end of the response) plus the delay
time (amount of time elapsed between the completion of a response and the start of
the next request). Thus the delay time is calculated as the difference between the
cycle time and the invocation time and varies depending on the invocation cost. If
the invocation time is greater than the cycle time, the client makes the next request
without any delay. If the invocation time is consistently higher than the defined cycle
time, it is clear that the application is unable to meet the current injection rate and
would signify a failure condition for the benchmark. Cycle time thus enables clients
to inject requests to the system as close to the desired rate as possible. As in the case
of think time, randomness is often injected into the system by varying the delay time
according to a predefined probability distribution.

Additional complexities are added to the benchmark if the application has high
availability requirements. If service and data availability requirements are specified,
the benchmarks should incorporate the injection of one or more failure conditions
into the system during the benchmark run. Calculating the availability metric is a
complex task and is beyond the scope of this book.

ptg6882136

366 Chapter 9 � Benchmarking Multitiered Applications

Applications often use HTTP sessions or stateful session beans to maintain user
data for an active session. In a typical case, this session information is stored in
memory and would be lost if the JVM is terminated. However, most applications and
Web servers, including GlassFish Server Open Source Edition (also referred to as
GlassFish hereafter) provide a high availability feature in which these sessions are
saved in persistent storage to ensure that the user data stored in sessions is not lost
in case of a server crash. Several factors affect the performance of session persistence
(described in Chapter 10, “Web Application Performance”), and they should be taken
into account while developing benchmarks for high availability applications.

Tip

Benchmarks that measure session persistence performance should take into account the
different factors that affect session replication.

For example, performance of highly available systems is greatly affected by the
size of data stored in the sessions. Hence the benchmark may want to introduce ses-
sion size as a parameter while studying the performance of these systems.

Defining the Performance Metrics

The next step in the design of the benchmark is to identify the important perfor-
mance metrics. First, let’s review a few definitions:

� Request. Invocation of a single resource from the server.
� Round-trip time. The elapsed time between the instant at which a request

is started and the instant at which the response is completed.
� Think time. The elapsed time between the instance at which a response is

completed and the instance at which a new request is started.
� Page view. A collection of one or more requests associated with rendering a

single Web page. The requests include the specified page as well as other related
artifacts (style sheets, script files and images, etc.).

� User transaction. A collection of one or more page requests.

Unlike the terms request, round-trip time, and think time, which are simple to
understand, the other metrics are more complex and need further discussion. The
following two sections provide a more detailed description of the last two terms.

Page View

A page view defines the work involved in rendering a page and may span multiple
requests. In the simplest case it consists of a single request.

ptg6882136

Enterprise Benchmark Considerations 367

For example, accessing http://java.sun.com/ using my browser resulted in a total
of 65 requests. It should be noted that the presence of caches and content delivery
networks (CDN) can reduce the number of requests served by the application server
associated with a page request.

How do you check whether a request has been successful? One simple way is to
check the status code of the response with any value of 400 or higher considered
to be a failure. Other options include verifying the size of the response or parsing
the response to verify its validity. Irrespective of the method used for verification,
it is important that any failures encountered during the course of a benchmark be
reported in the results.

User Transaction

A user transaction is defined as a set of associated page requests. The purpose of
defining user transactions is to divide the application into a set of manageable pieces
with each piece being a collection of associated user interactions. In the simplest case,
a transaction may involve only a single page request (e.g., accessing the home page),
but in other cases a user transaction may be a collection of several page requests.
The following transactions can be defined for the online store described in Figure 9-1.
Even though home is the access point for all transactions, it is not included in other
transactions for simplicity.

� home. Access the home page only (10%).
� specials. Access the specials page (20%).
� search. Search for an item in the catalog. Navigate the search results; 2

forward, 1 backward (40%).
� mostPopular. Access the list of most popular items including browsing

through the results (30%).
� addToCart. Add an average of n items to the cart from the search result.

Delete 1 item from the cart. (30% of search, 20% of specials, and 10% of most
popular).

� buy. Buy items in the shopping cart; confirm items in the list (10%).

The next step is to define transactional probabilities (shown in parentheses in
the preceding list), which are often collected using Web analytics tools, request logs,

Tip

Typically, a single page request consists of multiple requests to fetch other referenced artifacts
including style sheets, JavaScript files, images, and so on.

http://java.sun.com/

ptg6882136

368 Chapter 9 � Benchmarking Multitiered Applications

or based on business projections. For our example, the model defines that of all the
users, 10% access the home page and return without any further interaction, while
40% access the search page (includes navigation of search results), 30% pick most-
Popular, and 20% select specials. Some of the search page users (30%) then go on to
add an average of n items into the shopping cart. A further 10% proceed with the
buy transaction. Once the user interaction model has been defined, the benchmark
driver can be implemented to traverse the various paths through the application to
simulate real world user load. It is recommended that the transitional probabilities
be set as configurable parameters to make it easy to study different user interaction
scenarios, including the ability to study the performance of a single transaction in
isolation.

Response Time

From an end user point of view, this is the overall time taken for a page to render
fully and to be interactive. Even though it is important to measure the end user page
load time, if the focus of the benchmark is on measuring server-side performance,
the metric of interest is only a portion of the overall render time, the time taken to
generate the HTML page and deliver it to the client. Since the focus of this book is on
server-side performance, the discussion is limited to the development of benchmarks
that measure server performance.

During the course of the benchmark run, a page may be requested multiple times.
And, the response time measured for each request/response iteration needs to be
stored. At the end of the run it is useful to analyze the response time data for each
page request and calculate the following:

� Maximum
� Average
� 90th or 99th percentile
� Standard deviation

The two most commonly used measures are the average and the 99th percentile
response times. The average response time is calculated as the arithmetic mean of
the response time of all the successful requests, and the 99th percentile response
time describes the time at which 99% of all successful requests have completed. In
Web benchmarks, it is not uncommon for the distribution of response times to have
a long tail, with a small number of requests with high response time values even
though the vast majority of the requests have small response times. These outliers
may be caused due to full garbage collections, database check pointing, network
glitches, and so on. For applications that have strict response time requirements, the
maximum value may be used as the primary metric of interest.

ptg6882136

Enterprise Benchmark Considerations 369

A successful transaction typically requires each of its individual component
requests be completed while meeting specified success criteria. The common suc-
cess criteria are a combination of 99th percentile response time and data integrity
requirements. For the search transaction mentioned previously, the success criteria
may be defined as the 99th percentile response time for each of the individual page
requests be less than or equal to 1 second. An additional data integrity constraint can
be specified that at least ten items be returned as part of the search result.

Throughput

The performance of a system is usually described in terms of throughput, the capac-
ity of a system in servicing user requests. Throughput may be defined in a variety of
ways, number of successful transactions completed per second, number of operations
per second, amount of data processed (bytes/second), and so on. Figure 9-2 shows
the variation in throughput for increasing user load. For a well-behaved system, the
throughput initially increases as the number of concurrent users increases while
the response times of the requests stay relatively flat (see Figure 9-3). The system
resources are underutilized during the initial period, allowing the system to accom-
modate the increased user load. However, once the system has reached peak capacity
(as indicated by 100% CPU usage in Figure 9-4), the system throughput remains
steady and the response time increases linearly with increasing load.

Throughput can be used as the primary metric to measure the performance of an
application deployed on a particular hardware configuration. This works effectively
if all the user transactions are equally heavy. However, this often is not the case. For
example, in our online store example, a buy transaction that uses secure communica-
tion may be more expensive than a simple search transaction, which would translate
to a higher average response time for buy than for search. This necessitates the need
to specify different response time requirements for different transactions. Under

Figure 9-2 Throughput variation with increased load

10 20

Concurrent Users

T
h

ro
u

g
h

p
u

t
(T

P
S

)

30 40 50 600
0

50

100

150

200

250

300

350

400

450
Driver1

Driver2

ptg6882136

370 Chapter 9 � Benchmarking Multitiered Applications

such conditions, the benchmark would be defined as a set of transactions with each
transaction having a passing response time requirement (often 99th percentile). Any
transaction that does not meet the response time metric would be deemed as failed.
The overall benchmark metric would then be defined as the maximum load that the
benchmark can handle without any transaction failure.

Scaling the Benchmark

Scaling a benchmark typically means increasing the user load (the number of concur-
rent requests) to the application. A driver framework is used to generate the concur-
rent requests as well as measure the response time for each individual request. A
variety of open source driver frameworks is available in the marketplace—Apache
JMeter, Faban, just to name two—as well as commercially available products. Most
of the driver frameworks fall under one of these two categories.

Figure 9-3 Response time variation with increased load

100
0

0.02

0.04

0.08

0.06

0.12

0.14

0.1

20 30 40 50 60

A
vg

. R
es

p
o

n
se

 T
im

e
(s

ec
.)

Concurrent Users

Driver1

Driver2

Figure 9-4 Server CPU utilization with increased load

10 20 30 40 50 600

Concurrent users

S
er

ve
r

C
P

U
 U

ti
liz

at
io

n
 (

%
)

20
30
40
50
60
70
80

100
90

0
10

Driver2

Driver1

ptg6882136

Enterprise Benchmark Considerations 371

� Single client process with multiple concurrent threads. Each thread
simulates a real world user and works in parallel to the other threads. Since
all the threads occur within a single JVM, it is easy to control and synchronize
the execution of the various simulated users. Collating the data and generat-
ing a report is also easy with this method. This type of client is easy to develop
and to set up. However, it has some disadvantages. It may be difficult to scale
beyond a certain number of users due to the JVM memory size limitations. The
performance measurement may be skewed by bottlenecks within the client;
for example, full garbage collection within the client may cause large pause
times that may be incorrectly attributed to poor server performance. User load
limitation due to lack of availability of client resources is another drawback
of this approach. During benchmarking, the enterprise applications are typi-
cally deployed on server class machines with multiple cores and often multiple
network interfaces. To saturate the server in a single client JVM approach, an
equally powerful load generation machine may be required.

� Centrally controlled distributed multithreaded clients. In this case, the
user load is generated by a set of client processes where each process is similar
to the one explained previously. These clients may be co-located on the same
machine or may span across multiple machines. A central controller is required
to control the life cycle of each of these clients. This approach has several advan-
tages. No upper limit on the user load that can be generated; the concurrent
users can be increased easily by adding more client processes. The distributed
nature of this framework allows the use of a large number of low end client
machines to generate enough load to saturate the server without being lim-
ited by the client resources. The primary disadvantage of this approach is the
complexity of setting up and configuring a potentially large number of client
systems. The distributed benchmark framework that we use for our tests is
Faban, an open source offering from Oracle (http://faban.sunsource.net/).

It is often the case that the size of the database an application uses is propor-
tional to the total number of users it supports. In some cases, the number of users
in the database is the same as the number of active users accessing the application,
whereas in other cases, only a small proportion of the overall users is active at any
given time. A social network application is a classic example of the latter case, where
the application may have a large number of registered individuals but only a small
proportion of them are active at any given time. Increasing the size of the benchmark
database is an important consideration in the scaling of the benchmark. As the num-
ber of concurrent users of a benchmark is increased, it is a good practice to increase
the database size to reflect the increase in the user population.

Depending on the benchmark, other aspects of the benchmark may need to be
scaled as well. For example, to understand the performance impact of session size for

http://faban.sunsource.net/

ptg6882136

372 Chapter 9 � Benchmarking Multitiered Applications

a high availability application, the benchmark needs to be run with a range of session
sizes thus scaling the benchmark with respect to session size. To have a complete
understanding of the performance of the application, it is good practice to carry out
all the relevant scalability experiments.

Little’s Law Verification

The driver framework in a benchmark is responsible for generating the appropriate
load as well as measure the various performance metrics including throughput and
response times. It is important to pick a driver framework that provides accurate
results for the benchmark. In many cases, due diligence is not applied to check the
validity of the testing harness, and the inaccurate results produced by the driver are
taken at face value.

To illustrate this point, consider the following example of a benchmark used to
measure the performance of a Web service. The test was designed to identify the
maximum number of concurrent clients that the application can support with an
average response time of 300ms. Two different benchmark drivers were used:

� Driver1. A heavy client that submits the request, reads in the response, and
processes the receiving data before proceeding to submit the next request.

� Driver2. A light client that submits the request and reads the response with-
out any processing of the received data before submitting the next request.

Figure 9-2, Figure 9-3, and Figure 9-4 show the throughput, response time, and
server CPU utilization for increasing the number of concurrent users for both the
clients. The maximum throughputs measured by both the drivers are about the
same. Both drivers were able to fully saturate the server, but note that Driver1
(heavy client) requires more concurrent users than Driver2 (thin client) to saturate
the server.

Even though both the drivers reported similar maximum throughput numbers, the
response time data is different. Figure 9-3 shows that the response times measured
for a specified number of concurrent users using Driver1 is lower than that measured
using Driver2. Table 9-1 shows the maximum number of users supported with an
average response time of 300 milliseconds for the two drivers.

Table 9-1 Maximum Number of Users That Can Be Supported by the Application

Driver Maximum Users

Driver1 133

Driver2 115

ptg6882136

Enterprise Benchmark Considerations 373

It is pretty clear that there is something wrong with this data set—the maximum
capacity of a server cannot change based on the testing harness. But which one is
wrong? We can use Little’s Law to verify the validity of both data sets.

Little’s Law states the following: The long-term average number of customers in
a stable system L, is equal to the long-term average arrival rate, multiplied by the
long-term average time a customer spends in the system, W, or:

Applying this to our benchmark, L is the number of concurrent users, is the
throughput, and W is the average response time. Thus Little’s Law can be used to cal-
culate the number of active concurrent users given the throughput and the response
time. To verify the validity of the results, we calculate the number of concurrent users
for both drivers using the measured throughout and response time values. Table 9-2
shows the calculated values of concurrent users for both drivers. For Driver2, the
values reported by the driver match the calculated values. However, this is not
the case for Driver1 where the calculated value is roughly 20% lower than the one
specified by the framework.

This explains the anomaly seen in the response time data shown in Figure 9-3.
The reason for the lower response time for Driver1 is the smaller number of concur-
rent users loading the application. To verify this, the response times were plotted
against the calculated users as opposed to the number of users specified by the driver
harness as shown in Figure 9-5. The data confirms that overestimating the number
of users by Driver1 was the reason for the discrepancy in our performance metric.
Once the data has been calibrated, the maximum capacity of the server is the same
irrespective of the driver framework used.

The preceding example highlights the importance of the verification of results
produced by any testing framework, especially for ones that involve user scalability
analysis.

Table 9-2 Specified Versus Calculated Concurrent Users

Specified Users Calculated Users–Driver1 Calculated Users–Driver2

1 .44 .95

2 .84 1.95

4 1.32 3.92

8 2.92 8.07

16 8.32 15.81

25 16.66 24.94

50 40.71 49.97

ptg6882136

374 Chapter 9 � Benchmarking Multitiered Applications

Think Time

Think time is used to denote the time a user takes to process the information that
has been received (e.g., to read a page, complete a form, etc.). In benchmark design,
the think time is represented as a delay introduced between subsequent requests.
The type and amount of delay depends on the application and may vary from request
to request (e.g., reading a page may take less time than filling out a form). There
are a variety of ways to incorporate think times into a benchmark. They include
introducing a fixed time between requests, recording the think time while a real
user navigates the site and replaying it, and selecting the value from a probability
distribution. Some of the distributions that can be used include a randomly distrib-
uted value between a minimum and maximum or a negative exponential probability
distribution (with a maximum of five times the mean value). For Web applications,
the negative exponential distribution, the time between events in a Poisson process,
is considered to be the best option. It should be noted that delays are meant to be
present between successive page requests but not when requesting content (CSS,
JavaScript, images) considered part of a page request.

Figure 9-6 shows the variation in throughput with increasing active users for a
simple Web application for various fixed user think times in milliseconds. In the
legend for Figure 9-6, tt is an abbreviation for think time. Figure 9-7 shows the

Figure 9-5 Response time for calculated concurrent users

Calculated Concurrent Users

R
es

p
o

n
se

 T
im

e
(s

ec
.)

200
0

0.05

0.1

0.15

0.2

0.25

0.3

40 60 80 100 120

Driver2

Driver1

Tip

Use Little’s law (L = l * W; L = number of users, l = throughput, W = avg. response time)
to verify that the actual number of concurrent users generating load is indeed equal to the
number of users reported by the driver framework.

ptg6882136

Enterprise Benchmark Considerations 375

variation of the average response times for the same tests. The throughput measured
as the number of successful operations per second increases initially as the number
of users increases up to a maximum value and then remains steady. With a think
time of 300 milliseconds, the peak throughput of the system is achieved at around
150 concurrent users.

As seen in Figure 9-8, the overall load on the system is determined by the number of
active requests being processed at the server, which is a function of the number of con-
current users and think time. For the same user load, increasing the think time reduces
the number of active requests at the server, which allows it to support more users.

Figure 9-6 Throughput variation for increasing user load with different think times

100 200 300 400

Concurrent users

500

tt = 0

tt = 100

tt = 300

tt = 500

6000
0

50

100

150

200

T
h

ro
u

g
h

p
u

t
(T

P
S

)

250

300

350

400

Figure 9-7 Response time variation for increasing user load with different think times

100 200 300 400

Concurrent users
500 6000

0

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1

A
vg

. R
es

p
o

n
se

 T
im

e
(s

ec
.)

tt = 500

Calc tt = 100

Calc tt = 300
Calc tt = 500

tt = 300
tt = 100

tt = 0

ptg6882136

376 Chapter 9 � Benchmarking Multitiered Applications

How does think time affect the server’s performance? The performance of a server
is dictated mainly by the number of concurrent requests being processed and to a
limited extent by the total number of open connections (this may not be the case if the
connections become very large, say, 710,000). The introduction of think time means
that some of the active users will be in a passive state where they are not requesting
any resources from the server. In other words, the number of active users processed
by the server is less than the number of total users.

As seen in the earlier section, one commonly used performance metric is the maximum
number of users an application can support with the average response time equal to, or
smaller than a specified value. One way to ascertain this metric for varying think times
is to run multiple tests with different think times and for increasing user loads as shown
previously in Figure 9-7. If we define the response time limit for our experimental appli-
cation to be 500ms, then without think time the application can support about 180 users,
while that number increases to about 290 once a think time of 300ms is introduced.

Is there a way to use the performance data generated by the tests run without
think time and use it to extrapolate how the application performance would change
for different think times? The answer is yes. Little’s Law comes in handy here as
well. With the introduction of think time, the relationship between the number of
concurrent users, N, the arrival rate, l, the average response time, W, and the aver-
age think time, T, is as follows:

l = N/(W + T)

The arrival rate is the rate at which requests arrive at the server. An estimate
of the peak arrival rate can be obtained from running experiments without think
time and measuring the peak throughput. So given the peak throughput, we can

Figure 9-8 Server CPU utilization variation for increasing user load with different think times

100 200 300 400

Concurrent users

A
ve

ra
g

e
C

P
U

 U
sa

g
e

(%
)

500 6000
0

10

20

30

40

50

60

70

80

90

100
tt = 0

tt = 100

tt = 300

tt = 500

ptg6882136

Enterprise Benchmark Considerations 377

calculate the number of concurrent users for a given think time and response time
or conversely, we can calculate the average response time for a specified number of
users running with an average think time of T seconds. Figure 9-7, shown previously,
shows the calculated response time along with the measured times for three different
think times. As can be seen from the graph, the calculated value is very close to the
measured value. In our experiments, the peak arrival rate turns out to be around
362. Using the equation listed earlier, our experiments show that we can support a
maximum of 290 users with a think time of 300ms and an average response time of
500ms (N = 362*[0.5 + 0.3] = 290).

Tip

The arrival rate equation, l = N/(W + T), provides a means by which we can compute the
capacity of a system under different think times and response time requirements based on
the results of a small set of no think time experiments.

Scalability Analysis

As the user load on an enterprise application increases, the need for compute
resources at the server go up as well. The increased user demand can be met by
either vertical, horizontal, or hybrid scaling. In vertical scaling, more resources are
provided to a single instance of the application to meet the increased throughput
requirement. This is often achieved by deploying the application on a larger SMP
(symmetric multiprocessing) or a CMT (chip multithreading) system. This is suitable
for applications that can fully utilize all the available resources without being inhib-
ited by limitations in application design, JVM’s garbage collection, lock contention,
network, disk I/O limitations, and so on.

In horizontal scaling, the increased demand is met by the addition of more appli-
cation instances deployed on additional (usually smaller) systems. The multiple sys-
tems are typically fronted by a load balancer that distributes the user load among
the various available instances. This is a flexible way to scale the application to meet
extremely large user load. The main disadvantage of this model is the difficulty of
managing and maintaining the large numbers of deployed applications, Java EE
containers, and hardware systems.

The hybrid scaling model is a mixture of both the vertical and horizontal models.
In this case, within a single SMP system, applications are deployed on multiple
application server instances, and further scalability is achieved by the addition of
more systems. As in the case of horizontal scaling, this requires a load balancer to
route the requests to the appropriate instance.

Scalability analysis is often necessary to identify the best deployment configuration
for the application, especially for deploying applications on large SMP or CMT systems.

ptg6882136

378 Chapter 9 � Benchmarking Multitiered Applications

The application may be unable to fully utilize all the available resources due to vari-
ous reasons. Vertical scaling studies (plotting maximum throughput versus number
of hardware threads) allows the identification of scalability bottlenecks that can then
be rectified. It also allows us to identify the configuration that maximizes the resource
utilization. For example, excessive lock contention may inhibit an application to scale
beyond a certain number of cores. In such cases, it may be better to select a hybrid
deployment model in which multiple application server instances are run on a single
system for optimal resource utilization.

Some of the conditions that cause poor scalability of enterprise applications are
lock contention, disk or network I/O bottleneck, JVM garbage collection, inappropri-
ate application server tuning (mainly incorrect pool sizes), and dependence on slow
external systems (databases, Web services, etc.). The “Monitoring Subsystems” sec-
tion, later in the chapter, describes how these different parameters can be monitored.

Running the Benchmark

This section looks at some of the best practices for setting up and running multitiered
benchmarks as well as identifies a set of monitoring tools useful to identify potential
problems.

Isolate the SUT

Isolate the SUT if possible. The “Defining the System Under Test” section earlier in
the chapter described the need for identifying the SUT to ensure that the benchmark
generates accurate results.

Tip

For multitiered benchmarks, whenever possible, it is a good practice to isolate the SUT into
an environment that can be easily monitored.

Tip

It is a good performance practice to carry out network throughput and latency tests during
the benchmark setup phase to understand the capacity of the various communication
channels and to identify and eliminate high latency communication links.

For example, it is ideal if the driver, SUT, database, and external systems can be
deployed on separate machines allowing each of these systems to be monitored sepa-
rately. However, lack of machine availability and other limitations may not make this
deployment possible. One combination often employed is to isolate the SUT on one system
and aggregate all the other components (driver, database, etc.) onto a second machine.

ptg6882136

Enterprise Benchmark Considerations 379

It is also a good practice in the setup and configuration of a benchmark to consider
leveraging operating system capabilities such as processor sets, or partitioning off
portions of a system so they are viewed as distinct systems, such as virtualization or
Oracle Solaris zones. Creating processor sets allows for the ability to tie a process, a
Java application running in a JVM, to a set of processors. Doing so can improve CPU
cache utilization. Whether CPU cache utilization is improved depends on which vir-
tual processors are assigned to a processor and the underlying CPU chip architecture,
in particular its cache size and cache boundaries, that is, how many virtual proces-
sors a CPU cache spans, or how many virtual processors share the same CPU cache.
Virtualization, or use of Oracle Solaris zones, can further isolate applications into
domains since virtualization or zones provide the appearance of a distinct system.

There are often situations in which an application depends on one or more exter-
nal third-party components that may be connected over a network, say, a Web 2.0
mashup application that obtains data from an external source through a Web ser-
vice call. In this case, even though the response time of a request processed by the
application includes the time required to access the data from the external source,
while benchmarking, it is better to consider this resource to be external to the SUT.

Since repeatability is important in benchmarking, it is advisable not to have
dependencies on systems outside the confines of the benchmark setup. One com-
monly used approach in these types of scenarios is to include a simulator within the
benchmark setup that mimics the external service.

Resource Monitoring

For CPU bound applications, a benchmark designed to study the peak capacity of an
application should be able to fully utilize the CPU resources within the SUT. In most
cases, underutilization of CPU resources during benchmark runs is undesirable and
is often an indicator of software or hardware bottlenecks (unless the benchmark is
run at a reduced load).

Tip

Because of the multitiered nature of enterprise applications, it is important to monitor the
resource utilization of all the systems involved in the benchmark and to ensure that the
benchmark is not throttled due to lack of resources on systems external to the SUT.

The following should be monitored:

� CPU utilization
� Kernel and user memory utilization
� Network I/O utilization

ptg6882136

380 Chapter 9 � Benchmarking Multitiered Applications

� Disk I/O utilization
� JVM

Chapter 2, “Operating System Performance Monitoring,” and Chapter 4, “JVM
Performance Monitoring,” as well as the “Monitoring Subsystems” section later in
this chapter describe how the various components just mentioned can be monitored.

Ramp Up and Steady State Intervals

Chapter 8 described the warm-up requirements for Java benchmarks. These
requirements hold true for enterprise benchmarks as well. Additionally, a few other
requirements are worth considering:

� Ramp up time. This is the elapsed time for ramping up the load to the
required limit. It is preferable to increase the load gradually rather than start-
ing all the clients simultaneously. During the ramp up phase, the number of
concurrent clients is increased based on a predefined function such that all
clients are started by the end of the ramp up period. This time also serves as
the warm-up period for the JVM(s) within the SUT.

� Steady state time. This is the elapsed time during which benchmark mea-
surements are made. This should be long enough to collect meaningful results
as well as provide enough data points that allow clients to meet the propor-
tionality requirements. The steady state should also be long enough to include
important episodes that occur during the lifetime of an application, for example,
full garbage collection, database checkpoint, and so on.

� Ramp down time. The load is reduced gradually during this phase.

Managing Repeatability

An important requirement for any benchmark is to ensure it can generate repeatable
and consistent results. The presence of several components distributed over multiple
tiers can make repeatability a challenge for enterprise benchmarks. Benchmarks
with performance metrics that have wide variability between runs make it difficult
to assess whether the improvements or regressions are real, even with the use of
statistical methods as described in Chapter 8. The repeatability problem, which can
introduce wide swings in variability, can be mitigated by incorporating a series of
pretest steps that reset all the components to a known state. Some of the steps to
consider are given in the following list. All these steps may not be required for all
benchmarks.

� Reboot all systems.
� Restart all the JVMs.

ptg6882136

Enterprise Benchmark Considerations 381

� Restore database to original state (may require data reload).
� Restore file systems to original state.
� Restore message queues to original state.
� Clock synchronization across all systems.

Running Asynchronous Benchmarks

So far in the chapter, synchronous benchmarks have been discussed in which the
response time for a transaction can be measured at the client as the round-trip time
taken to complete the request/response cycle. However, the situation is different for
benchmarking applications involving asynchronous requests (JMS or one-way Web
service requests). In this case, the client will not be able to measure the time taken
to process the request due to the one-way nature of the request and hence a differ-
ent approach is needed to measure the performance of the application. One way to
achieve this is to have the time stamp of when the request was sent packaged as
part of the payload or within the message header if appropriate. The message con-
sumer can record the message arrival time and use the packaged time information
to calculate the transmission time of the message. The transmission start and end
times will be synchronized if the producer and consumer are deployed on the same
machine. However, if they are deployed on multiple machines, the time calculation
will be incorrect if the clocks on the two systems are not synchronized.

Tip

For multitiered asynchronous benchmarks, it is a good practice to synchronize the clocks on
all the systems before the start of the benchmark run. Clock synchronization can be achieved
through the use of Network Time Protocol (NTP) or using the rdate utility available on Oracle
Solaris and Linux systems.

To account for cases in which the clocks within different systems that are part of
the benchmark drift apart by large amounts during the benchmark run, it is recom-
mended that a comparison of the system clocks be done as part of a post benchmark
audit process and any run with large difference in system times be discarded.

Use Statistical Methods

Readers are encouraged to refer to the “Use of Statistical Methods” section in Chap-
ter 8 for a detailed discussion on the use of statistical methods in benchmarking.
Since several components are involved in an enterprise benchmark, the amount of
variability of the benchmark scores for repeated runs tends to be high. Hence one
tip worth repeating here from the Use of Statistical Methods section is Regardless of

ptg6882136

382 Chapter 9 � Benchmarking Multitiered Applications

the statistical method chosen, the larger the sample size or number of observations,
more information will be provided to the experiment and analysis.

Application Server Monitoring

In a typical multitiered enterprise application deployment, the clients, application
server instances, database, and external systems that the application depends on
may be deployed on disparate systems. Since each of these systems contributes to
the overall performance of the application, it is important to monitor and tune the
performance of each of these components. Even though in a live deployment, the
clients are typically outside the monitoring realm, in a benchmark scenario perfor-
mance monitoring of the client is also essential. Undetected client-side bottlenecks
may raise undue concerns about the performance of the application.

The typical attributes monitored at the operating system level are CPU, kernel,
and user memory, and network and disk I/O utilization. At the JVM level, garbage
collection, lock contention, and class loading need to be monitored. Chapter 2 and
Chapter 4 describe how to monitor these attributes for the various operating systems
as well as provide a set of general guidelines for identifying potential issues.

For applications with heavy database interaction, it is important to tune the database
for optimal performance. A rich set of tools from database and other third-party vendors
is available for monitoring and analyzing the performance of databases. The details of
database monitoring are beyond the scope of this book and are not covered here.

This section discusses how the system, JVM, and application server monitoring
can help identify some of the common problems encountered in distributed applica-
tions. The different parameters that can be monitored to analyze the performance
of JSP/servlets and EJBs are described in Chapter 10 and Chapter 12, “Java Persis-
tence and Enterprise Java Beans Performance.” But first, let’s take a brief look at
the monitoring framework within GlassFish; the Open Source Java EE server from
Oracle is provided. Readers not using GlassFish can skip ahead to the “Monitoring
Subsystems” section.

GlassFish Monitoring

The monitoring framework built into GlassFish allows users to monitor the different
containers as well as the applications deployed within the application server. Clients
can connect to the application server in several ways to monitor the server instance.

� Administration console
� Administration command line interface (admin CLI)
� JConsole, VisualVM, or other JMX clients

ptg6882136

Application Server Monitoring 383

Administration Console

The GlassFish application server provides a browser-based administration user inter-
face that allows users to administer as well as monitor server instances that are part
of a domain. The administration GUI can be accessed via http://<host name>:<admin
port>/(Default admin port: 4848). The examples provided in this section are based
on GlassFish V3.

Monitoring data can be accessed by clicking on the Monitoring button on the
Common Tasks pane on the left side, which brings up the default monitoring page.
Monitoring is disabled by default. It can be enabled dynamically for the various
components or services by clicking on the Configure Monitoring link. Figure 9-9
shows a screenshot of the monitoring configuration panel. The monitoring level of
each individual component can be modified independently of each other. Monitoring
of a component is enabled by setting its value to either low or high. The difference
between these two levels is component dependent. For example, in the case of HTTP
service, both the low and high level provide the same set of data, whereas in the
case of EJB container, application specific monitoring data is available only when
the level is set too high.

The cost associated with enabling monitoring can vary depending on the number
of modules enabled. A performance drop of about 5% to 8% can be expected if monitor-
ing is enabled for one or two modules. Due to its intrusive nature, monitoring should
only be enabled on production systems during periods of data collection.

Figure 9-9 Configuration panel of GlassFish administration console to enable
monitoring of different components

ptg6882136

384 Chapter 9 � Benchmarking Multitiered Applications

The data on the monitoring page is separated into different categories. The Run-
time tab can be used to monitor a variety of subsystems including the JVM, server,
HTTP service, thread pool, and so on. The pertinent data can be viewed by selecting
the appropriate item from the drop-down box. The Applications tab can be used to
get statistics about the performance of individual applications, and the Resources
tab provides data about the deployed resources.

JConsole/VisualVM

The application server behavior can be studied by introspecting the various built-in
MBeans using JConsole. JConsole is a JMX (Java Management eXtensions) compli-
ant GUI tool that can connect to a running 5.0 version of later JDK. Refer to Chapter
4 for more details about how to start JConsole and use it for JVM monitoring. This
section describes how JConsole can be used to monitor application server statistics.

JConsole can connect to a local or remote instance of the application server. When
connecting to a local system, select the appropriate server instance represented by
the name ASMain. Note that there may be more than one listing if multiple instances
of the application server are running. JConsole is a rather heavyweight process, and
running it locally may affect the performance of the application server due to the
sharing of the CPU resources. The JMX service URL to connect to a remote server
instance can be obtained from the administration console. On the bar on the left-
hand side, select Configurations 7 server-config 7 Admin Service. JMX connector
settings including the JMX port are displayed as shown in Figure 9-10. To connect
via JConsole, use the <host>:<JMXPort> in the remote connection dialog box.

Figure 9-10 JMX connections settings

ptg6882136

Application Server Monitoring 385

Once connection has been established, JConsole can be used to monitor the per-
formance of the JVM as well as some of the other properties of the application server
that are exposed as MBeans. The performance monitoring and analysis of the JVM
are described in detail in Chapter 4 and are not covered here.

To view the application server specific MBeans, click on the MBeans tab and then
the amx node. amx contains both configuration parameters as well as monitored
values. The monitored performance metrics are classified as <module>-mon nodes.
For example, request-mon node provides request statistics as shown in Figure 9-11.
To view the monitored value, click the attribute of interest on the navigation tree and
double-click on the value field on the right-hand pane. It is possible to add custom
MBeans to expose application specific data; see Chapter 10.

VisualVM, the graphical JVM visualization tool, can also be used to monitor the
JVM used within the GlassFish application server (requires JDK 6 Update 7 or later).
VisualVM can connect to both local and remote instances of the application server. To
monitor GlassFish-specific attributes, the GlassFish VisualVM plug-in needs to be
installed. The latest version of the plug-in can be downloaded from https://visualvm.
dev.java.net/plugins.html. Once monitoring is enabled on the server instance, the

Figure 9-11 Using JConsole to view application server statistics

https://visualvm.dev.java.net/plugins.html
https://visualvm.dev.java.net/plugins.html

ptg6882136

386 Chapter 9 � Benchmarking Multitiered Applications

GlassFish plug-in for VisualVM can be used to monitor the various attributes. Refer
to Chapter 4 for more details on how to use VisualVM.

asadmin CLI

GlassFish provides a Command Line Interface (CLI) that allows users to monitor the
performance of the various components of the server. The CLI can be used to list all
the monitorable components, set the monitoring levels for items of interest, and get
the performance data from a running system on either a local or a remote system.
This is achieved through the use of the administrative command, asadmin (or as -
admin.bat in the case of Windows), which is available under the bin directory of the
GlassFish installation. A detailed description of asadmin usage can be obtained by
using the asadmin --help command.

Since monitoring is turned off by default, the first step is to enable monitoring of
components. The list of all available monitorable services can be obtained using the
following command:

asadmin –-host <host> --port <port> get "<server-name>.monitoring-service.
module-monitoring-levels.*"
<host> and <port> are the host name and port of the DAS, resptively.
<server-name> is the name of the server to be monitored (default: server).

A sample listing follows:

asadmin --host host1 --port 4848 get server.monitoring-service.
module-monitoring-levels.*
server.monitoring-service.module-monitoring-levels.
connector-connection-pool=OFF
server.monitoring-service.module-monitoring-levels.connector-service=OFF
server.monitoring-service.module-monitoring-levels.ejb-container=OFF
server.monitoring-service.module-monitoring-levels.http-service=HIGH
server.monitoring-service.module-monitoring-levels.
jdbc-connection-pool=OFF
server.monitoring-service.module-monitoring-levels.jersey=OFF
server.monitoring-service.module-monitoring-levels.jms-service=OFF
server.monitoring-service.module-monitoring-levels.jpa=OFF
server.monitoring-service.module-monitoring-levels.jvm=OFF
server.monitoring-service.module-monitoring-levels.orb=OFF
server.monitoring-service.module-monitoring-levels.security=OFF
server.monitoring-service.module-monitoring-levels.thread-pool=OFF
server.monitoring-service.module-monitoring-levels.transaction-service=OFF
server.monitoring-service.module-monitoring-levels.web-container=HIGH
server.monitoring-service.module-monitoring-levels.
web-services-container=OFF
Command get executed successfully.

ptg6882136

Application Server Monitoring 387

The monitoring level for each individual component can be changed using the
asadmin set command as follows:

asadmin set <server-name>.monitoring-service.
module-monitoring-levels.<service>=<level>
<server-name> is the name of the server to be monitored (default: server).
<service> is service module of interest.
<level> can be OFF, LOW or HIGH.

For example, to enable monitoring of the http-service, run the following command:

asadmin set server.monitoring-service.module-monitoring-levels.
http-service=HIGH

Once monitoring has been enabled for a module, the special flag --monitor (or
-m) can be used in conjunction with asadmin to list and retrieve the required per-
formance data. To list all the available monitoring nodes within a service use the
following command:

asadmin --host <host> --port <port> list -m “<server-name>.<module>*”

<module> is the service of interest (eg: network).

To get the values of all the attributes within a monitoring node, use the get com-
mand as follows:

asadmin --host <host> --port <port> get -m
“<server-name>.<module>.<service>.*”

<service> is the specific service within the module that is of interest
(eg: server.network.http-listener-1)

The preceding command prints all the attributes and can be overwhelming. By
specifying the full dotted name of an attribute, only the data specific to that attribute
can be obtained. For example, to monitor how busy the HTTP request processing
threads are, use the attribute server.network.http-listener-1.thread-
pool.currentthreadsbusy-count.

The get command supports data collection at periodic intervals using the param-
eters --interval and --iterations.

ptg6882136

388 Chapter 9 � Benchmarking Multitiered Applications

The asadmin monitor command is another alternative to display a variety of
statistics for the various components. The usage is as follows:

asadmin monitor --type monitor_type

where type is one of the following values: httplistener, jvm, or webmodule. The
-help command can be used to get a detailed description of the monitor command.

Monitoring Subsystems

Performance monitoring helps identify some of the potential issues that may impact
the performance of an application. This section describes some of the important
parameters that should be monitored.

Java Virtual Machine

Performance of the JVM associated with the Java EE container is the most important
factor that determines the overall performance of an enterprise application. JVM
monitoring is thus an essential part of the performance analysis. Chapter 4 provides
a detailed description of the various performance monitoring tools that can be used
for this purpose. In this section specific details about how these tools can be used to
monitor a running application server instance are discussed.

As in the case of any Java application, enterprise applications are affected by gar-
bage collection performance. The Java EE container creates objects as part of the Web,
EJB, Web service, or JMS request processing in addition to the object allocations that
are part of the application’s business method processing. The performance impact of
garbage collection of application sever-generated objects has been shown to be low.
However, setting up large resource pools as well as large processing thread pools
can have adverse performance impacts due to increased garbage collection overhead.
Maintaining session information (via HTTP session objects or stateful session beans)
is another source of increased memory usage, so it is important to appropriately tune
the various containers within the application server instance. Advice on tuning the
Java HotSpot VM can be found in Chapter 7, “Tuning the JVM, Step by Step.”

Tip

Monitoring and tuning of the JVM associated with the JavaEE container are essential, and users
should apply the performance tips and best practices provided in other parts of this book to
improve the performance of the JVM embedded within the application server.

ptg6882136

Application Server Monitoring 389

JVM command line options can be added to the GlassFish server instance using
the Administration Console or through the asadmin CLI. The following example
shows how to enable GC monitoring in GlassFish.

� Use JVM command line options, -verbose:gc, -XX:+PrintGCDetails,
or -XX:+PrintGCTimeStamps.
Use the Administration Console. After logging in, select the application server
instance of interest. Select the JVM Setting tab and then the JVM Options tab.
Click the Add JVM Option button and type in the required option in the new
text field. Save the page and restart the server instance.

� Use asadmin CLI:

asadmin create-jvm-options \\-verbose\\:gc
asadmin create-jvm-options \\-XX\\:+PrintGCDetails
asadmin create-jvm-options \\-XX\\:+PrintGCTimeStamps

The output is written to the file <path to server instance>/logs/server.log.
� Use the jstat command line tool to monitor local or remote instances (remote

monitoring requires the installation and configuration of jstatd). The vmid asso-
ciated with the server instance can be identified by the class name ASMain as
shown in the output of the jps command. Use of jstat, jps and configuring jstatd
are covered in Chapter 4.

 #jps
 19151 ASMain
 20190 Jps

� Use JConsole or VisualVM (refer to the earlier section on connection
information).

Thread Dumps

Threads dumps are an easy way to capture a snapshot of what the threads are
executing at a point in time, and this can be used to get a quick synopsis of the
application execution. They provide a variety of useful information including lock
contentions, usages of the various pools, I/O activity, as well as a quick feel about the
load on the system. There are multiple ways to generate thread dumps for a running
server instance as shown here:

ptg6882136

390 Chapter 9 � Benchmarking Multitiered Applications

� The jstack utility bundled in JDK 6 (available in the Oracle Solaris and Linux
versions of JDK 5) can be used to collect the threads dump for any Java applica-
tion including the application server, either local or remote. To connect jstack
to a local GlassFish server instance, first use jps to identify the server process
identified by the class name ASMain. Refer to http://java.sun.com/javase/6/docs/
technotes/tools/share/jstack.html to learn more about the available options as
well as how to connect to remote instances.

� The Threads tab in JConsole.
� Use the Threads Inspector plug-in to VisualVM. Refer to https://visualvm.dev.

java.net/plugins.html for more information on how to use this plug-in.
� Use the asadmin command, asadmin generate-jvm-report –-type

thread.

Even though thread dumps provide only a snapshot of the execution state, it
is an easy-to-use, minimally intrusive method than can often provide useful data.
Chapter 4 discusses how this information can be used to identify lock contention in
an application that inhibits scalability. The analysis can also provide a variety of
additional information including unanticipated file system interaction as well as
network interactions with slow external systems including databases (details are
provided later in the section).

Network I/O

Since network performance is critical to distributed systems, it is important to ensure
that the network is designed to meet the demands of the application. The two measures
of interest are throughput and latency. Throughput describes how much data flows
over a channel in a given period of time. Two terms closely related to throughput, but
not identical, are network speed and bandwidth. Speed refers to the rated speed of the
networking technology (e.g., Gigabit Ethernet is rated at 1 gigabit per second), and
bandwidth refers to the theoretical data capacity. Network throughput is the practically
measured data transfer capacity over a communication channel. Network bandwidth
can be measured using the Java version of Test TCP (TTCP), available at http:/ /www.
netcordia.com/files/java-ttcp.zip, or uperf, a network performance tool that supports
modeling and replay of various networking patterns, available at http:/ /www.uperf.org/.

The other important aspect is the network latency, which describes how long it takes
for the data to arrive after it has been requested. Network latency is an important
contributor to the overall response time for requests and should be taken into account
while setting up a benchmark. The ping utility available in Oracle Solaris (also referred
to as Solaris hereafter), Linux, and Windows can be used to measure the network latency
between two systems. The ping command usage and the associated output for the vari-
ous platforms are given in the following sections.

http://www.netcordia.com/files/java-ttcp.zip
http://www.netcordia.com/files/java-ttcp.zip
http://www.uperf.org/
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html
https://visualvm.dev.java.net/plugins.html
https://visualvm.dev.java.net/plugins.html

ptg6882136

Application Server Monitoring 391

Solaris

This is ping usage and output for Solaris:

ping -s webcache.east.sun.com 32 5
PING webcache.east.sun.com: 32 data bytes
40 bytes from cache3bur.East.Sun.COM (129.148.13.2): icmp_seq=0.
time=78.0 ms
40 bytes from cache3bur.East.Sun.COM (129.148.13.2): icmp_seq=1.
time=77.6 ms
...
----webcache.east.sun.com PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip (ms) min/avg/max/stddev = 77.5/77.7/78.0/0.18

Linux

This is ping usage and output for Linux:

ping -c 5 -s 32 webcache.east.sun.com
PING webcache.east.sun.com (129.148.9.2) 32(60) bytes of data.
40 bytes from cache1bur.East.Sun.COM (129.148.9.2): icmp_seq=0 ttl=239
time=79.1 ms
40 bytes from cache1bur.East.Sun.COM (129.148.9.2): icmp_seq=1 ttl=239
time=78.4 ms
...
--- webcache.east.sun.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4039ms
rtt min/avg/max/mdev = 78.261/78.628/79.103/0.456 ms, pipe 2

Windows

This is ping usage and output for Windows:

D:\>ping webcache.east.sun.com

Pinging webcache.east.sun.com [129.148.13.2] with 32 bytes of data:

Reply from 129.148.13.2: bytes=32 time=78ms TTL=240
Reply from 129.148.13.2: bytes=32 time=78ms TTL=240
...

Ping statistics for 129.148.13.2:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% l
Approximate round trip times in milli-seconds:
 Minimum = 77ms, Maximum = 78ms, Average = 77ms

Tip

It is a good performance practice to carry out network throughput and latency tests during
the benchmark setup phase to understand the capacity of the various communication
channels and to identify and eliminate high latency communication links.

ptg6882136

392 Chapter 9 � Benchmarking Multitiered Applications

The “Network I/O Utilization” section of Chapter 2 describes tools to monitor the
network utilization of a system at the operating system level as well as a set of best
practices that improve the performance of the application’s network interactions. The
amount of system time as a proportion of the overall CPU usage time will be high
for Web applications servicing large numbers of users because of the high network
I/O involved.

It is common to find enterprise applications that interact with external applica-
tions over the network as part of a request processing cycle. The application may
create a new socket connection for each request or may reuse an already existing
connection. The creation and closing of sockets are expensive operations, and this
overhead may even be a significant part of the overall network communication cost,
especially if the amount of data transferred is small. How can runtime monitoring
be used to figure out if too many new connections are being created? This can be
done using the netstat utility available on Solaris, Windows, and Linux. netstat -a
provides the state of active connections (sample output for Solaris follows; the output
is slightly different for other platforms, but all of them indicate the state of a connec-
tion). Connections in TIME_WAIT state indicate sockets that are closed, and a large
number of these are usually a good indicator of new connection creation/closure. The
other piece of information to watch for is the client port number; a constantly chang-
ing port number is a telltale sign of new connection creation.

#netstat -a
<edited>
Local Address Remote Address <edited> State
------------- -------------------- -------- ------
jes-x4600-1.10000 jes-x4600-1.42850 ... TIME_WAIT
jes-x4600-1.10000 jes-x4600-1.42851 ... TIME_WAIT
jes-x4600-1.42860 jes-x4600-1.10000 ... TIME_WAIT
jes-x4600-1.42883 jes-x4600-1.10000 ... ESTABLISHED
jes-x4600-1.10000 jes-x4600-1.42883 ... ESTABLISHED

Performance of External Systems

As mentioned earlier, multitier enterprise applications interact with other external
systems including databases over the network. A slow external system can affect the
response time for a request if the network interaction is in the request processing

Tip

It is a good performance practice to create a pool of socket connections and reuse them as
appropriate rather than creating a new connection for each request. Setting up appropriate
timeout values would allow these resources to be released if they are not used frequently.

ptg6882136

Application Server Monitoring 393

path as is often the case with database interactions. There are several ways to iden-
tify slow database performance including the use of sophisticated database analysis
tools. In some cases, a simple thread dump analysis helps you identify the problem
quickly, and the authors often use this approach as a simple first level method to
identify slow network or database performance. It should be noted that this is just
a coarse-grained approach and should not be the final determining factor and pre-
clude you from carrying out more sophisticated techniques even if this test does not
identify any problems.

The way to identify slow external systems is to look for threads that are waiting for
a response as shown in the following stack snippet. A combination of a large number
of threads in the network I/O state and the availability of spare CPU cycles on the
application tier clearly indicate that the performance of the application is hampered
by slowness of either the network or the external system.

“httpSSLWorkerThread-8081-62” daemon prio=3 tid=0x00c84c00 nid=0xcf
runnable
 [0x3bc7e000..0x3bc7faf0]
 java.lang.Thread.State: RUNNABLE
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)
 at com.mysql.jdbc.util.ReadAheadInputStream.

fill(ReadAheadInputStream.java:113)
 ..
 at com.mysql.jdbc.Connection.execSQL(Connection.java:3283)
 ..
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:831)
..
“httpSSLWorkerThread-8081-61” daemon prio=3 tid=0x01102000 nid=0xce
runnable
 [0x3bd7fe000..0x3bd7fa70]
 java.lang.Thread.State: RUNNABLE
 at java.net.SocketInputStream.socketRead0(Native Method)
 java.lang.Thread.State: RUNNABLE
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)
 at com.mysql.jdbc.util.ReadAheadInputStream.

fill(ReadAheadInputStream.java:113)
..
“httpSSLWorkerThread-8081-60” daemon prio=3 tid=0x01101000 nid=0xcd
runnable
 [0x3be7e000..0x3be7fbf0]
 java.lang.Thread.State: RUNNABLE
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)

BTrace, the dynamic Java tracing utility (available at http://kenai.com/projects/
btrace/pages/Home) can also be used to identify slow database interactions. A sample
that measures the JDBC statement execution time for all queries follows. A more

http://kenai.com/projects/btrace/pages/Home
http://kenai.com/projects/btrace/pages/Home

ptg6882136

394 Chapter 9 � Benchmarking Multitiered Applications

sophisticated JDBC query tracking script (JdbcQueries.java) that displays the execu-
tion time of each SQL statement is available as part of the BTrace samples found at
the BTrace Project Web site.

package com.sun.btrace.samples;

import static com.sun.btrace.BTraceUtils.*;
import java.sql.Statement;
import java.util.Map;
import com.sun.btrace.AnyType;
import com.sun.btrace.BTraceUtils;
import com.sun.btrace.aggregation.*;
import com.sun.btrace.annotations.*;

/**
 * BTrace script to print timings for all executed JDBC statements on an
event. Use –-full parameter to display the histogram.
 */
@BTrace
public class JdbcAnyQuery {
 private static Map<Statement, String> preparedStatementDescriptions
 = newWeakMap();
 private static Aggregation histogram =
 newAggregation(AggregationFunction.QUANTIZE);
 private static Aggregation average =
 newAggregation(AggregationFunction.AVERAGE);
 private static Aggregation max =
 newAggregation(AggregationFunction.MAXIMUM);
 private static Aggregation min =
 newAggregation(AggregationFunction.MINIMUM);
 private static Aggregation count =
 newAggregation(AggregationFunction.COUNT);
 private static boolean full = $(2) != null &&
 strcmp(“--full”, $(2)) == 0;
 @TLS
 private static long timeStampNanos;

 @OnMethod(clazz = “+java.sql.Statement”, method = “/execute.*/”)
 public static void onExecute(AnyType[] args) {
 timeStampNanos = timeNanos();
 }
 @OnMethod(clazz = “+java.sql.Statement”, method = “/execute.*/”,
location = @Location(Kind.RETURN))
 public static void onExecuteReturn() {
 AggregationKey key = newAggregationKey(“Generic Query”);
 int duration = (int) (timeNanos() - timeStampNanos) / 1000;
 addToAggregation(count, key, duration);
 addToAggregation(average, key, duration);
 addToAggregation(histogram, key, duration);
 addToAggregation(max, key, duration);
 addToAggregation(min, key, duration);
 }

 @OnEvent(value=”reset”)
 public static void onReset() {
 println (“Data reset”);

ptg6882136

Application Server Monitoring 395

Running the script provides the following output:

 clearAggregation(count);
 clearAggregation(min);
 clearAggregation(max);
 clearAggregation(average);
 clearAggregation(histogram);
 }

 @OnEvent()
 public static void onEvent() {
 println(“Results. All times are in microseconds”);
 println(“---”);
 printAggregation(“Count”, count);
 printAggregation(“Min”, min);
 printAggregation(“Max”, max);
 printAggregation(“Average”, average);
 if (full) {
 printAggregation(“Histogram”, histogram);
 }
 println("---");
 }
 }

/home/binu/Utils/btrace/bin/btrace `jps |grep ASMain | awk '{print
$1}'` /home/binu/Utils/btrace/samples/JdbcAnyQuery.java

^CPlease enter your option:
 1. exit
 2. send an event
 3. send a named event
2
Results. All times are in microseconds

Count
 Generic Query 32
Min
 Generic Query 922
Max
 Generic Query 146336
Average
 Generic Query 13341

Based on the query execution times, a determination can be made of whether the
application performance is impaired by a slow database.

Disk I/O

The “Disk I/O Utilization” section of Chapter 2 describes how to collect disk usage
statistics for the various operating systems. Several parts of the Java EE container
code involve disk interaction in addition to the application level disk usage. The

ptg6882136

396 Chapter 9 � Benchmarking Multitiered Applications

various disk activities carried out by the application server instance are presented
in the following list, and they vary depending on the type of request that is processed
and the application server configuration.

� Accessing static files (HTML, CSS, image, Javascript files) as part of the Web
request

� Writing to access and server logs
� Writing to transaction logs as part of distributed transactions
� Writing of persistent JMS messages as well as JMS transaction logging

A typical Web request for a static content involves the Web container reading the
required resource from the file system before streaming it over the network. In the
classic Web usage pattern, the user requests are predominantly HTTP GETs, which
translate to large amounts of read system calls involving disk I/O if the data is not
cached in memory. However, with the advent of Web 2.0, users interacting with the
system often upload a variety of content including images, audio, and video. These
types of transactions involve storing content in a local or distributed file system and
are very write intensive. So the disk/file system interaction is a critical component
of Web application performance.

It is common practice to enable access logging (default is no access logging on
GlassFish) to collect data regarding the user requests. See Chapter 10 for more
information about tuning the access log files.

GlassFish supports several levels of logging that can be customized individually
for the different subsystems. As the logging level is made more and more fine-grained
from the default level of INFO, the increased write activity can cause disk bottle-
necks. Excessive logging adversely affects the performance of the application as well
as causes scalability issues. Some of the logging best practices include

� Set the server log level to the minimum required level.
� When required for debugging, be specific about the component that needs the

increased log level.
� Specify appropriate logging level within the application code. Printing to the

standard output and standard error causes the output to be written to the log
file if the log level of the component is set to INFO or higher. In cases where the
application cannot be modified, this logging can be eliminated by reducing the
log level to WARNING.

The Transaction Manager writes information to the transaction log file as part of
transaction processing, which may cause disk bottlenecks. The large service times
due to busy disks may result in poor system performance, degrade scalability, and

ptg6882136

Application Server Monitoring 397

in the worst case cause transactions to be aborted. In cases where disk performance
is an issue, it is recommended that the application server instance be configured to
have the transaction log file on a fast disk (best choice would be a solid state disk, also
know as an SSD) or a disk array with write cache. The location of the transaction log
directory can be configured using the administration console (on the left navigation
bar, select Configuration 7 Transaction Service and specify the new location in the
Transaction Log Location field) or the asadmin CLI as follows:

Tip

It is a good performance practice to use SSDs or disk arrays with write caches for transaction
logging and for storing JMS messages.

Thread dump analysis is useful for identifying unanticipated file system interac-
tions as well. One example of this is the loading of XML factory classes, which may
involve searches through the various jar files to identify the appropriate instance to
load. Repeated loading of these factory classes is expensive (more details about this
are provided in Chapter 11, “Web Services Performance”) and should be avoided.
Thread dump analysis is often an effective way to identify this problem as shown in
the following stack trace snippet of loading a javax.xml.transform.TransformerFac-
tory.newInstance.

“p: thread-pool-1; w: 9” daemon prio=3 tid=0x09f1ac00 nid=0xe2 runnable
[0x2dc43000..0x2dc44bf0]
 java.lang.Thread.State: RUNNABLE
 at java.util.zip.ZipFile.getEntry(Native Method)
 at java.util.zip.ZipFile.getEntry(ZipFile.java:149)
 - locked <0x3f8a30b0> (a java.util.jar.JarFile)
 at java.util.jar.JarFile.getEntry(JarFile.java:206)
 at java.util.jar.JarFile.getJarEntry(JarFile.java:189)

asadmin set server.transaction-service.tx-log-dir=<PATH LOCATION>

Processing of persistent or transactional JMS messages is disk intensive. Persis-
tent JMS messages need to be saved, which results in writes to the file system since
the default message store is file based. (DB store is also supported, but file store has
shown to have better performance.) JMS transactions (single or two-phase) involve
transaction logging, which cause disk activity. As in the case of distributed transac-
tion logging, it is recommended to configure the JMS file/transaction store to be on
a fast disk or write cache enabled disk array for optimal performance.

Continued

ptg6882136

398 Chapter 9 � Benchmarking Multitiered Applications

It is important to note that thread dump analysis is a coarse-grained approach
and may not identify all potential problems.

Another tool available in Solaris for I/O monitoring is the iosnoop DTrace script,
the use of which is described in detail in Chapter 2.

Monitoring and Tuning Resource Pools

One important step in tuning an enterprise application is the proper configura-
tion of the various resource pools. Tuning JDBC connection pools for applications
that interact with databases is an example of this. The external interaction typi-
cally involves network I/O, which can cause the thread to be in a blocked state
while waiting for the external resource to complete the interaction. The blocked
thread uses up one of the connections from the pool, thereby reducing the number
of available connections that can be used by other processing threads. If the pool
size is too small, other threads wait for a connection to be available resulting in
underutilization of CPU resources. Setting the pool size too high causes waste
of resources both within the application server as well as the database. Most
application servers provide three tuning parameters: minimum, steady state, and
maximum connections.

 at sun.misc.URLClassPath$JarLoader.getResource(URLClassPath.
java:754)

 <deleted> ...
 at javax.xml.transform.FactoryFinder.newInstance(FactoryFinder.

java:147)
 at javax.xml.transform.FactoryFinder.find(FactoryFinder.java:233)
 at javax.xml.transform.TransformerFactory.

newInstance(TransformerFactory.java:102)

Tip

One general tuning guideline is to set the steady state pool size to the number of hardware
threads and maximum size to be equal to the maximum size of the HTTP worker thread pool
(plus ORB thread pool size if remote EJBs or MDBs are invoked).

Further tuning of the connection pool can be attained by monitoring the server
under load and taking corrective actions based on the observed values.

The GlassFish monitoring framework allows the inspection of the differ-
ent resources including JMSConnectionFactories, resource adapters, and JDBC

ptg6882136

Profiling Enterprise Applications 399

Data within the individual resources can be obtained using the asadmin get -m
command as shown in the following example:

asadmin list -m “*resources*”
server.resources
server.resources.SpecJPool
server.resources.__TimerPool
server.resources.jms/QueueConnectionFactory

Inspection of the various JDBC connection pool statistics allows us to under-
stand whether the pool is appropriately sized. The two most important attributes
to check are numconnfree-current and waitqueuelength-count. If the value
of numconnfree-current is consistently zero and waitqueuelength-count is
greater than zero, this indicates that the pool is configured to a smaller size than
that required by the application. Typically this causes underutilization of the server’s
CPU resources, and the corrective action would be to increase the maximum pool
size if the external resource (e.g., database) can handle the increased number of
connections.

The connection pool monitoring statistics are useful for identifying potential con-
nection leaks. The attributes numconnacquired-count and numconnreleased
-count indicate the number of connections acquired and released, respectively.
Under steady state, the number of connections acquired and released should be the
same. Any mismatch indicates a potential connection leak. A nonzero value for the
attribute numpotentialconnleak-count is another indicator of a potential leak.

Profiling Enterprise Applications

Enterprise applications deployed within the GlassFish application server behave
like any other Java application, and profiling techniques used for Java applications
work here as well. Chapter 5, “Java Application Profiling,” and Chapter 6, “Java
Application Profiling Tips and Tricks,” provide both an introduction into using mod-
ern Java profilers and tips and tricks to employ to identify performance issues in
Java applications. Readers are encouraged to read both chapters to understand how

asadmin get -m “server.resources.SpecJPool.*”

connections pools. Monitoring of these systems can be enabled by setting the level
too high. To obtain a list of all the available resources, use the following command:

ptg6882136

400 Chapter 9 � Benchmarking Multitiered Applications

to improve the performance of their enterprise applications. In this section, how to
attach and collect the profile data to introspect enterprise applications deployed on
the GlassFish application server is presented. Once the data is collected the tech-
niques described in Chapters 5 and 6 can be used to analyze the performance of the
application.

As described in Chapter 5 the Oracle Solaris Studio Performance Analyzer collects
profile information in an experiment file with a command line utility called col-
lect, or often referred to as the Collector. Also remember that the Oracle Solaris
Studio Performance Analyzer runs on Solaris (both SPARC and x86/x64) and Linux
x86/x64 platforms. Profiling on the Windows platform can be done using the Net-
Beans Profiler. Both approaches are covered in this section beginning with the Per-
formance Analyzer approach. Before reading this section it may be useful to read
Chapter 5 to obtain an understanding of how to use the Performance Analyzer and
NetBeans Profiler.

There is no asadmin command that allows the user to collect the necessary pro-
filing data using the Performance Analyzer for the GlassFish application server.
Generating profiling data using the Performance Analyzer requires the user to start
the Java application using the Performance Analyzer’s collect command. Since
GlassFish uses a command launcher to start the application server process, some
shell script creation is necessary to start the application server with the Performance
Analyzer collect command.

Viewing the results of the collected experiment file is done using the Performance
Analyzer’s GUI program called Analyzer, or through a command line utility called
er_print. How to use the Performance Analyzer GUI or command line er_print
to view the results of a collected experiment is described in Chapter 5.

For other application servers implemented in the Java language, they too can be
profiled on Solaris and Linux using the Performance Analyzer. To collect profiling
data, the Java command line that launches the application needs to be updated to
use the Performance Analyzer collect command as described in Chapter 5. Then
the collected profile can be viewed and analyzed with either the Analyzer GUI or
command line er_print.

The NetBeans Profiler can also be used to profile the GlassFish application
server. NetBeans Profiler supports profiling of many popular application servers
and Web servers right out of the box such as GlassFish, Tomcat, Weblogic, and
JBoss. It also uses wizards to make the task of attaching the profiler simple and
straightforward. A review of Chapter 5’s coverage of how to use the NetBeans
Profiler provides sufficient information to capture a profile of an application run-
ning in an application server along with providing information on how to view the
profile data.

ptg6882136

Bibliography 401

Bibliography

Dellamaggiore, Nick, and Eishay Smith. “LinkedIn: A Professional Social Network
Built with Java Technologies and Agile Practices.” http://www.slideshare.net/linkedin/
linkedins-communication-architecture.

Tharakan, Royans. “What is scalability?” http://www.royans.net/arch/what-
is-scalability/.

Beltran, Vicenç, Jordi Guitart, David Carrera, Jordi Torres, Eduard Ayguadé, and
Jesus Labarta. “Performance Impact of Using SSL on Dynamic Web Applications.”
http://www.bsc.es/media/389.pdf.

Hines, Bill, Tom Alcott, Roland Barcia, and Keys Botzum. “IBM WebSphere Session
Management.” http://www.informit.com/articles/article.aspx?p=332851.

McDougall, Richard. “Availability—What It Means, Why It’s Important, and How to
Improve It.” http://www.sun.com/blueprints/1099/availability.pdf.

Harris, James, Americo J. Melara, Hugh Smith, and Phillip Nico. “Performance anal-
ysis of the Linux firewall in a host.” http://courseware.ee.calpoly.edu/3comproject/
Published%20Papers/security.pdf.

“Markov Chain.” Wikipedia. http://en.wikipedia.org/wiki/Markov_chain.

Halili, Emily H. “Functional Testing with Jmeter.” http://www.packtpub.com/article/
functional-testing-with-jmeter.

Theurer, Tenni. “Performance Research, Part 1: What the 80/20 Rule Tells Us
about Reducing HTTP Requests.” http://yuiblog.com/blog/2006/11/28/performance-
research-part-1/.

Theurer, Tenni. “Performance Research, Part 2: Browser Cache Usage–Exposed!”
http://www.yuiblog.com/blog/2007/01/04/performance-research-part-2/.

King, Andy, and Konstantin Balashov. Speed Up Your Site: Web Site Optimization,
New Riders Publishing, Indianapolis, IN, 2003.

Standard Performance Evaluation Corporation (unknown author). SPECjms2007
Design Document. http://www.spec.org/jms2007/docs/DesignDocument.html.

Little, John D. C., and Stephen C. Graves. “Little’s Law.” http://web.mit.edu/sgraves/
www/papers/Little%27s%20Law-Published.pdf.

bmwiz. “Estimating Max. Concurrent Users Supported.” http://testnscale.com/blog/
performance/estimating-max-users/.

http://www.slideshare.net/linkedin/linkedins-communication-architecture
http://www.slideshare.net/linkedin/linkedins-communication-architecture
http://www.royans.net/arch/what-is-scalability/
http://www.royans.net/arch/what-is-scalability/
http://www.bsc.es/media/389.pdf
http://www.informit.com/articles/article.aspx?p=332851
http://www.sun.com/blueprints/1099/availability.pdf
http://www.packtpub.com/article/functional-testing-with-jmeter
http://www.packtpub.com/article/functional-testing-with-jmeter
http://www.yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://www.spec.org/jms2007/docs/DesignDocument.html
http://courseware.ee.calpoly.edu/3comproject/Published%20Papers/security.pdf
http://courseware.ee.calpoly.edu/3comproject/Published%20Papers/security.pdf
http://en.wikipedia.org/wiki/Markov_chain
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://web.mit.edu/sgraves/www/papers/Little%27s%20Law-Published.pdf
http://web.mit.edu/sgraves/www/papers/Little%27s%20Law-Published.pdf
http://testnscale.com/blog/performance/estimating-max-users/
http://testnscale.com/blog/performance/estimating-max-users/

ptg6882136

402 Chapter 9 � Benchmarking Multitiered Applications

Gunther, Niel. “Using Think Times to Determine Arrival Rates.” http://perfdynamics.
blogspot.com/2010/05/using-think-times-to-determine-arrival.html.

Oracle. “Oracle GlassFish Server 3.0.1 Administration Guide.” http://download.oracle.
com/docs/cd/E19798-01/821-1751/821-1751.pdf.

Infoblox. “Java TTCP.” http://www.netcordia.com/community/files/folders/tools/
entry103.aspx.

Sun Microsystems, Inc. Performance Applications Engineering Group. “uperf–A Network
Performance Tool.” http://www.uperf.org/.

Sun Microsystems, Inc. “BTrace–Dynamic Tracing Utility for Java.” http://kenai.com/
projects/btrace.

http://www.netcordia.com/community/files/folders/tools/entry103.aspx
http://www.netcordia.com/community/files/folders/tools/entry103.aspx
http://www.uperf.org/
http://perfdynamics.blogspot.com/2010/05/using-think-times-to-determine-arrival.html
http://perfdynamics.blogspot.com/2010/05/using-think-times-to-determine-arrival.html
http://download.oracle.com/docs/cd/E19798-01/821-1751/821-1751.pdf
http://download.oracle.com/docs/cd/E19798-01/821-1751/821-1751.pdf
http://kenai.com/projects/btrace
http://kenai.com/projects/btrace

ptg6882136

403

10
Web Application
Performance

Over the last decade, the complexities of Web applications have increased tremen-
dously. Not only are they expected to support increasingly complex features, they also
are expected to handle hundreds of thousands, if not millions, of requests per day. It
has become common to deploy these applications on a Java EE based Web container.
To achieve optimal performance, it is important to architect the application appro-
priately as well as tune the container that it runs on. This chapter discusses how to
monitor and tune a Web container for optimal performance as well as some of the
best practices that should be used in applications.

Before diving in, a discussion about the scope of this chapter is provided. The
area of high performance Web site development has been discussed at length in the
literature; dozens of books have been written, thousands of blogs and articles can
be found on the Web, and several Web sites are dedicated to this area. This is a vast
topic that warrants that type of a comprehensive coverage. Before discussing what
is covered here, to set expectations right, it is appropriate to enumerate a few topics
not covered in this chapter.

The architecture of a large scale Web site is complex, involving many hardware
and software components. The Web container that originates the content is one of the
most important pieces in this puzzle, but it is just one piece nonetheless. This chapter
does not cover how to architect a high performance site in terms of components to use
or network layout. The scope is limited to discussing how to tune a Java EE based
Web container for optimal performance. Users who are not familiar with Web archi-
tecture design may want to turn to one of the dozen books available on this subject.

ptg6882136

404 Chapter 10 � Web Application Performance

Several factors contribute to the performance of a Web site: page delivery time of
the server, network latency, and browser page display time. It has been well docu-
mented that a poorly designed page can result in large page display times and end
user dissatisfaction. Hence generating a Web page that the browser can display effi-
ciently is one of the most important steps in the design of a Web application. Steve
Souders discusses several Web page optimization techniques in his two books High
Performance Web Sites and Even Faster Web Sites. It is recommended that users
incorporate these optimization techniques in the page generation process. The per-
formance of the server in delivering the required pages is also an important factor
in overall performance. This chapter identifies a set of best practices specifically for
Java EE-based Web applications that provide low latency and high scalability.

Java EE consists of several individual specifications, and a variety of technologies
are bundled into the Web container. Not all of them are discussed here—JSF and
Jersey, just to name two. The goal here is to provide an overview of how to monitor
performance of a Web application and to provide a set of best practice guidelines for
some of the most commonly used techniques.

The chapter is organized as follows. The benchmarking section highlights some
important factors to consider when developing Web benchmarks. This is followed by a
brief description of the different components within the Web container. The next sec-
tion deals with how to monitor and tune the Web container for optimal performance.
The chapter concludes with a look at some of the best practices for Web applications.

Benchmarking Web Applications

Chapter 9, “Benchmarking Multitiered Applications,” described the general prin-
ciples behind developing enterprise benchmarks. In this section, we highlight a few
items specific to Web applications.

� Development of benchmarks based on a Markov chain is useful for applications
that have complex access patterns. However, in cases where page accesses are
independent of each other, the complexity of the benchmark can be reduced by
using a benchmark that accesses pages based on the proportion of the antici-
pated traffic.

� Replay of access logs is a great mechanism for simulating production load. Web
servers in production environments are typically set up to capture requests
that are served by the server. Refer to the “Access Logging” section later in
the chapter for more information on setting up the access log on the Glass-
Fish server. Designing a benchmark that can replay the log lines allows you to
mimic production load as closely as possible. Requests that modify data (POST,
PUT, DELETE) often need special attention. A replicated data store that can be

ptg6882136

Web Container Components 405

repopulated easily may be required so that the integrity of the production data
is not compromised when data modification requests are replayed. Additionally,
the logger mechanism may have to be augmented to collect post and put data.

� Even though the focus in this book is on measuring the time taken for the server
to deliver a page, it is important to study the user-perceived page load time
since studies show that more than 90% of the time may be taken at the client
side.

� If a page has multiple Ajax requests, it is important to measure the overall
performance of the page by combining all associated requests.

� Applications that behave differently for different users pose additional bench-
mark development challenges. A social networking application that delivers
content based on the requesting user is an example of this type of application.
For such applications, it is important to understand how the application behav-
ior is affected by who is requesting the page. Requests from non-signed-in users
are typically delivered from a cache, and these types of requests are a load test
on the caching infrastructure. Even within signed-in users, there may be a wide
disparity in application logic based on user profile. For example, a user with a
few friends may have different performance characteristics than one with many
friends. Developing an accurate benchmark model for such applications may be
tricky and difficult. In addition to request distribution based on page URLs, a
secondary distribution based on the requesting user profile is also required.

Web Container Components

This section provides a brief description of the various components within a Web
container instance. The discussion is based on the GlassFish Server Open Source
Edition (also referred to as GlassFish hereafter), which is the reference implemen-
tation for Java EE 6. Even though this discussion uses GlassFish as the example,
the Web container architecture discussed here is similar to that used by many other
containers available on the market.

A GlassFish deployment is based on the concept of one or more domains controlled
by a domain administration server. A domain may contain one or more clusters,
which in turn is a collection of server instances, along with one or more standalone
server instances. For the purpose of this discussion, we focus only on the components
within the container that are relevant to performance.

The container is built on a set of nested components as shown in Figure 10-1. The
server consists of one or more connectors that share a single engine component. The
engine in turn contains one or more virtual hosts each with one or more applications
(Context). Within each application are Java Servlets and JSPs. A few concepts are

ptg6882136

406 Chapter 10 � Web Application Performance

shared in some of the components. Both the connector and the engine use the concept
of pipeline and valves. A pipeline is a series of steps that the incoming request goes
through during its processing cycle. The pipeline consists of a set of default valves
or tasks but is configurable, and new valves can be added to provide additional
functionalities.

HTTP Connector

As of V2, the GlassFish Web container uses the Grizzly NIO framework (http://
grizzly.java.net/), which allows the server to scale to many concurrent clients. The
entry point into Grizzly is the Selector module where the NIO selectors are created.
The selector thread pool allows multiple selectors to be run in parallel to provide
better scalability. The Selector is task based and creates the following tasks:

� Accept task to handle new connections (NIO OP_ACCEPT event)
� Read task for reading the request (NIO OP_READ event)
� Processor task for processing the request

The read task is responsible for preprocessing the request; to read data from
the stream to ensure that there is enough information to start processing the
request. Once a request is ready for processing, a processor task is created and

Figure 10-1 Different components within a Web container

Engine

Host(s)

Selector

Selector
Thread

Pool

Processing
Thread

Pool

Request
Processor

write
Connector

User
Agent Accept

Read

Contexts

Servlets/JSPs

http://grizzly.java.net/
http://grizzly.java.net/

ptg6882136

Web Container Components 407

scheduled for execution on the request processing thread pool (request processor in
Figure 10-1).

The threads in the request processing thread pool are responsible for process-
ing incoming requests and committing the response back to the client. In all cases,
other than the asynchronous processing defined in Servlet 3.0 specification, all the
instructions involved in a request process are executed in a single thread including
any I/O operations (database interaction, external Web service calls, etc.). The pro-
cessor consists of a series of pipelined operations, including stream processing and
protocol parsing. Additionally, the pipeline also includes special handlers like HTTP
file cache, which if enabled allows static files to be delivered from the Grizzly file
cache for improved static file delivery performance.

In addition to the NIO based Grizzly connector, GlassFish also supports a blocking
connector called the Coyote connector. The blocking connector is based on Java I/O
and follows a thread per request model. In this mode, when a new connection is cre-
ated, a thread is assigned to handle all requests on that connection. After a request
has been processed, if the connection is not closed by the client, the processing thread
blocks waiting for additional requests until the connection times out. The blocking
connector works well for handling multiple requests from a single client but suffers
from scalability problems since a thread has to be dedicated to each open connec-
tion. The connector is thus typically limited to handling a couple of thousands of
connections at best. The problem is especially acute for cases where the user makes
requests at a low rate. In this case, the server has to reject new connections due to
lack of available processing threads even though the server has plenty of computa-
tional capacity left.

Since the NIO based connector uses a limited set of worker threads for handling
all connections, it can scale to several thousand connections. Performance tests have
shown that GlassFish can handle upwards of 10,000 connections.

Servlet Engine

The connector hands off the request to the servlet engine for processing. A single
engine shared by multiple connectors is composed of multiple nested components
starting with one or more virtual hosts. Virtual hosting allows multiple domains to
be serviced by a single server. GlassFish allows multiple virtual hosts to be config-
ured using the Administration Console. Virtual hosting is a convenience feature and
does not impact the performance of applications deployed in it. A host can support
multiple applications with each application identified by a unique context root. The
engine pipeline consists of a series of valves with each valve responsible for a specific
operation. The valve hierarchy is configurable, and users can add their own valves
to implement custom features.

ptg6882136

408 Chapter 10 � Web Application Performance

Applications are isolated from each other through the use of separate class load-
ers for every application. Each application can contain one or more Java Servlets
and JSPs. The container handles the application life cycle during deployment and
undeployment. Applications can attach listeners to be invoked during context ini-
tialization and destruction as well as have custom code invoked during the creation
and destruction of a Servlet (init() and destroy() methods). In addition to user-
defined Servlets, the container has two built-in Servlets, the DefaultServlet and
the JspServlet. The DefaultServlet is responsible for handling static files (html,
css, JavaScript, images, etc.) deployed as part of the application.

By default, GlassFish supports dynamic modification of JSPs allowing changes to
be reflected immediately without application redeployment. Requests mapped to a
JSP page are handled by the JspServlet, which first checks whether the JSP file
has been modified since it was last compiled. If it is, the JSP page is compiled and
service method invoked. The support for dynamic changes does have a performance
impact and is discussed in more detail in the “Best Practices” section later in the
chapter.

Web Container Monitoring and Performance Tunings

Chapter 9 discussed how the various containers within an application server can be
monitored to identify potential performance bottlenecks and use the observed values
to tune the container for optimal performance. By tuning the containers appropri-
ately, we hope to maximize the use of the system resources. For most Web applica-
tions, the goal would be to eliminate performance bottlenecks and be able to scale the
application either vertically or horizontally as the user load increases.

Before talking about the various parameters that can be monitored, some of the
container level configuration settings that have performance implications are dis-
cussed. It is important to note that the items discussed here are applicable to most
application servers; GlassFish is used as an example to show how the various param-
eters can be tweaked.

Development and Production Container Modes

There may be configuration settings applicable to the container that affect its
performance. It is important to select appropriate container settings for optimal per-
formance. For example, the GlassFish Web container supports two different modes
—development mode and production mode. The difference between the two modes is
the way in which the container handles changes made to a deployed JSP. In the devel-
opment mode, auto-reloading of the JSP is enabled, in which each page is checked
to see whether any changes have been made to it. This mode allows developers to

ptg6882136

Web Container Monitoring and Performance Tunings 409

see the effect of the changes without the need to redeploy the application. There is a
performance penalty for achieving the flexibility offered by the development mode.
The container saves the last compiled time of the JSP file, and for each request this
value is checked against the last modified time of the file in the file system. If the
file is newer than the compiled version in memory, the file is reloaded thus allowing
the modifications to be visible right away. In addition to the expense involved in the
file timestamp check (due to a system call), the synchronized nature of this check
reduces the container’s capability to process the same JSP file by multiple threads
in parallel thus reducing the scalability of the application. In the production mode,
auto-reloading is disabled, which means that the application needs to be redeployed
for any changes to be visible.

By default, GlassFish in a developer profile sets the container to be in developer
mode. To achieve best performance in a production environment, the container should
be configured to be in production mode. To configure GlassFish in production mode,
add the following lines to the <DOMAIN_DIR>/config/default-web.xml> file under
the JspServlet definition:

<init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
</init-param>
<init-param>
 <param-name>genStrAsCharArray</param-name>
 <param-value>true</param-value>
</init-param>

The default-web.xml is only read during application deployment. So the applica-
tion has to be redeployed for this change to take effect.

Even in production mode, it is possible to check the freshness of the page peri-
odically through the use of the checkInterval property. By default, the check
Interval value is set to zero, which results in background compilation being
turned off. By setting a value higher than zero, the container can be configured
to check for changes even in production mode. However, for best performance the
checkInterval value should be set to zero.

Presence of Security Manager

The Java security manager manages the security policy that determines whether
access to a protected resource is permitted to code. Based on a security policy file, the
security manager provides access of protected resources to code loaded from specific
locations, signed by particular entities, and executed for a set of users. The security

ptg6882136

410 Chapter 10 � Web Application Performance

manager is required only if your application runs untrusted code and can be turned
off if the application runs trusted code.

In GlassFish, the Java security manager is disabled by default but can be eas-
ily enabled by adding the System property java.security.manager as a JVM
argument through the Administration Console or using the asadmin CLI. Once the
security manager is enabled, it will be in effect for all the applications deployed on
that instance of the application server.

A performance cost is associated with enabling the security manager. The Java
runtime keeps track of the sequence of method calls made as a program executes.
When access to a protected resource is requested, the entire call stack, by default,
is evaluated to determine whether the request access is permitted. This security
check is expensive, thereby increasing the overall execution time of any operation
that involves access of protected resources (for example, file and network I/O). In
performance tests conducted in our lab using a simple online trading application,
enabling the security manager (using the default security.policy file) resulted in a
33% reduction in throughput.

It is important to note that disabling the security manager does not affect the
application server’s capability to provide authentication and authorization.

JVM Tunings

One of the most important performance tunings that need to be applied to a Web con-
tainer is tuning the JVM that the container runs on. These include the selection of the
JVM compiler as well as the garbage collection settings appropriate for the application.

Chapter 3, “JVM Overview,” provides details of the client and the server JIT
compilers. Most Web containers in production environments are expected to run
continuously over a long period of time between restarts. The server JIT compiler
that provides the best performance is ideally suited for such cases. Unless the client
JIT compiler is specified (which is the default behavior for the GlassFish application
server), the JVM ergonomics automatically selects the appropriate JIT compiler for
server class machines.

Tip

Java EE containers that are used in production mode should select the server JIT compiler. For
server class machines, the JVM typically selects this option automatically unless the -client
option is provided (which is the default for the GlassFish server in development mode). Server
compiler can be enabled by specifying the -server JVM option.

As discussed earlier, the GlassFish application server sets the client compiler as
the default by specifying the -client option. This is due to the fact that the default

ptg6882136

Web Container Monitoring and Performance Tunings 411

server is configured in development mode for application developer use. The servers
used in this mode are expected to be restarted often and lower server startup time
is more important than achieving the best performance. The client compiler is thus
a better fit for this type of use.

The other important JVM subsystem to be tuned for production deployments is
the garbage collection. The selection of the garbage collector and the various tun-
ing parameters play an important role in the overall performance of the container.
Users are encouraged to review Chapter 7, “Tuning the JVM, Step by Step,” for more
information on the selection of the appropriate garbage collector as well as for tuning
the GC for optimal performance.

The garbage collection characteristics of a Web container depend both on the
container as well as the deployed application. Even though Web applications vary
widely, in the vast majority of cases, the object retention is limited to the duration of
the processing of the request. In a typical scenario, many String and char arrays
are created by the container when a request is being processed, and these objects
are eligible for garbage collection once the response is committed. These short-lived
objects can often be reclaimed from the young generation space. If the young gen-
eration space is small, this can lead to some of the objects being promoted unneces-
sarily to the old generation space. Since JDK 1.4, the size of the young generation
space is based on the value set as the Java HotSpot VM’s NewRatio, the default
value of which varies with the hardware (Server VM: SPARC=2, x86=8). Java Hot-
Spot’s NewRatio sets the ratio of young generation space to old generation space.
GlassFish sets the NewRatio value to 2, but in general, for Web containers running
on x86 based systems, the performance can be improved by increasing the size of
the young generation space by setting the following -XX:NewSize=<size> and
-XX:MaxNewSize=<size> where size is one-third of the maximum Java heap size,
which is set by the command line option -Xmx.

The choice of the garbage collector depends on the application requirements. Since
Web containers are deployed on server class machines with multiple CPUs, and are
designed to service large number of requests in parallel, the throughput collector
would be able to provide the highest overall system throughput. The downside of
using this collector is the large pause times encountered during the full garbage col-
lection cycles, which may lead to poor user experience. The CMS collector is a better
choice for Web applications that require low pause times.

GlassFish and other Web containers embed an RMI server to service client requests.
It is important to tune the garbage collection for RMI to control periodic full garbage
collections. By default RMI invokes distributed garbage collection every 60 seconds.
Distributed garbage collection is done via a call to System.gc(). Distributed gar-
bage collection frequency can be tuned using the following two properties, -Dsun.
rmi.dgc.client.gcInterval and -Dsun.rmi.dgc.server.gcInterval. Both
properties accept a numeric value. The default value is 3,600,000 milliseconds, in

ptg6882136

412 Chapter 10 � Web Application Performance

other words 1 hour. Setting these two properties to a value of Long.MAX_VALUE,
effectively sets the interval between distributed garbage collections to infinity. In
addition, the –XX:+DisableExplicitGC Java HotSpot VM command line option
disables distributed garbage collection. The important thing to know with tuning
distributed garbage collection is that if the application requires timely reference
processing, then setting the interval to Long.MAX_VALUE or disabling distributed
garbage collection is not a recommended practice. Otherwise, disabling or setting
the interval to Long.MAX_VALUE is acceptable. You may need to do some analysis
of your application to determine whether it relies on frequent reference processing.

HTTP Service and Web Container

This section discusses the important parameters within the Web container that can
be monitored. The examples are based on the GlassFish V3 application server, but
the general principles should apply to other application servers as well. It should be
noted that identification of issues often requires several of the parameters to be mon-
itored in combination. Refer to Chapter 9 for a more detailed description of GlassFish
monitoring, including how to enable monitoring for the different containers.

The monitoring data of interest in the Web container fall under two categories:
HTTP Service and Web Container. The monitoring levels for these components need
to be changed to low (setting a value of high has the same effect) to turn on the data
collection. The examples in this section are based on GlassFish V3.

HTTP Listener

The HTTP listener provides data regarding the connection queues, thread pools, file
caches, and keep-alives. The different nodes that can be monitored under the http-
listener-x are shown in the following example. To view this in the Administration
Console, click on the Monitor tab of the server instance, select the Server tab, and
choose the http-listener-x element from the drop-down menu. A sample listing of the
elements that can be monitored under http-listener-1 follows:

asadmin list -m “server.*http-listener-1.*”
server.network.http-listener-1.keep-alive
server.network.http-listener-1.file-cache
server.network.http-listener-1.thread-pool
server.network.http-listener-1.connection-queue

Thread Pool

The most important parameter that affects performance is the size of the request
processing thread pool. A request processing thread pool is configured with each

ptg6882136

Web Container Monitoring and Performance Tunings 413

listener to process the incoming request as described in the Web container architec-
ture section. By default, GlassFish sets the maximum size of the thread pool to be 5.
This is usually sufficient for developer class machines consisting of one or two CPUs.
However, this value should be modified for production deployments on large servers.

The best practice in tuning the thread pool configuration is to first change it to a
set of initial values based on some general guidelines, monitor the thread pool under
load conditions, and then modify the values if required based on the findings. A rea-
sonable set of starting values for the thread pool is given in Table 10-1.

The request processing thread pool (http-thread-pool) values can be changed using
the asadmin command or through the Administration Console (Select the Configu-
ration node and then the Server-config node, followed by Thread Pools. In the panel,
select the http-thread-pool and click to edit the values). The following example shows
how to use asadmin to set the values for a four-core server.

Table 10-1 Thread Count Settings for the Thread Pool

Attribute Initial Value

Initial Thread Count Number of hardware threads

Thread Count 2 X Number of hardware threads

asadmin set “configs.config.server-config.thread-pools.thread-pool.http-
thread-pool.min-thread-pool-size=4”
asadmin set “configs.config.server-config.thread-pools.thread-pool.http-
thread-pool.min-thread-pool-size=8”

Once a thread starts processing a request, that thread is used to execute all the
application logic until the response is committed. Any I/O interaction that is part of
the application (examples: invocation of remote EJBs, database interactions, com-
municating with slow clients, file system interactions) can cause the thread to be in
I/O wait state, thereby making the CPU resources available for other threads to run.
For such applications, configuring the thread pool with too few threads can cause
requests to be queued for processing while CPU resources are available. By moni-
toring the request processing thread pool as well as CPU utilization, a determina-
tion can be made if the pool size needs to be increased. Before proceeding with this
tuning, lock contention and/or resource contention in other parts of the system (e.g.,
all threads waiting on a slow disk I/O) that can cause poor CPU utilization should
be identified and eliminated. Refer to Chapter 2, “Operating System Performance
Monitoring,” and Chapter 4, “JVM Performance Monitoring,” for more details on how
to identify performance bottlenecks.

The HTTP thread pool utilization can be understood by monitoring the current
threadsbusy-count attribute, which shows the status of the server at the time

ptg6882136

414 Chapter 10 � Web Application Performance

of statistics collection. The other attribute of interest, maxthreads-count, is
a static value based on the configuration setting. Table 10-2 provides further
information.

Table 10-2 Thread Pool Tuning Hints

Attribute Description Tuning Hints

maxthreads-count Maximum number
of threads allowed
in the thread pool

Size this value based on the CPU
utilization and currentthreadsbusy-
count. Increase the value if all
the threads are being used on a
consistent basis and CPU resources
are still available. Setting the pool
size to an excessive high value can
have detrimental performance effects
due to increased context switches,
cache misses, etc.

currentthreadsbusy-count Number of request
processing threads
currently in use
in the listener
thread pool serving
requests

If this value is consistently equal to
the maxthreads-count, it signifies that
there is enough load on the system
to keep the request processing pool
fully utilized.

Tip

Tuning the HTTP request processing pool appropriately is essential for obtaining maximum
performance. A good starting value for http-service.request-processing.thread-
count is twice the number of cores for non-CMT type CPUs and the number of virtual
processors for a CMT type CPU. Monitor the currentthreadsbusy-count value to verify
the efficacy of the setting and make further changes as required.

Acceptor Thread, Connection Queue, and Keep Alive

Unlike GlassFish V2 where the connection queue statistics are maintained in the
HTTP listener, in V3, the transport layer, TCP, maintains the data. The connection
queue is where connections waiting to be serviced are kept. The requests are taken
out of the queue and serviced by one of the available processing threads. As expected,
as the number of requests waiting to be serviced increases, the response times for
those requests also increase. Additionally, the server rejects new requests if the num-
ber of items in the queue reaches a maximum configured value (default is 4096).
Some of the parameters that can be configured for the transport layer and the con-
nection queue and their default values are as follows:

ptg6882136

Web Container Monitoring and Performance Tunings 415

The acceptor-thread property defines the number of selector threads. Since
the selector thread handles the request read task for servers that handle a large
number of connections, the default value of a single thread would not be optimal. For
best performance, set this value equal to the number of the processors in the system.
Table 10-3 summarizes this information.

The max-connections-count property is used to specify the maximum number
of entries in the connection queue. Once the queue length reaches maximum capacity,
the server rejects any new requests. The buffer-size-bytes property specifies the
size of the send and receive buffers. For most applications, there is no need to change
the send and receive buffer sizes since the default values provide the optimum per-
formance. This value may be increased for applications that deal with large incom-
ing or outgoing payloads. Any modifications to this value should be accompanied by
appropriate changes to the operating system level TCP buffer sizes.

Monitoring the connection queue allows the server load to be evaluated and to take
appropriate actions when the load increases beyond a certain level. The GlassFish
monitoring framework can be used to inspect the various connection queue statistics
using the admin CLI or through the Administration Console.

asadmin get “configs.config.server-config.*tcp.*”
configs.config.server-config.network-config.transports.transport.tcp.
acceptor-threads=1
configs.config.server-config.network-config.transports.transport.tcp.
buffer-size-bytes=8192
configs.config.server-config.network-config.transports.transport.tcp.
max-connections-count=4096

Table 10-3 Acceptor Threads Tuning Hint

Attribute Description Tuning Hints

acceptor-threads Number of selector threads For multiprocessor systems, set this value
to the number of available processors.

asadmin get -m “server.network.http-listener-1*connection-queue.*”

Some important parameters, their descriptions, and how to interpret the values
are given in Table 10-4.

HTTP/1.1 by default uses persistent connections in which a single connection is
used by the client to make multiple requests. The server maintains the connection
in the keep-alive state enabling the user agent to make subsequent requests on the
same connection rather than create a new connection for every request (HTTP/1.0).
The server closes a connection if one of the following conditions are met.

ptg6882136

416 Chapter 10 � Web Application Performance

� The time elapsed between now and the last request exceeds the value specified
for the timeout-in-seconds parameter.

� The number of requests using a connection exceeds the value specified by the
max-connections parameter.

The max-connections parameter is used to prevent malicious clients from tying
up a thread indefinitely when the Coyote blocking connector is used. This restriction
can be eliminated by setting the value to –1 (minus one) if the instance uses the Griz-
zly NIO connector or if the instance is accessed only by trusted clients.

The default keep-alive values are as follows:

Table 10-4 Connection Queue Tuning Hints

Attribute Description Comments

countqueued-count Number of connections
currently in the queue

A request in the queue will be
processed when a processing
thread becomes available.
Consistently high values suggest
high load on the system,
incorrect thread pool tuning,
or lock contention within the
application.

countqueued*minuteaverage-
count

Average number of
connections queued
in the last 1, 5, or 15
minutes

Useful for filtering out short load
spikes.

countoverflows-count Number of times the
queue has been too
full to accommodate a
connection

Rejection of client connections
results in poor user experience.
If clients can tolerate higher
response times, increasing
the queue size can reduce
the connection rejections.
Potential solution for a highly
loaded system is to scale the
application server tier vertically
or horizontally.

asadmin get -m server.network.http-listener-1.keep-alive.*
server.http-service.keep-alive.maxrequests-count = 250
server.http-service.keep-alive.secondstimeouts-count = 30

The GlassFish monitoring framework can be used to inspect the various keep-alive
statistics using the admin CLI or through the Administration Console.

ptg6882136

Web Container Monitoring and Performance Tunings 417

Some important parameters, their descriptions, and how to interpret the values are
given in Table 10-5. All values are totals since the start of monitoring and hence will
increase monotonically. To collect relevant values, the statistics for the period of inter-
est can be obtained by collecting the values at the start of the measurement interval
and then subtracting those numbers from the subsequent values. The information pre-
sented in Table 10-5 pertains to statistics collected during the measurement interval.

asadmin get -m server.network.http-listener-1.keep-alive.*
server.network.http-listener-1.keep-alive.countconnections-count = 1869
server.network.http-listener-1.keep-alive.countflushes-count = 0
server.network.http-listener-1.keep-alive.counthits-count = 359873
server.network.http-listener-1.keep-alive.countrefusals-count = 1428
server.network.http-listener-1.keep-alive.counttimeouts-count = 0
server.network.http-listener-1.keep-alive.maxrequests-count = 250
server.network.http-listener-1.keep-alive.secondstimeouts-count = 30

Table 10-5 Keep-Alive Tuning Hints

Attribute Description Comments

countconnections-
count

Number of connections in
keep-alive mode

If this value is consistently high (several
hundreds/core), consider decreasing
the maximum requests or reducing the
timeout value.

counthits-count Number of cache lookup
hits

A high hit rate (keep-alive.
counthits-count/request.
countrequests-count) means that the
current settings are working well.

countrefusals-
count

Number of keep-alive
connections that were
rejected for exceeding
the maximum number
of requests allowed per
connection

The configuration attribute keep-alive.
max-requests limits the number of
requests allowed for a connection. The
client has to open a new connection for
subsequent requests. It is advisable to
keep this at the default value if the HTTP
connector is run in blocking mode. A
value of –1 (signifies unlimited requests)
can be set for HTTP connectors running in
nonblocking mode (default connector) or
if servicing trusted clients.

counttimeouts-
count

Number of keep-alive
connections that timed
out

The default keep alive timeout is
30 seconds. Increase this value if most of
your returning clients take longer than this
interval for making subsequent requests. A
very high value can cause the number of
connections to be kept alive unnecessarily
thereby degrading the performance.

ptg6882136

418 Chapter 10 � Web Application Performance

Request Processing

Inspecting the various request processing counts can provide some insight into the
type of requests being processed by the server, and the data can be used to improve
the performance of the application. The various request processing metrics can be
obtained using the asadmin CLI command as shown here (output is edited for bet-
ter readability).

asadmin get -m ”server.http-service.server.request.*” | grep ‘count.*\-count’
server.http-service.server.request.count200-count = 1
server.http-service.server.request.count302-count = 0
server.http-service.server.request.count304-count = 0
server.http-service.server.request.count404-count = 0
server.http-service.server.request.count5xx-count = 0
server.http-service.server.request.countrequests-count = 1

Some parameters of interest, their descriptions, and comments about what the
values mean are given in Table 10-6.

The value of the count302-count parameter needs to be analyzed in detail to
see whether performance improvements can be achieved by modifying the applica-
tion. A Servlet can either forward or redirect a request to a new URL at the end of
processing as shown in the following code snippets.

public void processRequest (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ...
 request.getRequestDispatcher(url).forward (request, respsonse);
}

public void processRequest (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ...
 response.sendRedirect(url);
}

In the case of forward, the servlet container forwards the request internally, and
the browser is unaware of the change in URL. Any reload of the page at the browser
results in the request being sent to the original URL. Redirect on the other hand
is a two-step process. In the first step, the servlet container sends a response with
the status 302 Moved Temporarily along with the new URL specified in the Loca-
tion header field. The browser then makes a request to the specified URL. Since the
browser is aware of the new URL, a page reload results in fetching contents from the
new location. Due to the additional round-trip communication involved in redirect, it

ptg6882136

Web Container Monitoring and Performance Tunings 419

may be slightly slower than forward. However, depending on the application state, in
some situations redirect may be a better choice. An example is the redirection at the
end of a POST request processing that may change the state of the application. This
would avoid data being submitted multiple times due to users accidentally reloading
the page. (There are ways to detect multiple submissions and take corrective actions,
but they are beyond the scope of this discussion.)

Table 10-6 Explanation of Response Code Values

Attribute Description Comments

countrequests-count Total number of
requests serviced by the
server since startup

count200-count Number of responses
with a status code of
200 OK

count200-count/countrequests-
count indicates the percentage of
requests serviced normally.

count302-count Number of requests that
were redirected

A redirect results in two browser requests
instead of one. See following discussion
for more details.

count304-count Number of requests in
which the resource has
not been changed since
last accessed

A high percentage of these responses
indicates possibility of resource caching.
It may be possible to reduce these types
of requests by setting appropriate HTTP
caching headers. Refer to http://www
.w3.org/Protocols/rfc2616/rfc2616-
sec13.html for more information about
HTTP caching.

count404-count Number of times in
which the server could
not find anything
matching the request
URI

High values typically suggest incorrect
resource references within applications
that need to be corrected. See following
discussion for more details.

count5xx-count Number of reported
server errors

For a healthy application, this value
should be zero. It is important to
evaluate the cause of the server errors
and fix them since they result in poor
user experience.

Tip

Forwarding a request to a new location performs slightly better than redirection. In addition
to performance, other application-specific factors should also be taken into consideration to
determine whether forward or redirect should be used.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

ptg6882136

420 Chapter 10 � Web Application Performance

Status code 404 represents the number of times a requested resource was not
found. High values for count404-count parameter often point to the presence
of incorrect resource references within the application. Searching for nonexistent
resources is expensive and should be avoided. The monitoring framework does not
provide any information regarding the resource that generated this error, though
this information can be gleaned from the access logs. (Note: GlassFish in developer
profile does not turn on access logging by default.)

One of the common sources of 404 errors is the absence of a favicon.ico icon for
the site. Most modern browsers request the icon file (favicon.ico), if the location of
the icon is not defined within a page. One option to reduce these errors is to create
a 1x1 pixel blank image as the favicon.ico. Applying proper caching headers allows
this image to be cached thereby eliminating subsequent requests.

Applications

Performance statistics for individual applications can be obtained by enabling the
monitoring level of the Web container to be LOW or HIGH.

asadmin set server.monitoring-service.module-monitoring-levels.
web-container=LOW

Unlike the EJB container, there is no difference in the displayed output between
the LOW and HIGH values. The monitoring framework provides a variety of appli-
cation level statistics including the response times of individual servlets as well as
details regarding HTTP sessions. The asadmin list -m command can be used to
obtain a list of all available servlets as shown in the following example.

asadmin list -m ”server.applications.TestWebapp*”
server.applications.TestWebapp.server.ControlServlet
server.applications.TestWebapp.server.default
server.applications.TestWebapp.server.jsp

By default, the time statistics for all the JSPs are listed under the JspServlet
(identified as jsp) and the delivery of static content under the default servlet. Com-
bining the service times for all the JSPs under a single node may not be useful for a
variety of applications. Unfortunately, this is a limitation of the current implementa-
tion, and the only available workaround is to redeploy the application with a modified
web.xml file that maps the JSP to a servlet and then specifying the appropriate URL
pattern as shown in the following example web.xml snippet.

ptg6882136

Web Container Monitoring and Performance Tunings 421

Once the application is redeployed, the JSP of interest (/elTester.jsp) can be moni-
tored as a servlet (server.applications.TestWebapp.server.ElTesterJsp). The follow-
ing command shows how to get a few interesting request processing statistics for a
servlet in the Web application named TestWebapp.

<servlet>
 <servlet-name>ElTesterJsp</servlet-name>
 <jsp-file>/elTester.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>ElTesterJsp</servlet-name>
 <url-pattern>/elTester.jsp</url-pattern>
</servlet-mapping>

asadmin get -m
server.applications.TestWebapp.server.ControlServlet.maxtime-count server.
applications.TestWebapp.server.ControlServlet.processingtime-count server.
applications.TestWebapp.server.ControlServlet.requestcount-count
server.applications.TestWebapp.server.ControlServlet.maxtime-count = 112
server.applications.TestWebapp.server.ControlServlet.processingtime-count =
1173395
server.applications.TestWebapp.server.ControlServlet.requestcount-count =
3746651

The data of interest include the number of serviced requests, the maximum time
taken for a request, and the cumulative processing time. The average response time
for the servicing of a request can be obtained by dividing the cumulative processing
time by the number of serviced requests. Since all values are cumulative since moni-
toring was enabled, some number crunching (storing the baseline values for both
number of requests and service times and subtracting it from the observed values) is
required to evaluate the response time characteristics for a specific period.

As seen in the preceding example, the Web application monitoring framework has
several limitations and is only useful as a coarse-grained monitoring tool. However,
most Web applications need more sophisticated monitoring. The way to achieve this is
by adding performance statistics within the application and exposing them through
JMX. The advantage of this method is that the developer can add different types of
performance statistics including request counts, elapsed times of various calls (e.g.,
query execution times at the database), cache hit/miss rates if applicable, and so on.
The JMX based monitoring approach does not have to be limited to performance
statistics but can be used to display any useful application-specific information.

Since the applications are long running, it is advisable to use a count-based or time-
based sampling window to calculate the performance statistics. In this approach, a
moving sampling window with a fixed set of sample data are maintained; old values

ptg6882136

422 Chapter 10 � Web Application Performance

are dropped as new ones are added. In a count-based window, the number of samples
is fixed, whereas in a time-based window all the samples within a time interval are
saved. The Statistics package under the Apache Commons Math project provides a
framework for descriptive statistics that can be used for this purpose. More informa-
tion about the package can be found at http://commons.apache.org/math/userguide/
stat.html#a1.2_Descriptive_statistics. The following section describes how applica-
tion level monitoring can be added to a Web application. In this example, a sample
MBean is developed to capture the request count and response time statistics for a
single servlet. For simplicity, data for all types of requests irrespective of paths or
request method are aggregated. In real production deployments, users may want
to add logic to subdivide data for different request types appropriately (e.g., GET
versus POST).

First, define the MBean that will be exposed. A sample is shown here:

/**
 * Describes the data that will be exposed through JMX.
 */
public interface StatsMBean {
 /**
 * @return The request count
 */
 public int getCount();

 /**
 * @return Name of the stat object
 */
 public String getName();

 /**
 * @return Description of the stat object
 */
 public String getDescription();

 /**
 * @return The mean response time in milliseconds
 */
 public double getMean();

 /**
 * @return The response time std. dev. in milliseconds
 */
 public double getStandardDeviation();

 /**
 * @return The Minimum response time in milliseconds
 */
 public double getMin();

 /**
 * @return The maximum response time in milliseconds

http://commons.apache.org/math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/math/userguide/stat.html#a1.2_Descriptive_statistics

ptg6882136

Web Container Monitoring and Performance Tunings 423

The next step is to implement the MBean. The following code sample uses a count-
based sample window. The Javadocs have been removed for brevity.

 */
 public double getMax();
 /**
 * @return The median response time in milliseconds
 */
 public double getTP50();
 /**
 * @return The 90th percentile response time in milliseconds
 */
 public double getTP90();
 /**
 * @return The 99th percentile response time in milliseconds
 */
 public double getTP99();

 /**
 * Clear the sample data
 */
 public void reset();
}

import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math.stat.descriptive.
SynchronizedDescriptiveStatistics;
import java.util.concurrent.atomic.AtomicInteger;

public class Stats implements StatsMBean {
 private static final int DEFAULT_ITEM_COUNT = 1000;
 private String description;
 private String name;
 private AtomicInteger count;

 private DescriptiveStatistics stats;

 public Stats(String name, String description) {
 this (name, description, DEFAULT_ITEM_COUNT);
 }

 public Stats(String name, String description, int sampleCount) {
 this.name = name;
 this.description = description;
 stats = new SynchronizedDescriptiveStatistics(sampleCount);
 count = new AtomicInteger();
 }

 public void addValue (double v) {
 stats.addValue(v);
 count.incrementAndGet();
 }

ptg6882136

424 Chapter 10 � Web Application Performance

The MBean needs to be registered so that it is visible to the user. One approach is
to add the register and unregister logic in a servlet context listener that gets invoked
as part of the servlet initialization and destruction life cycle. A sample context lis-
tener and the web.xml configuration snippet follow. The StatsExporter is a utility
class used to export and unexport the various MBeans that are part of this applica-
tion. It should be noted that for simplicity no special error handling code is included.

 public int getCount() {
 return count.get();
 }

 public double getMin() {
 return stats.getMin();
 }

 public double getMax() {
 return stats.getMax();
 }

 public double getTP50() {
 return stats.getPercentile(50.0);
 }

 public double getTP90() {
 return stats.getPercentile(90.0);
 }

 public double getTP99() {
 return stats.getPercentile(99.0);
 }

 public double getStandardDeviation() {
 return stats.getStandardDeviation();
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public double getMean() {
 return stats.getMean();
 }

 // Reset the stats
 public void reset() {
 stats.clear();
 count.set(0);
 }
}

ptg6882136

Web Container Monitoring and Performance Tunings 425

import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContext;

public class ControlServletContextListener
 implements ServletContextListener {
 public void contextInitialized(
 ServletContextEvent servletContextEvent) {
 // Register the MBean for this Servlet
 ServletContext context =
 servletContextEvent.getServletContext();
 String path = context.getContextPath();
 StatsMBean statsMBean = new Stats(path, ”ServletRequest stats”);
 String statName =
 ”javaperfbook.web.sample:name=ServletRequest (”+path+”)”;
 StatsExporter.getInstance().export(statName, statsMBean);
 context.setAttribute(”statsMBean”, statsMBean);
 }

 public void contextDestroyed(
 ServletContextEvent servletContextEvent) {
 StatsExporter.getInstance().unExportAll();
 }
}

import javax.management.*;
import java.lang.management.ManagementFactory;
import java.util.Set;
import java.util.HashSet;
import java.util.Iterator;
import java.util.logging.Logger;

public class StatsExporter {
 private static StatsExporter instance = new StatsExporter();
 private Set<ObjectName> exportBeans = new HashSet<ObjectName>();
 private static Logger logger =
 Logger.getLogger(StatsExporter.class.getName());

 public static StatsExporter getInstance() {
 return instance;
 }

 public void export (String name, StatsMBean bean) {
 try {
 ObjectName oName = new ObjectName(name);
ManagementFactory.getPlatformMBeanServer()
 .registerMBean(bean, oName);
 exportBeans.add(oName);
 } catch (MalformedObjectNameException e) {
 handleException(e);
 } catch (NotCompliantMBeanException e) {
 handleException(e);
 } catch (MBeanRegistrationException e) {
 handleException(e);
 } catch (InstanceAlreadyExistsException e) {
 handleException(e);
 }

ptg6882136

426 Chapter 10 � Web Application Performance

 }

 private void unexport (ObjectName oName) {
 try {
 ManagementFactory.getPlatformMBeanServer()
 .unregisterMBean(oName);
 } catch (MBeanRegistrationException e) {
 handleException(e);
 } catch (InstanceNotFoundException e) {
 handleException(e);
 }
 }

 public void unExportAll() {
 Iterator<ObjectName> iter = exportBeans.iterator();
 while (iter.hasNext()) {
 unexport(iter.next());
 }
 exportBeans.clear();
 }

 private void handleException (Exception e) {
 logger.warning(e.getMessage());
 e.printStackTrace();
 }
}

The last step is to measure the elapsed time and add the data to the Stats object.
Typically, this is achieved through the use of a servlet filter as shown in the following
code sample. In this example, only the response time and the request count are
measured. If the response length is required, the filter can provide a response wrapper
that calculates the size of the response and exposes that through an MBean.

<web-app xmlns=”http://java.sun.com/xml/ns/javaee”...
 ...
 <listener>
 <display-name>ContextListener</display-name>
 <listener-class>
 javaperfbook.web.sample.ControlServletContextListener
 </listener-class>
 </listener>
</web-app>

import javax.servlet.*;
import java.io.IOException;

public class StatsFilter implements Filter {
 private FilterConfig config;

ptg6882136

Best Practices 427

 public void doFilter(ServletRequest req,
 ServletResponse resp,
 FilterChain chain)
 throws ServletException, IOException {
 long start = System.nanoTime();
 chain.doFilter(req, resp);
 double elapsed = (System.nanoTime()-start)/1e6;
 Stats stat = (Stats) config.getServletContext().
 getAttribute(”statsMBean”);
 if (stat ! = null) {
 stat.addValue(elapsed);
 }
 }

 public void init(FilterConfig config) throws ServletException {
 this.config = config;
 }

 public void destroy() {
 }
}

Figure 10-2 shows the custom MBeans viewed using JConsole. The application-
specific data can be viewed by selecting the MBeans tab and then clicking on the
javaperfbook.web.sample node on the left navigation tree.

Best Practices

This section covers the various performance best practices that should be considered
during the development and deployment of the Web application. The “Servlet and
JSP Best Practices” section includes performance tips that can enhance the perfor-
mance of servlets and JSPs. This is followed by a set of performance techniques that
address issues common across many Web applications: data compression, content
caching, session persistence, and static file delivery. The “Access Logging” section
later in the chapter describes a way for users to capture performance metrics that
can be used to improve the performance of deployed applications.

Servlet and JSP Best Practices

This section describes a set of best practices that should be considered while develop-
ing servlets and/or JSPs.

Use of Init Method and ContextListener

The init method of the servlet and JSP can be used to cache static data and resource
references. The Web container initializes a servlet before it is ready to service any
requests. This operation is carried out only once as part of a servlet’s life cycle.

ptg6882136

428 Chapter 10 � Web Application Performance

The init() method can thus be used to carry out expensive one-time operations.
Some of these operations include creation and caching of static content, and in the
case of J2EE 1.4 based applications, reading configuration information and initial-
ization and caching of resource references including JNDI lookup of DataSources.
In Java EE 5, resource injection allows easy access to resources and hence the use of
the init() method for this purpose is no longer required.

Similar to the Servlet’s init() method, the jspInit() method is called once dur-
ing the initialization of a JSP page. By providing a user-defined jspInit() method
within the JSP, it is possible to carry out one-time operations. The most common use of
this is to create and cache static data. The use of jspInit() is not a common practice.

public class SampleServlet extends HttpServlet {
 public void init() {

 }
 ...
}

Figure 10-2 Monitoring application-specific data using custom MBeans

ptg6882136

Best Practices 429

Context listeners invoked as part of the servlet life cycle are useful for initializing
and clearing application-specific data. The listener is specified in the web.xml as follows:

<webapp ..>
 ..
 <listener>
 <display-name>ContextListener</display-name>
 <listener-class>
 javaperfbook.web.sample.ControlServletContextListener
 </listener-class>
 </listener>
</webapp>

The listener is called when the servlet context is initialized and destroyed. Refer
back to the “Applications” section earlier in the chapter for information on how to use
a context listener for initializing the application-specific JMX MBeans.

Use Appropriate JSP Include Mechanism

JSP supports two ways to include the contents of a resource in a page:

� Include directive. <%@ include file=”relativeURL” %> adds the text
of the included file to the page. This include process is static, which means that
the text is incorporated into the JSP page at compilation time. If the included
file is a JSP page, its JSP elements are translated and included in this page. The
side effect of this is that any changes made to the included file are not reflected
in the page that includes it even when dynamic reloading of JSPs is enabled.
The changes are only visible when changes are made to the top level page that
causes regeneration of the included content.

� Include action. <jsp:include page=”relativeURL” /> allows the addi-
tion of static or dynamic resources to the page. If the resource is static, its con-
tent (obtained through the invocation of the default servlet) is included in the
calling page. If the included resource is dynamic, the results from its invocation
are included in the calling page. The attribute flush=”true”|”false” can
be used to specify whether the content of the calling page needs to be flushed
before including the resource. The default value for this attribute is false. The
<jsp:param> clause can be used to pass one or more name/value pairs as
parameters to the included resource. The dynamic nature of the include action
allows modifications made to included pages to be visible without the need for
any changes to be made to the top level page.

Since the page directive includes the contents of the referenced resource at com-
pile time, this mechanism provides improved performance for including HTML and
other static content. The page action on the other hand should be used for situations

ptg6882136

430 Chapter 10 � Web Application Performance

in which the required content to be included is the dynamically generated response
from the referenced resource.

α
α
Hello World!

 <web-app ...>
 <jsp-config>
 <jsp_property-group>
 <url-pattern>
 *.jsp
 </url-pattern>

Trim Whitespaces

Whitespaces within the text of a JSP page, even though not significant, are pre-
served. This means that some extraneous characters are processed and transmitted
by the Web container that is not required by the browser for displaying the content.

Preserving the whitespaces within the template text of a JSP can result in blocks
of whitespaces in the rendered output making the HTML source difficult to read.
There is also a performance cost of encoding and transmitting the extraneous char-
acters. The JSP 2.1 specification provides the following example. The following code
snippet (where α represents the end-of-line character(s))

The trim directive, <%@ page trimDirectiveWhitespaces=”true” %> can
be used to eliminate the superfluous characters. The preceding directive needs to
be added to all pages that require the trimming of whitespaces. Additionally, the
behavior of a group of JSPs can be configured via the web.xml. The following example
configuration trims whitespaces for all the JSPs in the application.

Tip

Use the include directive if the referenced resource is static and use the include action to
incorporate a dynamically generated response from a resource.

<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>α
<%@ taglib prefix=”x” uri=”http://java.sun.com/jsp/jstl/xml” %>α
Hello World!

would generate the following output:

ptg6882136

Best Practices 431

<init-param>
 <param-name>trimSpaces</param-name>
 <param-value>true</param-value>
</init-param>

Tip

Trimming whitespaces can reduce the size of the file that needs to be transmitted across the
wire, thereby improving performance, especially for clients connected via slow networks.
Minifying CSS and JavaScript files along with the use of compression can further reduce the
file transfer cost.

This behavior can be achieved systemwide by adding the following lines to the
domain’s default-web.xml file under the jsp servlet element (<servlet-name>jsp</
servlet-name>):

 <trim-directive-whitespaces>
 true
 </trim-directive-whitespaces>
 </jsp_property-group>
 </jsp-config>
 <web-app>

It should be noted that the preceding directive only eliminates whitespaces in
template text and does not remove other types of whitespaces, for example, indenta-
tions added by the user for better readability.

In certain cases where you do not want to incur the cost of transmitting extra-
neous characters, say, when delivering content over low bandwidth networks, the
server should generate the content in the most compact form, stripping away all the
unnecessary whitespaces. One option to achieve this is to include a servlet filter that
removes the extra whitespaces from the output (example: http://coldjava.hypermart.
net/servlets/trimflt.htm). It is important to note that addition of the filter adds extra
processing cost during the service of the request. The second option is to compact
the JSP using an external process prior to deployment. Users must write a custom
compactor since GlassFish does not bundle such a utility.

If your application includes CSS and JavaScript files, it is important to minify and
optionally compress these to reduce overall size of the file that needs to be trans-
mitted across the network. Several CSS/JavaScript minifiers are available on the
market, including YUICompressor (http://developer.yahoo.com/yui/compressor/), a
Java-based compressor from Yahoo. Additionally, if the Web container can be config-
ured to send compressed versions of the CSS and JavaScript files, enabling compres-
sion can reduce the payload size further for user agents that support compression.

http://coldjava.hypermart.net/servlets/trimflt.htm
http://coldjava.hypermart.net/servlets/trimflt.htm
http://developer.yahoo.com/yui/compressor/

ptg6882136

432 Chapter 10 � Web Application Performance

Use of jsp:useBean Action

The jsp:useBean action is used to locate or instantiate a bean with a specific name
and scope. This action supports two instantiation options, beanName versus class,
as well as multiple values for the scope attribute. It is important to select the appro-
priate values for these attributes that provide the required functionality as well as
the best performance.

The JSP 2.0 syntax reference page (http://java.sun.com/products/jsp/syntax/2.0/
syntaxref 20.html) describes the steps taken by <jsp:useBean> to locate or instan-
tiate the bean.

 1. Attempts to locate a bean with the scope and name you specify.

 2. Defines an object reference variable with the name you specify.

 3. If it finds the bean, stores a reference to it in the variable. If you specified type,
gives the bean that type.

 4. If it does not find the bean, instantiates it from the class you specify, storing
a reference to it in the new variable. If the class name represents a serialized
template, the bean is instantiated by java.beans.Beans.instantiate.

 5. If jsp:useBean has instantiated (rather than located) the bean, and if it has
body tags or elements (between <jsp:useBean> and </jsp:useBean>),
executes the body tags.

The bean instantiation depends on whether the class or the beanName attri-
bute is specified. If class=”package.class” is specified, the bean is instantiated
using the new keyword. If beanName=”{package.class | <%= expression
%>}” is specified, the bean is instantiated from a class, a serialized template, or an
expression that evaluates to a class or serialized template. The use of beanName
provides flexibility (can evaluate which class to load at runtime) in instantiating the
required bean. In this case, the bean is instantiated by the java.beans.Beans.
instantiate method. If the value specified by the beanName attribute represents
a class or a serialized template, the bean’s instantiation involves loading of the
resource by the Classloader. Figure 10-3 shows a snippet of a profile during the
invocation of the following simple JSP page.

<jsp:useBean beanName=”perfbook.SimpleBean” type=”perfbook.SimpleBean”
id=”sbean” scope=”page”/>
<html>
 <body>
bean value = ${sbean.value}
 </body>
</html>

http://java.sun.com/products/jsp/syntax/2.0/syntaxref20.html
http://java.sun.com/products/jsp/syntax/2.0/syntaxref20.html

ptg6882136

Best Practices 433

As Figure 10-3 shows, instantiation of the bean accounts for two-thirds of the invo-
cation cost. (Note: The effect of bean instantiation is exaggerated because of the trivial
nature of the JSP.) The use of the beanName attribute, though it provides a lot of flex-
ibility, is significantly more expensive than using the className attribute.

Figure 10-3 Bean instantiation cost when using beanName attribute

Tip

Use the beanName attribute only in cases where it is absolutely required; use the className
attribute in all other cases.

The scope attribute defines the scope in which the bean exists. The possible
values include page, request, session, and application, with page being the
default. The meanings of the different values are as follows:

� page. The bean can be used within the enclosing JSP page or any of the page’s
static include files until the page sends a response back to the client or forwards
a request to another resource.

� request. The bean can be used from any JSP page processing the same
request until a JSP page sends a response to the client or forwards the request
to another resource.

� session. The bean can be used from any JSP page in the same session as the
JSP page that created the bean. The bean exists across the entire session, and
any page that participates in the session can use it.

ptg6882136

434 Chapter 10 � Web Application Performance

� application. The bean can be used from any JSP page in the same applica-
tion as the JSP page that created the bean.

There are performance implications for the value that you select for the scope
attribute. In application scope, the bean is created only once, and hence the ini-
tialization expense is amortized over the entire life of the application. However, the
long life span of the bean increases the memory footprint of the application.

When session scope is used, the bean is maintained in memory as long as the
session is active, which also increases the memory footprint. In cases where the user
does not invalidate the session, the server maintains the session in memory until the
session timeout expires. More details about the performance impact of session main-
tenance are provided in the “Session Persistence” subsection later in this chapter.

If the scope is request or page, a new object is created when the page is invoked.
In these modes, the objects are relatively short-lived and garbage collected quickly.
However, as discussed in the earlier section, the cost of bean instantiation can be
high and as a result reduce the overall performance of the application.

Expression Language

JSP 2.0 supports an expression language (EL) that makes it easy to access data
stored in JavaBeans components. A bean can be accessed using the ${name} syntax
and can be used in static text or any custom or standard tag attribute that can accept
an expression. EL can be used in lieu of JSP scriptlets (code fragments specified
within <% %>) or JSP expressions (used to generate a value based on the evaluation
of an expression, specified using the <%= expression %> syntax). JSP EL along
with JSP Standard Tag Library (JSTL) and/or custom tag libraries make develop-
ment of complex JSPs easier than using scriptlets.

From a developer standpoint, using EL is a better choice than using scriptlets. However,
from a performance perspective, the use of EL adds extra overhead in resolving the vari-
able names to objects and in evaluating expressions. In the case of a scriptlet, the neces-
sary code is injected directly into the generated servlet during the compilation phase that
eliminates the need for variable lookups and the complexities of expression evaluations.
Due to the additional overhead incurred by EL, it is typical to have the rendering times
for EL-based JSPs to be slightly higher than that of an equivalent scriptlet based page.

The difference in performance depends on the amount of expression evaluations
as well as the amount of other work involved in generating the output. For example,
the performance impact of rendering a list of objects may be low if most of the time
is spent generating the list, say, looking up from a database. If on the other hand, the
list generation is inexpensive, the variable evaluation cost dominates, causing EL to
perform poorer than a scriptlet. To show the performance difference, a simple JSP
that lists a set of shapes along with its properties was profiled. The HTML snippet
for the scriptlet-based JSP is shown here:

ptg6882136

Best Practices 435

The HTML snippet for the EL-based JSP follows. In this case, to highlight the
expense of the expression evaluation, the scriptlet-based code to get the list of shapes
was maintained.

<tbody>
 <% List<Shape> list = sc.getRandomShapes();
 for (Shape shape: list) {
 %>
 <tr style=”background-color: <% = shape.getColor() %>”>
 <td><%= shape.getType() %></td>
 <td><%= shape.getAreaStr() %></td>
 <td><%= shape.getPerimeterStr() %></td>
 </tr>
 <% } %>
</tbody>

<tbody>
 <% List<Shape> list = sc.getRandomShapes();
 for (Shape shape: list) {
 pageContext.setAttribute(”shape”, shape);
 %>
 <tr style=”background-color: ${shape.color}”>
 <td>${shape.type}</td>
 <td>${shape.areaStr}</td>
 <td>${shape.perimeterStr}</td>
 </tr>
 <% } %>
</tbody>

Figure 10-4 shows the execution times for the two pages for 100 shapes during
the profiling session.

Figure 10-4 Sample performance comparison of scriptlet and EL

Scriplet
0

50

100

150

200

250

300

350

400

E
xe

cu
ti

o
n

 T
im

e
(m

s)

EL

ptg6882136

436 Chapter 10 � Web Application Performance

Figure 10-5 and Figure 10-6 show the profiles generated during the execution of the
two pages. By comparing the time taken within the jspService method between the two
profiles, it is clear that the slower performance of the EL-based JSP is due to the added
cost of expression evaluation. In both cases, the String.format method takes around
105ms. However, in the case of EL, there is additional overhead in evaluating the expres-
sion and resolving the value. Since there is a small performance degradation for each
expression evaluation, the difference in performance between the two implementations
would increase as the number of expressions increases.

Figure 10-5 Profile for a scriptlet-based JSP

Tip

Even though the use of Expression Language makes JSP development easier, evaluation of
many expressions within a JSP can reduce its performance. Use scriptlets for pages that require
the best possible performance.

HTTP Compression

HTTP compression helps reduce the size of the textual data transferred from the
server to the client. If the browser supports compression (as specified by the Accept-
Encoding header), the server can be configured to transmit compressed data that is

ptg6882136

Best Practices 437

then decoded at the browser. The amount of compression that can be achieved varies.
Andy King and Konstantin Balashov have noted that HTML and CSS files can typi-
cally be compressed by about 80% and JavaScript files by an average of 70%.

Currently GlassFish supports on-the-fly compression in which the content is com-
pressed as part of the response delivery for each request. Another approach is to
deploy both compressed and uncompressed versions of the static files (e.g., index.
html and index.html.gz) in the application, and a compression filter delivers the
appropriate file based on the encoding accepted by the client. However, there is no
built-in support for this mode in GlassFish.

The use of on-the-fly compression is a trade-off between lower bandwidth and
higher CPU and memory usage, both at the client and the server. The smaller pay-
load size can result in lower transmission cost thereby improving the user response
time. The transmission latency is a higher percentage of the overall response time
for clients connected over slow networks, and hence compression may improve the
performance for such clients. However, the increased CPU resources required for
compressing the data can reduce the overall throughput of the Web container. The
additional cost incurred at the client for decoding the compressed content should also
be taken into consideration while compression is enabled.

The GlassFish application server supports gzip compression and can be configured
to use it by adding the properties listed in Table 10-7 to the http-listener.

Figure 10-6 Profile for an EL-based JSP

ptg6882136

438 Chapter 10 � Web Application Performance

These values can be modified through the Administration Console (configs > config
> server-config > Network Listener > http-listener-X) or by using asadmin.

Table 10-7 Compression Properties in http-listener

Property Value Comment

Compression on|off|force Use on or off to enable or disable
compression. force compresses all types
of files including images.

compressableMimeType text/
html, text/
css/, text/
javascript, ...

A comma-separated list of mime types that
should be compressed.

compressionMinSize <min value> Compression is applied only if the data size
is larger than this value.

asadmin get ”configs.config.server-config.network-config.protocols.protocol.
http-listener-1.http.*” | grep compress
configs.config.server-config.network-config.protocols.protocol.http-
listener-1.http.compressable-mime-type=text/html,text/xml,text/plain
configs.config.server-config.network-config.protocols.protocol.http-
listener-1.http.compression=off
configs.config.server-config.network-config.protocols.protocol.http-
listener-1.http.compression-min-size-bytes=2048

A simple performance test was run to understand the performance impact of using
compression. The test consisted of delivering a copy of the java.sun.com page (about
40 kilobytes in size in uncompressed form) to two different types of clients, one con-
nected via a fast network and the other one over a slow DSL connection. For a single
request, the page delivery time was essentially the same when the client was con-
nected via a fast network. However, when the client had a slow network connection
(from a laptop over a VPN), the latency for the compressed version was substan-
tially lower, 280ms for compressed versus 510ms for the uncompressed version. Even
though the server was able to handle low request rates without issues, it started
throwing OutOfMemoryErrors when the load was increased, which makes this con-
figuration useless in production settings. This issue may be solved in future releases
of the product. It is important to note that compression is a CPU-intensive task, and
enabling compression can result in increased resource consumption, thereby reduc-
ing the overall throughput of the system.

Another compression technique that works across all application servers is to
include a compression servlet filter. The filter intercepts all outgoing requests and
compresses the response as appropriate.

ptg6882136

Best Practices 439

Content Caching

In the current generation of Web applications, the generated content falls into two
major categories: a set of generic pages for browsing users and another set of customized
pages if the user is known. As the site grows in popularity and needs to support hun-
dreds of thousands of users, different caching strategies are required to support these
many users. One performance optimization used routinely is the caching of frequently
used content. In this section, we discuss some of the factors that affect the performance
of Web applications that interact with distributed caches like Memcached.

Before starting the discussion, it is import to emphasize a few points. This sec-
tion highlights the effects of different components involved in the interaction and
is not meant to be a performance comparison of the different implementations. The
data is generated based on a synthetic workload, and the performance of individual
applications may differ from what is shown here. Users are strongly encouraged to
run their own performance tests to identify implementations that provide the best
performance for their application.

Distributed caches are shared by multiple application instances and are used to
store a variety of application content including full HTML pages (e.g., pages deliv-
ered to non-signed-in users), snippets of pages (e.g., HTML snippet of top ten items),
or results from an expensive database query (e.g., list of photos for a user), just to
name a few. We look at an example of a Web application using Memcached (http://
memcached.org/), the most popular distributed caching solution, to store a top 100
list of items. What is of interest are the factors that affect the performance of storing
a set of Java-based data objects.

Figure 10-7 shows the various components involved in the storing and retrieval of
these objects to and from the cache. To store an object in cache, a binary representa-
tion of the object needs to be created first. This functionality is represented by the
serialize component in Figure 10-7. The choice of the serializer depends on several
factors including ease of use, extensibility, and, of course, performance. A variety of
serialization technologies are available on the market with each considered by its
supporters to be superior over others. It is worth reiterating a point made earlier.
The intent of this section is not to compare the performance of all available serializa-
tion technologies but to select a couple of options that show how the choice of these
components affects the overall performance of your application. Each developer is
encouraged to experiment with different serialization (and compression) technologies
available on the market and select the one that best suits his or her overall need.

Tip

Enabling HTTP compression may reduce page delivery times for clients connected via slow
networks.

http://memcached.org/
http://memcached.org/

ptg6882136

440 Chapter 10 � Web Application Performance

For the purpose of discussion, the Jackson serializer for JSON and JAXB for XML
were selected. Both the packages generate a textual representation of the Object from
which the binary data can be extracted. Once the binary payload representing the
Object is obtained, it can optionally be compressed to reduce its size. There are pros
and cons for including compression, which are discussed a little later. Since any data
compressed during storage needs to be uncompressed during retrieval, it is important
to save the information regarding the type of compression used, if any, as part of the
data that is stored. The binary payload is then transferred over the network to the
distributed cache. During data retrieval, the order of the components is reversed with
the uncompress step, if required, followed by deserialization to obtain the Object that
was stored. The two compression libraries used for our testing were GZIP that is
part of the JDK and the open source LZF library (https://github.com/ning/compress).

Several factors relating to performance affect the choice of the serialization and
compression components, including the size of the generated payload in compressed
and uncompressed form, latency of operation, and CPU and network resource
requirements during storage and retrieval. Higher payload size results in higher
network transfer cost as well as reduced cache efficiency since for a given cache size,
fewer items can be stored in the cache. The other important factors are the overall
efficiency of each component in terms of latency of individual operation as well as
the capability to handle multiple concurrent requests.

To show how the choice of serialization and compression technologies affect perfor-
mance, a sample benchmark application was developed. The following code snippet
shows the sample cached class, the Jackson based JSON serializer, and the LZF based
compressor. The XML serializer and GZIP compressor are not shown for brevity.

Figure 10-7 Interaction between the Web application and cache

Cache
Client

Serialize

Deserialize

Compress
(Optional)

Uncompress
(Optional)

Cache

Object

Object

Web Container

byte[]
byte[]

byte[]
byte[]

https://github.com/ning/compress

ptg6882136

Best Practices 441

public class SimpleDataContainer implements Serializable {
 private String name;
 private long lastUpdatedTime;
 private List<SimpleData> dataList;
 private Date createdDate;
...

public class SimpleData implements Serializable {
 private long id;
 private long createdTime;
 private long lastUpdatedTime;
 private String author;
 private String description;
...

import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.map.type.TypeFactory;
import org.codehaus.jackson.type.JavaType;

import java.io.IOException;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;

public class JsonDataSerializer<T> implements DataSerializer<T> {
 private static ObjectMapper mapper = new ObjectMapper();
 JavaType type;

 public JsonDataSerializer(Class<T> type) {
 this.type = TypeFactory.type(type);
 }

 public byte[] serialize(T object) throws IOException {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 mapper.writeValue(bos, object);

 return bos.toByteArray();
 }

 public T deSerialize(byte[] buf) throws IOException {
 ByteArrayInputStream bis = new ByteArrayInputStream(buf);
 T obj = (T) mapper.readValue(bis, type);
 return obj;
 }

 public SerializationMode getSerializationMode() {
 return SerializationMode.JSON_SERIALIZATION;
 }
}

ptg6882136

442 Chapter 10 � Web Application Performance

A benchmark operation consisted of a put and get of a cache object. Typically, the
number of get operations is significantly more than the put operations. However,
in this benchmark, to study the performance impact of both operations, a single
request consisted of a put followed by a get. The overall performance of the system
was measured in terms of number of operations that could be completed for a given
set of concurrent requests. Figure 10-8 shows the throughput for varying payload
sizes with eight concurrent requests. As expected, the overall throughput reduces as
the size increases. Across all size ranges, the Jackson based JSON serializer provides
slightly better performance than the JAXB based XML serializer.

At small payload sizes, adding compression may have a detrimental impact on
performance. So it is a good performance practice to set up a size threshold above
which compression should be applied. Additionally, the performance benefit of com-
pression depends on the type of compressor used. The gzip compressor that is part
of the JDK performs poorly at high concurrencies. The primary reason for this is the
lack of scalability of the implementation due to lock contention at memory alloca-
tion in the native code. The scalability can be improved by using alternate malloc
libraries such as libumem for Oracle Solaris. The LZF compressor on the other hand

import com.ning.compress.lzf.LZFOutputStream;
import com.ning.compress.lzf.LZFInputStream;

import java.io.IOException;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;

public class LZFCompressor extends Compressor {
 public byte[] compress(byte[] buf) throws IOException {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 LZFOutputStream os = new LZFOutputStream(bos);
 os.write(buf);
 os.close();
 return bos.toByteArray();
 }

 public byte[] uncompress(byte[] buf) throws IOException {
 LZFInputStream is = new LZFInputStream(new
ByteArrayInputStream(buf));
 byte[] data = new byte[8192];
 int count;
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 while ((count=is.read(data)) != -1) {
 bos.write(data, 0, count);
 }
 is.close();
 return bos.toByteArray();
 }

 public CompressionMode getCompressionMode() {
 return CompressionMode.LZF;
 }
}

ptg6882136

Best Practices 443

provides great benefit at large payload sizes. Reducing the amount of data that needs
to be transferred across the network decreases the latency, reduces the bandwidth
requirement, and provides increased cache capacity.

The compression efficiency is defined as the ratio of the compressed size to the
uncompressed size. Several factors affect the compression ratio. Since the benchmark
data is highly synthetic with large amounts of repeating elements, measuring the
compression ratio for this test case is misleading. Overall, gzip offers better compres-
sion than LZF in terms of compression size, whereas LZF provides significantly faster
compression but with a lower compression ratio.

In addition to several types of serializers being available, there are multiple imple-
mentations within each type. The large number of choices can make the identification
of the optimum solution difficult. The best way to identify the best option for your
application is through experimentation.

Figure 10-8 Performance of serializers and compressors as part of the cache interaction

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n

d

Payload Size (KB)

0
0 500 1000 1500 2000 2500

100

200

300

400

500

600

700

800

900
XML/No Compression

JSON/No Compression

XML/GZIP

XML/LZF

JSON/GZIP

JSON/LZF

Tip

Serialization and compression technologies play a significant role in the overall performance
of the caching solution. It is recommended that the user do experiments to identify the best
performing solution/implementation to each of these components.

Session Persistence

An HTTP session object is often used to store application information for a spe-
cific user. The Web container is responsible for maintaining the session, and the

ptg6882136

444 Chapter 10 � Web Application Performance

application can access the session object through the HttpServletRequest or from
within a JSP. By default, most containers including GlassFish maintain only an
in-memory copy of the sessions, which means that the session information is lost in
case of server failure. However, for some applications, this data loss is unacceptable,
and they require a persistent session solution where the data is available even in
case of a server crash.

There are several ways the high availability feature can be implemented. One
option is to write the session information to a shared data store that is accessible
from two or more servers. The HA-DB based solution available in GlassFish V2
Enterprise Edition is an example of this. An alternate solution that is available in
GlassFish V3.1 is the in-memory replication scheme in which a copy of the session
stored in one server is replicated and maintained in memory of a backup server. In
case of primary server failure, the backup server can service the requests without any
data loss. The implementation details of both these schemes are beyond the scope of
this book. In this section we cover the factors that affect performance when session
persistence is enabled.

As in the case of distributed caching, some form of serialization mechanism is
required to transform the Java objects saved in the session into a byte stream that
can be transported across containers or stored in a common data store. GlassFish
uses the Java object serialization through the use of ObjectOutputStream and
ObjectInputStream. Additionally, the payload size is further reduced through
compression. The overall cost of session persistence consists of certain fixed costs
(replica identification, transport initialization, and so on) and some variable costs
that depend on what is stored in the session. The two main factors that affect the
latter are the size of the payload that needs to be transported and the complexity of
items stored in the session.

The correlation between object size and cost is straightforward since larger objects
take longer to serialize/unserialize as well as transport across the network. For exam-
ple, a larger String object takes longer to serialize and transport.

Object complexity impacts the overall performance substantially. Objects with
multiple levels of inheritance are expensive to serialize as well as generate larger
size payload. So for optimum performance, keep the items in the session as simple
as possible. Before adding any item into a session, verify that the data is absolutely
required to be maintained in the session.

There are instances in which a complex data object, say, a user preference object
created from a database, is required to be kept in the session. In this case, the object
in question can be recreated in case it is not found in the session. In such cases, it is
optimal to identify such attributes as nonpersistent using the transient keyword.
Transient attributes are maintained in the in-memory session but are not serialized
as part of the session persistence, thereby improving the performance. In case of a
failover, the transient attributes are recreated in the new session.

ptg6882136

Best Practices 445

HTTP Server File Cache

Java EE containers are designed to deliver dynamic content and are not especially
well suited for handling static content. However, the majority of Web applications
require at least a few static files to be delivered to the clients. Application servers
typically provide optimized static file handling mechanisms. In this section, we dis-
cuss HTTP Server File Cache, a caching feature provided by the GlassFish server
that improves the static content delivery performance. Even though the details pro-
vided here are vendor specific, similar optimization options are available in other
application servers as well.

File Cache within the HTTP Server caches frequently used static files in memory,
which eliminates the need to read the resource from the file system for every request.

The following conditions need to be met for a file to be added to the cache:

� The request has to be for a static resource serviced by the default servlet. Files
with URI mappings to custom servlets will not be cached.

� The total number of cached files should be less than the value specified by max
file count.

� A file will be added to the cache only if space is available in the cache.

The amount of time a file is retained in the cache is decided by the
max-age-in-seconds parameter. The age of a file in the cache is calculated as
the difference between the current time and the time when the file was added to
the cache. The file entry is removed from the cache when its age is greater than
max-age-in-seconds. The files are either read into the JVM heap or memory
mapped based on the size of the file.

File caching can improve performance by eliminating the disk I/O associated with
the reading of a file for every request in the absence of the cache. However, file cache
increases the memory footprint of the server instance. Small files are cached in
the JVM heap, which increases the garbage collection cost, and large files that are
memory mapped increase the resident memory of the process.

The file cache statistics can be monitored if the http-service monitoring level
is set too high. Use the asadmin get -m command to view the various file cache
statistics as shown in the following example:

Tip

For best performance, keep items stored in session small and simple. Use the transient
keyword for items that can be recreated at session recovery.

ptg6882136

446 Chapter 10 � Web Application Performance

The cache can be tuned based on the cache hit rate, hits-count / (hits-count
+ misses-count). A very high value of the hit rate suggests that the cache is work-
ing well, and no further tuning is required. A low hit rate may indicate the need for
further tuning—by either increasing the max-age or the size of the cache.

The following factors should be taken into consideration while tuning the file
cache: the number and size of the files, the frequency of the file request, the heap
space configured for the instance, and the amount of available memory.

� Set the number of files to be cached based on the number of files that are com-
monly accessed. For most cases, the default value of 1024 will suffice.

� Set the maximum age of a cache entry based on how often clients access a given
resource. It is recommended that this value be set large enough so as to incur sev-
eral hits before the file is removed from the cache. Since a cached entry is served
even if the underlying resource changes, it is not recommended that a high value be
set for files that change frequently. Setting a very high value for this can also cause
caching of infrequently used files, which can impact the performance negatively.

� Set the cache size based on the amount of heap and the overall memory available. It
is recommended that this parameter be set to a value large enough to accommodate
the commonly accessed files. Setting this value to be a large proportion of the heap
can cause frequent garbage collection thereby reducing the overall performance.
Since files beyond a certain size are memory mapped, the memory associated with
this cache is external to the JVM heap. Caching these files increase the process
memory, and it is important to ensure that the overall memory does not go beyond
the available process memory (4GB for 32-bit JVM). If the amount of physical mem-
ory in the system is limited, it is recommended that the space allocated be reduced
so that the overall process memory is lower than the available physical memory.

Access Logging

Web containers are designed to log details about the requests served by them. Pro-
cessing these logs can provide a wealth of information that can be used to identify

asadmin get -m ”server*http-listener-1.file-cache*” | grep ‘\-count’
server.network.http-listener-1.file-cache.contenthits-count = 0
server.network.http-listener-1.file-cache.contentmisses-count = 0
server.network.http-listener-1.file-cache.heapsize-count = 0
server.network.http-listener-1.file-cache.hits-count = 0
server.network.http-listener-1.file-cache.infohits-count =0
server.network.http-listener-1.file-cache.infomisses-count = 0
server.network.http-listener-1.file-cache.mappedmemorysize-count = 0
server.network.http-listener-1.file-cache.maxheapsize-count = 0
server.network.http-listener-1.file-cache.maxmappedmemorysize-count = 0
server.network.http-listener-1.file-cache.misses-count = 0

ptg6882136

Best Practices 447

poorly performing request paths, understand application usage patterns, as well as
provide baseline data for developing benchmarks. A log replay benchmark driver that
can replay access logs is one of the best benchmarking tools to mimic production load
in a test environment. Some of the attributes of interest include, but are not limited
to, the request rate, user agent, client IP address, request type, path, response status,
response length, response time, referrer, and/or specific request or response headers.

The GlassFish server in the developer profile by default does not enable access
logging. Access logging can be turned on as well as configured at the http-service level
either through asadmin or the Administration Console. To configure access logging
via the Administration Console, first click on the Configurations link on the naviga-
tion tree on the left side bar. Select the appropriate configuration for the server, and
then select http-service. Check the Access Logging check box to enable logging. The
following asadmin commands can be used to get/set the access logging properties
via the command line.

To turn on access logging, use the following command:

asadmin set configs.config.server-config.http-service.access-log.
rotation-enabled=true

Enabling access logging increases the write operations to the disk. In GlassFish,
the request information is buffered in memory and subsequently written to the disk
when the buffer is full (this can be configured to be time based, where the logs are
written at periodic intervals). The performance impact of access logging is negligible
under most conditions. However, for systems under very heavy load, the periodic disk
write operations may interfere with the processing of other requests if the same set
of disks is used for storing content, transaction logging, or as the persistent message
store. Under these conditions, it is preferable to dedicate a set of disks, SSD, or a
disk array with write cache for access logging so that it does not interfere with other
operations.

For GlassFish V3, the access logs are written to the install_dir/domains/domain_
name/logs/access directory. Based on the log rotation interval (default: 1 day), a new
log file of the form server_access_log_<suffix>.txt is written to the access log direc-
tory. The default suffix date is of the form yyyy-MM-dd, which can be changed if
required. The number of log files retained is based on the max-history-files
attribute. The default value of –1 results in all files being retained indefinitely. This
may result in a large number of files for long-running servers, so it is recommended
to limit the number of saved logs to a few days. This can be achieved by setting the
max-history-files attribute to the number of days the logs are to be retained.
The log lines are stored in memory and are written to disk when either the buffer
becomes full or the write interval has expired. Based on user needs, these values can
be configured using the asadmin set command.

ptg6882136

448 Chapter 10 � Web Application Performance

The format attribute defines what values will be logged in each log line and can
be set using the asadmin set command as follows:

asadmin set ’configs.config.server-config.http-service.access-log.
format=%datetime% %user.agent% %referer% %session.userId% %response.header.
TRACE% %http-uri% %query-str% %http-method% %status% %response.length%
%time-taken%’

The format described in the preceding example produces the following log line.

”02/Jan/2011:10:47:24 -0800” ”Mozilla/5.0 (Macintosh; U; Intel Mac OS X
10.5; en-US; rv:1.9.2.13) Gecko/20101203 Firefox/3.6.13” ”NULL-REFERER”
”1293993380” ”1bc8bedf-d87d-4309-9dce-37787cddf9e4” ”/BenchmarkWebApp/main/
session” ”listSize=10&stringSize=10000” ”GET” 200 137 ”2”

Most of the attribute names are self-explanatory, for example, response.length
specifies the size of the response in bytes, and time-taken describes the response
time. Any request header of interest can be defined using %header.<headerName>%.
Similarly, %session.sessionAttribute% and %response.header.header
Name% can be used to get session attributes and response headers, respectively.

Two attributes, session.userId and response.header.TRACE need further
explanation. The first one is for applications that require users to sign in to interact
with certain parts of the site. Maintaining the user id in a session is one way to track
signed-in users. Having this information in the access log is useful in a variety of
ways including tracking the number of requests per session, identifying the request
paths and the response times associated with each of these requests. If the applica-
tion performance varies based on the user, these logs are valuable in identifying users
who are subject to poor performance and in identifying performance bottlenecks.

The response.header.TRACE information is useful for applications that use one
or more Restful services to service a user request. In such cases, a single user request
would result in HTTP requests to multiple back-end services each of which will log
the request that it receives. To trace a single request through these multitude of
distributed systems and to identify performance issues, some form of request tracing
is required. One way to achieve this is to allocate a unique identifier to each request
at the request entry point and to propagate the unique identifier to each service in
the pipeline. The access logs can then be grouped based on the trace identifier to
identify all the request paths and response times associated with each front-end
request. There are a variety of ways in which this tracing can be achieved. A simple
filter-based approach is described here.

A servlet filter inspects each request and adds a trace identifier in case the trace
is not found in the request header. The filter further sets the trace as a local thread

ptg6882136

Best Practices 449

variable within the processing thread so that it can be passed along to any subse-
quent HTTP request involved in this request processing cycle. The use of a thread
local variable limits the use of this solution to a synchronous request processing
model. The sample code for the TraceFilter and the TraceManager follows:

import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class TraceFilter implements Filter {
 public void doFilter(ServletRequest req,
 ServletResponse resp,
 FilterChain chain)
 throws ServletException, IOException {
 // Set up the trace if not already present.
 TraceManager traceManager = null;
 if (req instanceof HttpServletRequest &&
 resp instanceof HttpServletResponse) {
 HttpServletRequest hreq = (HttpServletRequest) req;
 HttpServletResponse hres = (HttpServletResponse) resp;
 traceManager = new TraceManager();
 traceManager.setTrace(hreq, hres);
 }

 chain.doFilter(req, resp);

 if (traceManager ! = null)
 traceManager.removeTrace();
 }
...
}
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.UUID;

public class TraceManager {
 private static ThreadLocal<String> traceTLS = new ThreadLocal<String>();
 public static final String TRACE_HEADER = ”TRACE”;

 public String getTrace() {
 String trace = traceTLS.get();
 if (trace = = null)
 trace = UUID.randomUUID().toString();
 return trace;
 }

 public void setTrace (HttpServletRequest req,
 HttpServletResponse res) {
 String trace = req.getHeader(TRACE_HEADER);
 if (trace = = null) {
 trace = UUID.randomUUID().toString();
 req.setAttribute(TRACE_HEADER, trace);
 }
 res.setHeader(TRACE_HEADER, trace);

ptg6882136

450 Chapter 10 � Web Application Performance

We end this section with a short discussion regarding access log file aggregation.
As the Web site grows in popularity with hundreds of thousands of page views a day,
hundreds of servers may be required to handle the requests. Aggregating the log files
distributed across these many disparate machines turns out to be a challenge. One
possible solution is to use open source log aggregators such as Scribe (https://github
.com/facebook/scribe) in combination with collector, an open source Java based scribe
client (https://github.com/pierre/collector) to aggregate the logs and store them in the
Hadoop Distributed File System (http://hadoop.apache.org/hdfs/) where they can be
easily searched and collated. A special log appender valve may have to be written for
GlassFish to seamlessly integrate with these solutions, the implementation details
of which are beyond the scope of this book.

Bibliography

Theurer, Tenni. “Performance Research, Part 1: What the 80/20 Rule Tells
Us about Reducing HTTP Requests.” http://yuiblog.com/blog/2006/11/28/
performance-research-part-1/.

Exceptional Performance team, various authors. “Best Practices for Speeding Up
Your Web Site.” http://developer.yahoo.com/performance/rules.html.

“Web Performance Best Practices.” http://code.google.com/speed/page-speed/docs/
rules_intro.html

Souders, Steve. High Performance Web Sites. O’Reilly Media. September 2007. ISBN
978-0-596-52930-7.

Souders, Steve. Even Faster Web Sites. O’Reilly Media. June 2009. ISBN
978-0-596-52230-8.

JSR 316: JavaTM Platform, Enterprise Edition 6 (Java EE 6) Specification. http://
jcp.org/en/jsr/detail?id=316.

Arcand, Jeanfrancois. “Grizzly 1.5 Architecture Overview.” http://weblogs.java.net/
blog/jfarcand/archive/20070712_Grizzly_Architecture.pdf.

 traceTLS.set(trace);
 logger.fine(”Trace set to ” + trace);
 }

 public void removeTrace() {
 traceTLS.remove();
 }
}

https://github.com/facebook/scribe
https://github.com/facebook/scribe
https://github.com/pierre/collector
http://hadoop.apache.org/hdfs/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://developer.yahoo.com/performance/rules.html
http://code.google.com/speed/page-speed/docs/rules_intro.html
http://code.google.com/speed/page-speed/docs/rules_intro.html
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://weblogs.java.net/blog/jfarcand/archive/20070712_Grizzly_Architecture.pdf
http://weblogs.java.net/blog/jfarcand/archive/20070712_Grizzly_Architecture.pdf

ptg6882136

Bibliography 451

Chetty, Damodar. “An Overview of Tomcat 6 Servlet Container: Part 1.” http://www.
packtpub.com/article/an-overview-of-tomcat-6-servlet-container-1.

Chetty, Damodar. “An Overview of Tomcat 6 Servlet Container: Part 2.” http://www.
packtpub.com/article/an-overview-of-tomcat-6-servlet-container-2.

Oracle GlassFish Server 3.0.1 Administration Guide. http://download.oracle.com/
docs/cd/E19798-01/821-1751/821-1751.pdf.

“Apache Commons Math, Statistics.” http://commons.apache.org/math/userguide/
stat.html.

“Trim Filter.” http://www.servletsuite.com/servlets/trimflt.htm.

“YUI Compressor.” http://developer.yahoo.com/yui/compressor/.

“Jackson Java JSON-processor.” http://jackson.codehaus.org/.

http://www.packtpub.com/article/an-overview-of-tomcat-6-servlet-container-1
http://www.packtpub.com/article/an-overview-of-tomcat-6-servlet-container-1
http://www.packtpub.com/article/an-overview-of-tomcat-6-servlet-container-2
http://www.packtpub.com/article/an-overview-of-tomcat-6-servlet-container-2
http://www.servletsuite.com/servlets/trimflt.htm
http://download.oracle.com/docs/cd/E19798-01/821-1751/821-1751.pdf
http://download.oracle.com/docs/cd/E19798-01/821-1751/821-1751.pdf
http://commons.apache.org/math/userguide/stat.html
http://commons.apache.org/math/userguide/stat.html
http://developer.yahoo.com/yui/compressor/
http://jackson.codehaus.org/

ptg6882136

This page intentionally left blank

ptg6882136

453

11
Web Services
Performance

Service Oriented Architecture (SOA) is an architectural style that enables complex
business applications to be built from smaller individual services distributed over the
network. It has become the industry’s de facto standard for building and deploying
business solutions that are agile enough to meet the demands of business partners
and customers. Web services have emerged as the most widely used technology for
implementing SOA. A Web service is a software system accessible over a network
that supports machine-to-machine interaction. It is a platform and programming
language neutral system that exposes standardized interfaces accessible over a set
of standard Internet communication protocols; typically described using Web Services
Description Language (WSDL). Web services communicate using the Simple Object
Access Protocol (SOAP) and use eXtensible Markup Language (XML) for describing
the exchanged messages.

With increasing SOA adoption by enterprises, both new and existing enterprise
applications are being exposed as Web services. The loose coupling enables enter-
prises to harness the power of existing services more efficiently. However, this also
brings new challenges, especially in terms of performance and scalability, as the
same services are invoked by a large number of clients. Performance and scalability
should be important considerations in the design, implementation, and deployment
of Web services. In this chapter we look at different aspects relating to Web service
performance: how to measure Web service performance, the important factors that
affect performance, and best practices for commonly encountered use cases.

This chapter is divided as follows. Since Web services rely on XML as the under-
lying data exchange format, the first part covers XML performance. The various

ptg6882136

454 Chapter 11 � Web Services Performance

stages involved in the XML document processing life cycle are discussed along with
performance tips and recommendations. The second part of this chapter focuses on
Web services performance, which starts with a brief look at the implementation of
the Java API for XML Web Services (JAX-WS) Reference Implementation. This is fol-
lowed by a discussion on Web services benchmarking and a description of the various
factors that affect Web service performance. A look at a set of best practices for the
common uses cases concludes the chapter.

XML Performance

Since Web services rely on XML as the underlying data exchange format, XML pro-
cessing is one of the core elements within the Web services stack. The Java platform
supports XML processing through the Java API for XML Processing (JAXP) as well
as the Java API for XML Binding (JAXB).

JAXP provides a set of XML processing APIs that enable applications to parse,
transform, and query XML documents. JAXP is a standard component in the Java
platform with a reference implementation of JAXP 1.4 bundled in Java SE 6. JAXP
supports a number of different industrywide standards to process XML documents:
Simple API for XML (SAX), Document Object Model (DOM), and the Streaming API
for XML (StAX).

JAXB allows developers to access and process XML documents as Java objects. The
first step in the use of JAXB is to compile the XML schema representing the docu-
ment to generate a set of Java classes. JAXB also provides a runtime that enables the
easy conversion of XML documents to Java objects (unmarshalling) and Java objects
to XML (marshalling). Since the use of the JAXB compiler is a one-time operation,
the performance of the compiler is not addressed here. Instead, the focus is on the
marshalling and unmarshalling performance.

In this section the performance aspects related to the use of various parsers and
serializers are discussed starting with a brief look at the steps involved in a typical
XML processing cycle. This is followed by discussions about the factors that affect
XML performance and a description of best practices. The section concludes with a
recommendation of which parser is the most appropriate for certain purposes.

XML Processing Life Cycle

Processing of an XML document typically involves the following steps: Parse or
unmarshall, access, modify, and serialize or marshall, as shown in Figure 11-1. These
are logically defined processing units and may be accomplished within a single step
(e.g., SAX) or may be distinct steps (e.g., DOM). Additionally, depending on the use
case and the type of parser you use, all four steps may not be exercised.

ptg6882136

XML Performance 455

� Parse/Unmarshall. Scan through the XML document processing elements
and attributes and possibly build an in-memory tree in the case of a DOM
parser or a Java object in JAXB. Parsing is a prerequisite for any processing of
an XML document.

� Access. Extract the data from the elements and attributes of parts of the
document into the application. For example, given an XML document for an
invoice, the application might want to retrieve the prices for each item in the
invoice.

� Modify. Change the textual content of elements or attributes and possibly
also the structure of the document by inserting or deleting elements. This does
not apply to SAX. As an example, an application might need to update the prices
of some of the items in an invoice or insert or delete some items.

� Serialize/Marshall. Convert the in-memory representation to a textual form
that is written to a disk file or forwarded to a network stream. SAX parser does
not support this functionality.

Parse/Unmarshall

If using JAXP, the first step in parsing a document is the creation of the parser,
SAXParser, XMLStreamReader, or DocumentBuilder depending on the API
selected (SAX, StAX, and DOM, respectively). This is carried out through the use
of appropriate factory objects as shown in the following code snippet below.

Figure 11-1 Typical XML document processing

Access Modify Serialize/
Marshall

Parse/
Unmarshall

 // SAX Parser
 import javax.xml.parsers.SAXParserFactory;
 import javax.xml.parsers.SAXParser;
 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser sp = spf.newSAXParser();

 // StAX XMLStreamReader
 import javax.xml.stream.XMLInputFactory;
 import javax.xml.stream.XMLStreamReader;
 XMLInputFactory xif = XMLInputFactory.newInstance();

ptg6882136

456 Chapter 11 � Web Services Performance

The use of the abstract factory pattern allows the developer to select the parser
implementation to be used at runtime. However, initialization of the Factory object
is an expensive operation since it involves file system search to identify the appropri-
ate factory implementation to load. The Java documentation for DocumentBuilder-
Factory.newInstance() uses the following ordered lookup procedure to determine
the DocumentBuilderFactory implementation class to load:

� Use the javax.xml.parsers.DocumentBuilderFactory system property.
� Use the properties file lib/jaxp.properties in the JRE directory. This configu-

ration file is in standard java.util.Properties format and contains the
fully qualified name of the implementation class with the key being the system
property defined previously.

� Use the Services API (as detailed in the JAR specification), if available, to determine
the classname. The Services API looks for a classname in the file META-INF/ser-
vices/javax.xml.parsers.DocumentBuilderFactory in jars available to the runtime.

� Platform default DocumentBuilderFactory instance.

The factory lookup procedures for SAXParserFactory and XMLInputFactory
are similar to that of DocumentBuilderFactory. The factory loading time can be
reduced by specifying the default implementation class as a System property or in
the lib/jaxp.properties file. Table 11-1 shows the various default factory implementa-
tion classes for the implementation of Oracle’s Java 6.

 XMLStreamReader reader = xif.createXMLStreamReader (inputStream);

 // DOM Parser
 import javax.xml.parsers.DocumentBuilderFactory;
 import javax.xml.parsers.DocumentBuilder;
 DocumentBuilderFactory dbf=DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

Table 11-1 Default Parser Factory Implementation Classes

Factory Property Default Implementation Class

SAXParserFactory javax.xml.parsers.
SAXParserFactory

com.sun.org.apache.
xerces.internal.jaxp.
SAXParserFactoryImpl

DocumentBuilderFactory javax.xml.parsers.
DocumentBuilder
Factory

com.sun.org.apache.
xerces.internal.jaxp.
DocumentBuilderFactoryImpl

XMLInputFactory javax.xml.stream.
XMLInputFactory

com.sun.xml.internal.
stream.XMLInputFactoryImpl

ptg6882136

XML Performance 457

JAXP does not mandate that the factory instances be thread-safe. Even though
some of the default factory implementations in the JDK are thread-safe for parser
creations, it is a good practice to avoid the concurrent use of JAXP factories from
multiple threads. Sharing of a single Factory object should only be used if the
implementation provides a thread-safe guarantee (e.g., Woodstox StAX parser, JDK’s
default DocumentBuilderFactory).

Tip

Since creation of a Factory instance is expensive, it is advisable to reuse existing Factory
objects. Share a singleton Factory instance for thread-safe implementations. Otherwise,
reuse a pool of instances among multiple threads or store it as a ThreadLocal variable.

JAXP provides a pluggable architecture that allows users to plug-in different
implementations. There are instances in which implementations from other ven-
dors outperform the default implementation within JAXP. In such cases, it is a good
practice to use the better performing implementation rather than the default one
(see performance data at the end of this section). One example of this is the use of
Woodstox, the open source StAX parser (http://woodstox.codehaus.org/) that outper-
forms Oracle Java Streaming XML Parser (SJSXP), the default StAX parser within
JAXP. There are a variety of ways to configure JAXP to use the new implementation.

� Add the jar file containing the parser to the classpath (the jar file should spec-
ify the implementation class in META-INF/services/<ParserProperty> where
ParserProperty is the property defined in Table 11-1). For example, to use
Woodstox, all that is required is to add the jar file to the classpath.

� Specify the factory class using the appropriate system property. For example,
to use Woodstax parser, set the following system property:

javax.xml.stream.XMLInputFactory=com.ctc.wstx.stax.WstxInputFactory

� Specify the factory class in the properties file lib/jaxp.properties in the JRE
directory.

The parser instances created from the factory instance, SAXParser, XMLStream
Reader, and DocumentBuilder, are not thread-safe and cannot be shared among
multiple threads. Parser creation is a heavyweight operation and may take a signifi-
cant portion of the XML processing cost, especially for small documents. Both SAX
and DOM parsers provide a reset method that allows the parser to be reset for later
reuse. So in cases where a lot of small documents are to be processed, it is a good
practice to create a pool of parser instances that can be reused. Each thread would

http://woodstox.codehaus.org/

ptg6882136

458 Chapter 11 � Web Services Performance

get a parser from the pool, use it to parse the document, reset the parser, and return
it to the pool after completing the parsing operation. Unfortunately, the current ver-
sion of the StAX specification does not provide a standard mechanism for resetting
the XMLStreamReader.

Tip

For parsing small documents using SAX and DOM, it is a good performance practice to create
a pool of Parser instances that can be reused.

While using JAXB for document processing, the Unmarshaller needs to be first
created as shown in the following code snippet.

Tip

While using JAXB, it is a good practice to reuse a single instance of JAXBContext. For
unmarshalling small documents, create a pool of Unmarshaller instances that can be
reused.

 // JAXB Unmarshaller
 import javax.xml.bind.JAXBContext;
 import javax.xml.bind.Unmarshaller;
 JAXBContext jc = JAXBContext.newInstance(“mypackage”);
 Unmarshaller u = jc.createUnmarshaller();

JAXBContext creation is an expensive operation, and creation of multiple
instances should be avoided if possible. JAXBContext is thread-safe and can be
shared among multiple threads. For best performance, create a single instance for
the whole application. However, Unmarshaller is not thread-safe and should not
be used concurrently by multiple threads. But Unmarshaller objects can be pooled
and reused. It is a good practice to use a pool of Unmarshaller objects for process-
ing small documents.

Access

Referring to Figure 11-1, the next step in the document processing is the access of
elements and attributes within the document. In the case of streaming parsers, this
step is closely linked to the parsing process, whereas in the case of DOM and JAXB
this is a secondary step of navigating the in-memory DOM tree or the Java objects
created during the parsing phase. Streaming parsers provide content to the applica-
tion as they become available, discarding the previous contents. The parser does not

ptg6882136

XML Performance 459

cache any content in memory, and it is the responsibility of the application to store
the contents that may be necessary for further processing. DOM and JAXB, on the
other hand, store the document in memory allowing random access of any element
in the document. Since streaming parsers do not store the entire document contents
in memory, the objects created by them are short-lived.

Tip

The memory usage for JAXB and DOM is higher than that of streaming parsers (SAX and
StAX), especially for large documents.

Modify

In-memory parsers allow modifications to be made to the document. Since the JAXB
unmarshaller creates a set of related Java objects to represent the document in
memory, no special JAXB related APIs are required to access and modify the docu-
ment. Access and modification of the DOM objects on the other hand are done using
the DOM APIs. To obtain optimal performance, the following points are worth noting
while using the DOM APIs:

� Before you retrieve a list of attributes, first check to see whether that Node has
attributes using the hasAttributes method. Invocation of getAttributes
for an Element node causes the unnecessary creation of an AttributeMap
object even if the element has no attributes.

� The methods getElementsByTagName and getElementsByTagNameNS are
expensive operations since they traverse the DOM tree searching for nodes
that match the name and the namespace URI. Applications should consider
implementing custom traversal methods that search in parts of the tree.

� In DOM Level 2, renaming and moving nodes from one document to the other
can be expensive, since these operations involve creating new nodes, copying the
contents of the old node to the new ones, and inserting the nodes at the appro-
priate places in the tree. Consider using the renameNode and adoptNode APIs
defined in DOM Level 3 specification for renaming a node and moving a node
from one document to the other. In most cases, renameNode simply changes
the name of the given node. However, under certain circumstances, this API
can be forced to create a new node, copy all the contents, and insert the node at
the appropriate place. This rare case happens most often when the application
attempts to mix namespace-aware and non-namespace-aware nodes in a single
document. adoptNode attempts to adopt a node from another document to this
document. This allows the applications to move a subtree from one document
to another without making a copy of the subtree.

ptg6882136

460 Chapter 11 � Web Services Performance

� Avoid unnecessary error checking if all operations performed by the applica-
tion on the DOM are legal. DOM Level 3 adds the setStrictErrorChecking
attribute to specify whether error checking is enforced. When set to false, the
implementation is free to not test every possible error case normally defined on
DOM operations.

� DOM by default, enables the defer-node-expansion mode in which the document
components are initially represented with a compact format that is expanded to
a full DOM representation as the tree is traversed. Even though this mode offers
better performance for large documents, it leads to poor performance and larger
memory size for small documents (0K-10K). So for small documents, higher
performance can be achieved by disabling the defer-node-expansion feature
identified by the URI http://apache.org/xml/features/dom/defer-node-expansion.

Serialize/Marshall

The last step in the XML document processing is the serialization or marshalling
to write the document to an output stream. StAX, DOM, and JAXB provide APIs to
achieve this task. The serializer classes, XMLStreamWriter (StAX), Transformer
(DOM), and Marshaller (JAXB), are created through the use of factory as in the
case of parsers or JAXBContext objects in the case of JAXB. Reusing an instance of
the factory object provides significant performance benefits since factory object cre-
ation is expensive. When working with small documents, creating a pool of writers
or marshallers improves the performance.

Validation

Validation of the XML document is sometimes required as part of the business pro-
cess to guarantee reliability of the application. Validation is the process of verifying
that an XML document is an instance of a specified XML schema. An XML schema
defines the content model (also called a grammar or vocabulary) that its instance
documents represent. Some of the popular XML schema include Document Type
Declaration (DTD), W3C XML Schema, and RELAX NG. By default, the parsers are
set to be nonvalidating but can be easily configured to be validating. Even though
Web services are based on XML schema and do not support DTDs, processing of DTD-
based XML documents are widely used and hence discussed here for completeness.

Validation is an expensive process, since the parser needs not only to parse an
XML document but also to parse the schema document, build an in-memory rep-
resentation of this schema, and then use this internal schema representation to
validate the XML document.

http://apache.org/xml/features/dom/defer-node-expansion

ptg6882136

Validation 461

In cases where validation is required, the following items are worth considering.

� Processing and validating against a DTD is normally cheaper than processing
and validating against a W3C Schema.

� Avoid the use of a lot of external entities (external DTDs or imported sche-
mas) as this requires the opening and reading of those files, which reduces the
performance.

� Avoid the use of many default attributes as this increases the validation cost.

If the application has a limited set of schemas against which you want to validate
XML documents, consider compiling (parsing the schema and building in-memory rep-
resentation) and caching schemas, since it can significantly improve the performance
of applications. In particular, if most of the XML documents your application processes
are relatively small, then schema compilation can consume a significant portion of the
overall processing time of your XML documents. JAXP provides APIs that allow appli-
cations to reuse schemas and hence improve the performance of validating parsers.

Tip

Turning on validation significantly reduces parser performance.

Tip

If your application has a limited set of schemas against which you want to validate XML
documents, consider caching schemas.

To use schema caching, the first step is to compile the schema using the Schema
Factory object as shown in the following code snippet. Unlike the ParserFactory
objects discussed earlier, SchemaFactory object is not thread-safe and should not
be shared by multiple threads. SchemaFactory implementation in Java SE 6 sup-
ports W3C XML Schema 1.0 and RELAX NG 1.0. Because the XML DTD is strongly
tied to the parsing process and has a significant effect on the parsing process, it is
impossible to define the DTD validation as a process independent from parsing. For
this reason, JAXP does not define the semantics for the XML DTD caching.

The SchemaFactory object is used to compile the schema and create the Schema
class, which is the in-memory representation of the schema. The Schema class can
then be used either to create parsers that are optimized for validating documents
based on that schema or to create validators that can validate different XML input
sources (SAX, DOM, or Stream). The following code snippet shows how to use a vali-
dator to validate a document using SAX.

ptg6882136

462 Chapter 11 � Web Services Performance

Resolving External Entities

Another factor that affects the parsing performance is the presence of external enti-
ties or DTD references within the XML document. External entities, including exter-
nal DTD subsets, need to be loaded from either the file system or over the network
and subsequently parsed. Loading and parsing of these external entities can seri-
ously impact the performance of your application especially if these entities have to
be accessed over a slow network.

One way to improve the performance is to load the entities into memory using an
entity resolver. Write a custom entity resolver that caches the contents of the entity
the first time it is read. The cached in-memory content will be delivered for the sub-
sequent calls to resolve the entity. The cache may even be preloaded at application
startup time to reduce the XML processing cost of the first request.

In some cases, applications may want to bundle the DTDs or schemas along with the
application so that they can be read from the local file system rather than accessing them
over the network. XML Catalogs provide a way for your application to use local copies
of these artifacts without modifying the XML instance document by mapping external
references to local resources. The application then uses a resolver that consults the cata-
log to resolve the external references. You can use the Apache XML Commons Resolver
package that is part of the Apache xml-commons project. You can find more informa-
tion regarding the resolver at http://xml.apache.org/commons/components/resolver/ and

 // SchemaFactory instantiation
 import javax.xml.validation.SchemaFactory;
 import javax.xml.validation.Schema;
 import javax.xml.transform.stream.StreamSource;
 import javax.xml.validation.Validator;
 import javax.xml.transform.sax.SAXResult;
 SchemaFactory sf =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 StreamSource ss1 = new StreamSource(“schema1.xsd”);
 StreamSource ss2 = new StreamSource(“schema2.xsd”);

 // Compile the schemas
 Schema schemas = sf.newSchema (new Source[] {ss1, ss2});

 // Create the validator
 Validator validator = schemas.newValidator();

 // Configure the validator
 validator.setErrorHandler (errorHandler);

 // Create the SAXSource
 SAXSource saxSource = new SAXSource (inputSource);

 //Validate the specified input and send the augmented validation
 //result to the handler.
 validator.validate (saxSource, new SAXResult(contentHandler));

http://xml.apache.org/commons/components/resolver/

ptg6882136

Resolving External Entities 463

The catalog resolver uses one or more catalog entry files to resolve the references
that it encounters. A catalog entry file is made up of a number of catalog entries. A
simple catalog file follows. For more information on catalog files, refer to http://www.
oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html.

public class Processor {
 public void parse() {
 // Set up the parser to use this entity resolver
 SAXParser parser =
 SAXParserFactory.newInstace().newSAXParser();
 XMLReader reader = parser.getXMLReader();

 // set up the reader correctly
 reader.setContentHandler (myHandler);
 reader.setEntityResolver (new CustomEntityResolver());
 reader.parse (...);
 }
}

// Set up a custom Entity resolver
import org.xml.sax.EntityResolver;
import javax.xml.parsers.SAXParser;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.apache.xml.resolver.tools.CatalogResolver;

public class CustomEntityResolver implements EntityResolver {
 // cache to hold the Entity
 private ConcurrentHashMap<String, InputSource> entityCache =
 new ConcurrentHashMap<String, InputSource>();
 CatalogResolver cResolver = new CatalogResolver();
 public InputSource resolveEntity (String publicId,

 String systemId) throws SAXException, IOException {
 // Check of publicId is ignored for simplicity
 if (systemId != null) {
 InputSource is = entityCache.get(systemId);
 if (is != null) {
 // return cached version
 return is;
 }
 else {
 // Use catalog to resolve it
 is = cResolver.resolveEntity (publicId, systemId);
 entityCache.put (systemId, is);
 return is;
 }
 }

 // Let the default entity resolver resolve it.
 return null;
 }
}

the package can be downloaded from http://www.axint.net/apache/xml/commons/xml-
commons-resolver-1.2.zip. The following code sample shows how to set up a custom
entity resolver that uses both caching as well as a catalog resolver.

http://www.axint.net/apache/xml/commons/xml-commons-resolver-1.2.zip
http://www.axint.net/apache/xml/commons/xml-commons-resolver-1.2.zip
http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html
http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html

ptg6882136

464 Chapter 11 � Web Services Performance

Two methods can be used to specify how the CatalogResolver can find the
catalog files to be used. Set the system property xml.catalog.files to a
semicolon-separated list of catalog entry files (e.g., -Dxml.catalog.files=catalogs/
cat1.xml;catalogs/cat2.xml) or add the CatalogManager.properties file to
the classpath. The CatalogResolver uses a CatalogManager that searches the
classpath for the previously mentioned file. An example of the properties file follows:

 <?xml version=”1.0” encoding=”UTF-8”?>
 <catalog xmlns=”urn:oasis:names:tc:entity:xmlns:xml:catalog”>
 <public publicId=”-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN” uri=”dtds/ejb-jar_2_0.dtd”/>
 <system systemId=”http://java.sun.com/dtd/ejb-jar_2_0.dtd”
uri=”dtds/ejb-jar_2_0.dtd/>
 </catalog>

Catalogs are relative to this properties file
relative-catalogs=false
Catalog list
catalogs=catalogs/cat1.xml;catalogs/cat2.xml

The relative-catalogs attribute may seem a little counterintuitive; a value
of true means that the paths are left unchanged and any relative path will be
relative to where the JVM was started. A value of false on the other hand means
that the files are relative to the location of the CatalogManager.properties
file.

Tip

If your document refers to external DTDs and/or contains references to external entities,
consider setting up a custom entity resolver that caches the contents of the external entities to
avoid the performance penalty of repeatedly loading the entities from external sources. Use
XML Catalogs to map external references to locally stored files.

SAX provides two features that allow you to avoid processing of external enti-
ties: http://xml.org/sax/features/external-general-entities and http://xml.org/sax/
features/external-parameter-entities. If these features are disabled, the SAX parser
will not report the entity content when it encounters an external entity reference
but instead reports the name of the entity to the skippedEntity callback of the
content handler.

http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-parameter-entities
http://xml.org/sax/features/external-parameter-entities

ptg6882136

Partial Processing of XML Documents 465

Partial Processing of XML Documents

There are instances in which only a small portion of a large document needs to be
processed. Streaming parsers allow processing to be terminated by the application
at any given time, and in the case of SAX parser, this is done by the content handler
throwing a SAXException. It should be noted that all parsers have to parse the XML
content in a sequential manner before the content can be accessed. For streaming
parsers, the cost of retrieving content information at the beginning of the document is
less expensive than accessing similar information situated further down the stream.
In the case of in-memory parsers, the entire document stream has to be parsed irre-
spective of the location of the element before the content can be accessed.

Tip

In cases where a small portion of the document situated toward the beginning of the document
is to be accessed, streaming parsers have a performance advantage over in-memory parsers.

Both DOM and JAXB also support partial processing of the documents: DOM
through the use of DOM Level 3 load and save APIs, and JAXB by accepting the
XML infoset in different forms (DOM, SAX, StreamSource). If random access of infor-
mation in a small portion of a large document is required, partial processing using
in-memory parsers is an efficient solution. The following section describes how to do
this in DOM and JAXB.

DOM Level 3 Load and Save specification provides a set of APIs that allow appli-
cations to load, save, and filter documents. The document can be examined and its
structure modified during parsing by asking the parser to accept, skip, or reject a
node and its children from the resulting tree. The application can also interrupt pars-
ing using the filter API to load only a part of the document. These APIs thus allow
you to store a smaller document in memory that reduces the memory footprint of the
in-memory DOM tree. The following code snippet shows how the Load and Save APIs
can be used to load a selected node into the DOM tree. In this example, an invoice
document containing several nodes, including a Summary node is parsed. The filter
is set up to skip all nodes except the Summary node.

// Use load and save APIs
import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

ptg6882136

466 Chapter 11 � Web Services Performance

import org.w3c.dom.bootstrap.DOMImplementationRegistry;
import org.w3c.dom.ls.DOMImplementationLS;
import org.w3c.dom.ls.LSParser;
import org.w3c.dom.ls.LSParserFilter;
import org.w3c.dom.traversal.NodeFilter;

public class PartialDOM {
 public void processPartial (String docLocation) {
 System.setProperty (DOMImplementationRegistry.PROPERTY,
 ”com.sun.org.apache.xerces.internal.dom.DOMImplementationSourceImpl”);
 try {
 DOMImplementationRegistry registry =
 DOMImplementationRegistry.newInstance();
 DOMImplementation domImpl =
 registry.getDOMImplementation(”LS 3.0”);
 DOMImplementationLS implLS =
 (DOMImplementationLS)domImpl;
 LSParser parser =
 implLS.createLSParser(
 DOMImplementationLS.MODE_SYNCHRONOUS,
 ”http://www.w3.org/2001/XMLSchema”);

 // Configure the parser if required
 DOMConfiguration config=parser.getDomConfig();
 // Set up the filter
 parser.setFilter(new InputFilter());
 Document document = parser.parseURI(“invoice.xml”);
 }
 catch (ClassCastException ex) {
 ex.printStackTrace();
 }
 catch (InstantiationException ex) {
 ex.printStackTrace();
 }
 catch (IllegalAccessException ex) {
 ex.printStackTrace();
 }
 catch (ClassNotFoundException ex) {
 ex.printStackTrace();
 }
 }
 private static class InputFilter implements LSParserFilter {
 private boolean skip = true;
 public InputFilter () {}

 public short acceptNode(Node node) {
 return NodeFilter.FILTER_ACCEPT;
 }

 public int getWhatToShow() {
 return NodeFilter.SHOW_ELEMENT;
 }

 public short startElement(Element element) {
 if (element.getTagName().equals(”Summary”) || !skip) {
 System.out.println (”accepted element - ” +
 element.getTagName());
 skip = false;

ptg6882136

Partial Processing of XML Documents 467

Similar to DOM, JAXB also provides APIs that allow applications to unmarshall
a part of the document into JAXB objects. The JAXB unmarshaller accepts the XML
infoset as SAX, DOM, or Stream sources. The following code snippet shows how JAXB
can be used along with a SAX parser to bind only a small portion of the document.
In this example, we parse an invoice document and bind only the Summary element.

 return NodeFilter.FILTER_ACCEPT;
 }
 else
 return NodeFilter.FILTER_SKIP;
 }

 public short EndElement (Element element) {
 if (element.getTagName().equals(”Summary”)) {
 skip = true;
 return NodeFilter.FILTER_ACCEPT;
 }
 else
 return NodeFilter.FILTER_SKIP;
 }
 }
 }
}

import java.io.File;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.XMLReader;
import com.sun.xmltest.genjaxb20.ubl07.InvoiceSummaryType;

public class JAXBPartialUnmarshaller {

 public static void main(String[] args) throws Exception {
 JAXBContext jc =
 JAXBContext.newInstance(”com.sun.xmltest.genjaxb20.ubl”);
 Unmarshaller unmarshaller = jc.createUnmarshaller();
 // install the callback on Summary instance
 unmarshaller.setListener(new Unmarshaller.Listener() {
 public void beforeUnmarshall(Object target,
 Object parent) {}
 public void afterUnmarshall(Object target,
 Object parent) {
 if(target instanceof InvoiceSummaryType) {
 InvoiceSummaryType ist =
 (InvoiceSummaryType) target;
 // We have the object – access a field
 System.out.println (”value = ” +
 ist.getSubtotalAmount().
 getValue().floatValue());
 // Can stop the parsing if required by
 // throwing an exception.

ptg6882136

468 Chapter 11 � Web Services Performance

Selecting the Right API

As discussed in earlier sections, a variety of APIs is available for XML processing.
Ease of use is often the most important factor in selecting the API. This is a strong
argument for using JAXB, which hides the complexities of XML to Java mapping
from the developer allowing them to work directly with Java objects. One of the
important advantages that DOM provides is the flexibility that allows applications
to support documents whose schemas may often change. Performance should also be
an important consideration in the selection process.

The three charts shown in Figure 11-2, Figure 11-3, and Figure 11-4 show the
comparative performance of parsing and accessing the elements for a 900 kilobyte
invoice document. The data was collected using a modified version of XMLTest (http://
java.net/projects/xmltest/), an XML micro-benchmark developed by Sun Microsys-
tems. The benchmark runs a number of concurrent threads each of which creates a
SAXParser or XMLStreamReader or DocumentBuilder or Unmarshaller based
on the type of test, parses the preloaded in-memory document stream, accesses a set
of elements (the proportion of elements to be accessed is configurable), and optionally
writes the output to an in-memory buffer. The benchmark measures the total number
of transactions that can be completed by all the threads within a specified period of
time. In all cases, the factory objects are created only once per thread, but the parsers/
unmarshallers are created for each iteration. Pooling of parsers/unmarshallers was
not carried out so that the parser/unmarshaller creation times could be studied. The
tests were run against the SAX, DOM, StAX, and JAXB implementations bundled
with JDK 6 Update 4 as well as the Woodstox parser (version 3.2.5). It should be
noted that the data is based on running the tests against a single document type and
may vary slightly for other types of XML documents. It is a good practice to carry out
performance experiments with the specific documents of interest to identify the API
that best suits your performance needs.

 }
 }
 });
 // create a new XML parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XMLReader reader = factory.newSAXParser().getXMLReader();
 reader.setContentHandler
 (unmarshaller.getUnmarshallerHandler());
 for (String arg : args) {
 // parse all the documents specified via the command line.
 reader.parse(new File(arg).toURI().toString());
 }
}

http://java.net/projects/xmltest/
http://java.net/projects/xmltest/

ptg6882136

Selecting the Right API 469

Figure 11-2 compares the performance of SAX, Oracle’s (SJSXP), and Woodstox
StAX parsers that access different proportions of the document. In the case of 10%
selection, the parser exits after accessing 10% of the content, whereas the entire
document is scanned in the 100% selection case. The StAX parsers perform better
than SAX in both cases, with Woodstox providing the best performance in all cases.
As expected, accessing a smaller portion of the document provides higher throughput
than traversing the entire document.

Figure 11-2 Comparison of parsing performance of SAX,
Oracle’s SJSXP, and Woodstox streaming parsers

2500

2000

1500

1676

2033

2316

164 210 237

1000

500

0

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

10% Selection 100% Selection

SAX

SJSXP

Woodstox

Figure 11-3 Performance comparison of DOM and JAXB

120

100

111
105

101

88

80

40

60

20

0

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

10% Selection 100% Selection

DOM

JAXB

ptg6882136

470 Chapter 11 � Web Services Performance

Figure 11-3 shows the performance data for DOM and JAXB for the operations
described in Figure 11-2. The DOM and JAXB performance is significantly lower
than that of SAX and StAX even when the entire document is scanned. The differ-
ence is even more pronounced when only a portion of the document is required to
be traversed. The effectiveness of in-memory parsers can also be clearly seen here.
Since streaming parsers do not support bidirectional traversal, multiple parse cycles
are required for accessing elements in a nonsequential manner. For in-memory pars-
ers, the cost of traversal is low compared to the cost of building the in-memory tree.
In-memory parsers may be a better fit if a large portion of the document is to be
traversed and in cases where random access of elements is required.

Between the two in-memory parsers, JAXB has a larger cost of building the in-
memory tree because of the higher binding overhead incurred by JAXB. However,
once the JAXB object has been created, traversing through its various elements
is cheaper than that for DOM. In our case, JAXB is a better choice if the entire
document is required to be accessed. It is important to note that the comparative
performance between DOM and JAXB is dependent on the size and schema of the
document.

Figure 11-4 shows the performance impact of serializing the in-memory docu-
ment to an output stream. The set of bars on the left represents the cost of building
the in-memory representation as well as traversing the entire document. The bars
on the right include the additional expense of serialization of the document into an
in-memory output stream. The JAXB serialization performs better than DOM seri-
alization. In cases where the in-memory object is required to be converted back to
XML, JAXB is a better choice.

Figure 11-4 Performance comparison of DOM and JAXB serialization

120

100
88

101

45

61

80

40

60

20

0

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Build+access Build+access
+serialize

DOM

JAXB

ptg6882136

JAX-WS Reference Implementation Stack 471

JAX-WS Reference Implementation Stack

The Java platform supports Web services through the Java API for XML-based Web
services (JAX-WS), which has been defined as JSR 224 within the Java Community
Process. JAX-WS 2.x is part of Java SE 5, Java SE 6 as well as Java EE 5. The JAX-
WS specification defines the following: mappings between WSDL 1.1 and Java, the cli-
ent and service APIs, a set of annotations as well as the specifics related to the SOAP
binding. Even though JAX-WS based Web services can be deployed using Java SE 5 or
Java SE 6, Web services often need enterprise features provided by Web or application
servers (such as scalable HTTP connection handling, transaction support, etc.). All
examples in this chapter are based on the JAX-WS Reference Implementation (JAX-
WS RI) that is part of the GlassFish Server Open Source Edition (also referred to as
GlassFish hereafter). Users can download GlassFish from https://glassfish.java.net/.

JAX-WS Reference Implementation (JAX-WS RI) provides a set of tools that make
it easy for developers to develop Web services as well as a runtime for deploying
those services. Developers have the choice of exposing a Java class as a Web service
or generating the necessary artifacts from a predefined WSDL. The Web service can
then be deployed into an environment that supports the JAX-WS runtime, which is
often a Java EE container. In this chapter, we look at the performance characteristics
of the deployed Web services without delving into performance issues related to the
Web service development tools.

JAX-WS RI is built on top of several standard components including Java API for
XML Processing (JAXP), Streaming API for XML (StAX), Java API for XML Binding
(JAXB), and SOAP with Attachments API for Java (SAAJ). Figure 11-5 shows the
different layers within the JAX-WS runtime at the client and the server. In a typical
SOAP request-response message exchange, the client invokes the service endpoint of
the Web service deployed at the server and receives a response back from the server.
At the client side, the application delegates the responsibility of the Web service invo-
cation to the JAX-WS implementation. JAX-WS runtime creates the SOAP envelope,

Tip

Use streaming parsers for processing large documents or if only a small portion of the
document is accessed. The default StAX parser typically outperforms the default SAX parser.

Use in-memory parsers, DOM or JAXB, if random access of elements is required. Creation
of JAXB objects tends to be more expensive than creating the equivalent DOM tree, but it
is cheaper to navigate the JAXB object once it has been built. Use JAXB if random access of
multiple elements is involved.

JAXB marshalling performance is superior to DOM serialization.

https://glassfish.java.net/

ptg6882136

472 Chapter 11 � Web Services Performance

uses JAXB to marshall the Java objects to XML, and the appropriate payload is writ-
ten to the network buffer to be sent to the server.

At the server side, the data goes through a similar series of steps but in the reverse
order in which the SOAP payload is read from the network and the appropriate oper-
ation of the endpoint is invoked. The server first reads the payload from the network
stream, selects the right decoder—SOAP decoder in the case of SOAP messages—
parses the payload, processes the headers as required, and passes the SOAP body to
JAXB to unmarshall the XML to the appropriate Java objects, and the right method
in the endpoint implemented by the application is invoked. The response from the
server to the client traces a similar path through the stack but in the other direction.

A Web service call from the client to the server thus involves several components,
all of which contribute to the processing cost of that invocation. Web services that
use HTTP are greatly affected by the HTTP request processing performance within
the Web container as well as network performance. The remaining invocation cost
is a combination of the data processing expense incurred by the JAX-WS stack at
the outbound and inbound sides and the time spent in the application code involved
in processing the message at the service endpoint. In cases where the application
code is minimal, the Web services performance is dictated by how good the JAX-WS

Figure 11-5 JAX-WS RI stack

Protocol
Handling

Parsing
(StAX)

Binding
(JAXB)

WS

Protocol
Handling

Parsing
(StAX)

Binding
(JAXB)

WS

Client Server

SOAP/HTTP

Application Application

JAXB Objects

XML

ptg6882136

Web Services Benchmarking 473

implementation is. Several factors including the type and size of the message affect
the performance of this layer. This is covered in more detail in the “Factors That
Affect Web Service Performance” section.

In some cases, the data processing in the service endpoint implementation is com-
plex and time consuming, in which case the overall performance of the Web service
is influenced by the application performance more so than by any other factor. To
distinguish Web services performance as opposed to application performance, the
rest of this chapter assumes a small amount of application code. To understand the
performance characteristics of a Web service, a benchmark is required. The next
section describes how to develop a Web service micro-benchmark that can be used to
accurately measure Web service performance.

Web Services Benchmarking

Development of a micro- or macro-benchmark is sometimes required to understand the
performance characteristics of your Web service. The benchmark is useful in identify-
ing potential performance bottlenecks, comparing different application designs, and
evaluating JAX-WS implementations from different vendors. The general principles
behind developing benchmarking multi-tiered applications discussed in Chapter 9,
“Benchmarking Multi-tiered Applications,” should be considered while developing a
Web services benchmark. In this section, issues relating specifically to Web service
benchmarking are discussed.

As described in the previous section, a typical request-response message exchange
involves the execution of the application code at the service endpoint, which contrib-
utes to the overall response time of the method invocation.

Tip

If the Web service benchmark is used to compare the performance of implementations
from different vendors, keep the application code to a minimum to accurately compare the
performance of the Web service infrastructure.

In this section, we look at three parameters important for a Web service benchmark:

� Payload messages
� Types of operations
� Client driver

While describing the benchmark Web service, use schema types and message defi-
nitions similar to that used in the application. However, in some cases, the messages

ptg6882136

474 Chapter 11 � Web Services Performance

are complex, and developing a micro-benchmark using these messages is not practi-
cal due to the difficulties involved in developing simple clients capable of generating
the required messages (e.g., the client having to generate invoices or purchase orders
that typically come from external vendors). In such cases, the benchmark may have
to resort to using simpler messages. It should be noted that use of nonrepresenta-
tive overly simple messages may not provide an accurate characterization of your
application.

Another factor to consider while defining the service is the size of the payload to
be tested since the payload size greatly affects Web service performance.

Tip

It is a good practice to design messages whose size can be changed easily. One common
practice is to define the message as a list of MessageTypes. The size of the payload can be
increased by increasing the number of items in the list.

Web services often define different types of operations; for example, receiving sim-
ple requests and sending large payloads in response, or receiving large payloads and
sending a simple acknowledgment in return. The third category of operations receives
large payloads and responds with similar sized payloads. Different layers in the Web
service stack are responsible for the processing of incoming request and outgoing
response messages.

Tip

It is a good practice to test the different operational signatures used by the application. An
echo operation often serves as a good test case: The application processes the incoming
message and returns the same message.

The easiest way to develop a Web service client is to use the JAX-WS client APIs,
from here on referred to as the thick client. Figure 11-6 shows the use of thick cli-
ent for benchmark measurement. A Web service invocation from a thick client to a
server traverses the JAX-WS stack on both the client and the server, and the overall
response time for the invocation includes the processing time at the client and the
server. In this case, both the client and the server should be considered to be part of
the system under test (SUT).

The thick client test scenario has several advantages:

� Easy to implement
� Measures the performance of the JAX-WS implementation at both the client

and server

ptg6882136

Web Services Benchmarking 475

� Can handle fault conditions
� Represents a real life use case in which both the client and server are part of

the single application deployment

However, it also has a significant disadvantage. In a client-server test, to generate
sufficient load on the server, an equally powerful client system is required. This chal-
lenge is especially daunting when you need to study the performance and scalability
characteristics of a Web service deployed on a large multicore system. For such cases,
the thin client approach described next is more suitable.

In the thin client mode, a simple HTTP driver is used to deliver the SOAP message
to the Web service endpoint as shown in Figure 11-7. The HTTP driver is a simple
client that posts the message to the server and receives the response. In its simplest
form, the driver assumes that the Web service is fully functional, checking only the
HTTP response code and discarding the return messages, thus making it incapable of
handling any Web service specific fault conditions. More complex forms of the HTTP
driver may parse the output for diagnostic purposes.

Since the processing time within the HTTP driver is small, the Web services pro-
cessing time at the server is the primary contributor to the response time of an
interaction, making this a pure server benchmark. Unlike the thick client mode,
the processing power required for the client system is only a fraction of that of the
server, making this mode ideally suited for scalability analysis of Web services on
large multicore systems.

One of the challenges in the thin client test scenario is the ability to load the
correct SOAP message to be used by the HTTP driver. One simple solution is to

Figure 11-6 Web service benchmark using a JAX-WS client

Client Server

Client Driver

start timer

invoke method

end timer SOAP/HTTP

SUT

HTTP

Web service

End point

JAX-WS
Stack

JAX-WS
Stack

HTTP

ptg6882136

476 Chapter 11 � Web Services Performance

capture the request using an intermediary like Apache TCPMon and saving it to a
file. The HTTP driver during its initialization, reads the contents from the file into
memory and reuses it for subsequent requests. The primary drawback of this method
is the requirement to capture the required messages for each test case. A second
more complex scenario involves the use of a JAX-WS handler to capture the request
dynamically during the driver initialization. A JAX-WS handler, LoggingHandler,
that implements SOAPHandler<SOAPMessageContext> is first added to the han-
dler list of the client binding. During the initialization of the driver, a thick client is
first created and a single invocation of the required operation is carried out by this
client. This causes the handleMessage() method of the LoggingHandler to be
called allowing the LoggingHandler to save the request payload into memory. The
in-memory payload is used by the HTTP driver for subsequent requests.

The two primary benchmark metrics that need to be measured are throughput
and response time. Throughput defines the number of operations completed within
a specified period of time, and the response time defines the time taken for the suc-
cessful invocation of an operation. Refer to the “Use of Time Java APIs” section in
Chapter 8, “Benchmarking Java Applications,” to understand how to make accurate
benchmark time measurements.

Measuring the response time of a single request is valuable, but it is often not
the most important metric in Web services performance analysis. Web services typi-
cally need to be highly scalable and capable of handling large numbers of concurrent
requests. The performance of the entire system measured in terms of throughput or
maximum number of sustainable concurrent clients is a more relevant performance
metric, especially for large multicore throughput systems.

Figure 11-7 Web service benchmark using an HTTP driver

Client Server

Client Driver

start timer

POST SOAP
message

end timer
SOAP/HTTP

SUT

HTTP

Web service

End point

JAX-WS
Stack

HTTP

ptg6882136

Factors That Affect Web Service Performance 477

Factors That Affect Web Service Performance

Several factors influence the performance of Web services including

� Message size
� Complexity of schema elements
� Implementation of endpoint
� Presence of handlers

Web service applications may also include other technologies defined by the
different WS-* specifications. The JAX-WS reference implementation supports a
variety of these specifications including WS-Security, WS-Policy, WS-Addressing,
WS-ReliableMessaging, WS-Transactions, and so on. The overall performance of the
Web service application is affected by the presence of these additional features.
The performance impact of adding each one varies by a wide margin, from mini-
mal impact due to WS-Addressing to extremely large impact when WS-Security is
enabled. Analysis of the performance impact of the different specifications is beyond
the scope of this book.

The performance data shown in this chapter was generated using WS-Test, a Web
services benchmark developed by Sun Microsystems. WS-Test is a thick client bench-
mark that is useful for understanding the performance of the Web services stack. It
includes test cases for measuring the performance of sending and receiving simple
payloads to complex documents.

Effect of Message Size

The size of the message can dramatically affect Web service performance. As the
message size increases, the amount of time taken to process the message increases.
Figure 11-8 shows the variation in throughput for different message sizes measured
using the echoDoc test case of WSTest benchmark in which an Invoice document
(based on the UBL invoice schema) with multiple line items was transferred between
the client and the server. The size of the payload was increased by increasing the
number of line items included in the invoice. Throughput is measured in terms of
number of transactions completed within a second where a transaction is defined as
a complete request-response cycle.

As seen in Figure 11-8 the throughput decreases as the message size increases.
This behavior is explained by the larger processing cost at each layer of the Web ser-
vice stack when the payload size increases. Referring to Figure 11-5 at the client, as
the message size is increased, the binding layer needs to process more elements and

ptg6882136

478 Chapter 11 � Web Services Performance

write more data to the underlying network stream. The cost at the transport layer
is higher due to the increased cost of copying and processing larger buffers and the
additional cost of transferring larger amounts of data over the network. At the server,
the cost at the parsing and binding layers is increased due to the larger amount of
characters that need to be scanned and unmarshalled, respectively.

The JVM memory usage is another factor that needs to be taken into account with
increased memory allocation and garbage collection costs. In some extreme cases
with very large payloads, memory shortage may reduce the performance drastically
making the Web service unusable. The “Working with XML Documents” section later
in the chapter provides some best practices on working with very large payloads.

Figure 11-8 Performance variation with message size

T
ra

n
sa

ct
io

n
s/

se
co

n
d

Payload Size (kilobytes)

0
0 200 400 600 800 1000 1200 1400

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Tip

Using smaller sized messages can improve the performance of your Web service.

An important question often asked is about the granularity of the service; single
invocation exchanging a large message versus multiple invocations of smaller mes-
sages. Figure 11-9 shows the variation in throughput normalized with respect to mes-
sage size. Initially the performance improves as the payload size increases until it
reaches a maximum. Further increase in payload size causes a drop in performance.
In this particular test, the best performance was achieved for a payload size of 450
kilobytes. So to transfer a fixed amount of data, it is more efficient to send a few large

ptg6882136

Factors That Affect Web Service Performance 479

messages rather than sending a large number of smaller messages. A setup overhead
is incurred for each service invocation (connection handling, header processing, etc.),
and for small messages, this overhead would be a significant portion of the overall
processing cost, whereas for large messages, data processing cost would dominate,
dwarfing the invocation overhead. Garbage collection overhead also rises for increas-
ing message size thereby reducing the throughput.

Figure 11-9 Variation of normalized throughput with message size

T
h

ro
u

g
h

p
u

t
(k

ilo
b

yt
es

/s
ec

.)

Payload Size (kilobytes)

0 200 400 600 800 1000 1200 1400
10000

15000

20000

25000

30000

35000

40000

Tip

Payload size should be an important Web service design consideration. It is important to
identify the optimum message size for your application.

Web service invocation granularity should be designed around the use of the opti-
mum message size. If possible, small messages should be combined to create a larger
message of the optimum message size allowing a single invocation to replace multiple
requests with smaller payloads. Similarly, a single invocation with a large message
may be split into multiple invocations.

Performance Characteristics of Various Schema Types

Web Service Descriptor Language (WSDL) is used to describe what a Web service
does. It defines an XML grammar to describe the services as collections of communi-
cation endpoints capable of exchanging messages. Within WSDL, the types element

ptg6882136

480 Chapter 11 � Web Services Performance

encloses data type definitions relevant for the exchanged messages. XML schema
definition is used as the default type system. The mapping of XML schema types is
delegated to JAXB within the JAX-WS stack. Table 11-2 shows a partial list of XML
schema to Java type mapping in JAX-WS 2.0.

Web service performance is greatly influenced by the choice of message schema.
Figure 11-10 shows the comparative performance of echoing an array of 100 elements
comprised of a single schema type, and observing the effect of changing the schema
type of this array.

The schema types boolean, short, and int share similar performance and are
the best among all types. Significantly lower to these three types are the float
and double where the difference between the two is small. Note that a marked
distinction in performance exists between the use of schema types xsd:int and
xsd:integer. The cost of marshalling and unmarshalling is the primary reason
for the performance difference between each data type. Of all the numerical types,
decimal is the least efficient.

Table 11-2 XML Schema to Java Type Mapping

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

Xsd:long long

xsd:short short

xsd:float float

xsd:double double

xsd:decimal java.math.BigDecimal

xsd:boolean boolean

xsd:byte byte

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time javax.xml.datatype.XMLGregorianCalendar

xsd:date javax.xml.datatype.XMLGregorianCalendar

xsd:dateTime javax.xml.datatype.XMLGregorianCalendar

ptg6882136

Factors That Affect Web Service Performance 481

All date and time related XML schema types are mapped to a single Java type,
javax.xml.datatype.XMLGregorianCalendar. Even though different schema
types are mapped to the same Java type, the performance of these different types
is not the same. Figure 11-11 shows the performance of three different schema

Figure 11-10 Performance comparison of numeric schema types

boolean int short integer float double decimal

T
h

ro
u

g
h

p
u

t
R

at
io

 (
R

el
at

iv
e

to
 b

o
o

le
an

)

0

0.2

0.4

0.6

0.8

1

1.2

Tip

Use the higher performing data types if these types can meet the application requirements.
For example, use xsd:int or xsd:long instead of xsd:integer if the data values are
within a range that can be represented by the corresponding Java primitive types.

Figure 11-11 Performance comparison of different date/time schema types

xsd:time xsd:date xsd:datetime

T
h

ro
u

g
h

p
u

t
R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

ptg6882136

482 Chapter 11 � Web Services Performance

types—time, date, and dateTime. The use of dateTime is the most expensive,
followed by date. The marshalling/unmarshalling cost and the varying size of the
serialized XML message are the reasons why the performance differs among these
three types. As in the case of numeric types, use the highest performing schema type
that meets the application requirement whenever possible. Use the dateTime only
in cases where both the date and time are required.

The binary data types, base64Binary and hexBinary are covered in more detail
in the section “Processing Binary Payload” later in the chapter. The last schema type
that is discussed in this section is the any type. The mapping of any is dependent on
the processContents attribute. An any element with processContents=”skip”
allows the user to bind any well-formed XML to a DOM Element interface. Table 11-3
shows an example of a schema and the associated mapping.

An any element with processContents=”strict” (this is the default in the
absence of the processContents attribute) means any XML elements placed here
must have corresponding schema definitions. JAXB binds any such element to an
Object, and during unmarshalling, all elements encountered are converted into cor-
responding JAXB objects (including JAXBElements if necessary) and placed in this
field. If the unmarshaller encounters elements that cannot be unmarshalled, DOM
elements are produced instead. The option processContents=”lax” means any
XML elements can be placed here, but if their element names match those defined
in the schema, they have to be valid.

As described previously, any can be used for XML elements whose schema has not
been defined. The JAXB binds such elements to the DOM Element interface that
allows applications to process the XML fragments or documents. However, a penalty
has to be paid for the use of any. Figure 11-12 compares the performance of sending
and receiving a 100 kilobyte UBL invoice document as either a JAXB object mapped
using a schema or a DOM Element mapped using any. In this example, the through-
put for the test using any is about 35% of that using an object defined in the schema.

Table 11.3 Schema and Java Type Mapping of any Type

<xsd:element name=”person”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”name”
type=”xsd:string”/>
 <xsd:any processContents=”skip”
maxOccurs=”unbounded” minOccurs=”0” />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

import org.w3c.dom.Element;
@XmlRootElement
class Person {
 public String getName();
 public void setName(String);

 @XmlAnyElement
 public List<Element> getAny();
}

ptg6882136

Factors That Affect Web Service Performance 483

Figure 11-12 Performance impact of using any schema type

Schema xsd:any

T
h

ro
u

g
h

p
u

t
R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

Tip

Use schema bound elements whenever possible limiting the use of any type to meet specific
requirements.

The complexity of the message schema also plays an important role. Marshalling
and unmarshalling documents consisting of arrays contained within arrays or deeply
nested elements incurs significant processing cost. In summary, to achieve best per-
formance, keep the messages small and simple.

Endpoint Implementation

A JAX-WS based Web service can be implemented as an EJB or a Servlet end-
point. Since a service invocation to either endpoint goes through the same parsing
and binding layers of the JAX-WS stack, you would expect the performance to be
fairly equivalent. However, this is not the case in the implementation of JAX-WS
RI included within GlassFish V2. Invocation of an EJB endpoint entails some addi-
tional costs, which reduces its performance significantly compared to a Servlet end-
point. Figure 11-13 compares the performance between two similar Web services,
one implemented with an EJB endpoint and the other with a Servlet endpoint. The
performance of the EJB endpoint is roughly two-thirds that of the Servlet endpoint.

ptg6882136

484 Chapter 11 � Web Services Performance

The performance difference is due to the additional processing involved in the secu-
rity handlers within the EJB container. This issue is being worked on by the JAX-
WS RI team and may be fixed in a later release.

Figure 11-13 Performance comparison of Servlet and EJB endpoints

Servlet EJB

T
h

ro
u

g
h

p
u

t
R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

Tip

A Web service implemented as a Servlet endpoint performs better than that implemented
as an EJB endpoint in the version of JAX-WS RI bundled in GlassFish V2. The difference in
performance may be eliminated in later releases of JAX-WS.

Handler Performance
Handlers are message interceptors that can be easily plugged into the JAX-WS run-
time to do additional processing of the inbound and outbound messages. JAX-WS
defines two types of handlers, logical handlers and protocol handlers. Protocol han-
dlers are specific to a protocol and may access or change the protocol-specific aspects
of a message. Logical handlers are protocol-agnostic and cannot change any protocol-
specific parts (like headers) of a message. Logical handlers act only on the payload of
the message. Figure 11-14 shows how the logical and message handlers are invoked
during a request and response.

Handlers provide an easy mechanism to access and modify inbound and outbound
messages. They are easy to develop since a basic handler needs to implement just
three methods: handleMessage(), which is called for both inbound and outbound
messages; handleFault(), to handle fault conditions; and close(), which is called
at the end of the message invocation. The handlers can access the message via the
MessageContext interface.

ptg6882136

Factors That Affect Web Service Performance 485

The JAX-WS specification defines a specific protocol handler for the SOAP bind-
ing, javax.xml.ws.handler.soap.SOAPHandler, which receives a SOAPMessage
object. The SOAPMessage is based on DOM, which means that the entire message
is loaded in memory as a DOM tree. In contrast, the JAX-WS RI without handlers
works in a streaming fashion, which provides much better performance.

Logical handlers extend javax.xml.ws.handler.LogicalHandler and access
the message payload through the LogicalMessage interface as either a Source or
a JAXB object. In JAX-WS RI, the payload data is accessed as a DOMSource, which
requires the creation of a DOM representation of the payload. This causes signifi-
cant performance degradation as shown in Figure 11-15. Reading the payload as a
JAXB object causes further degradation in performance due to the added expense of
unmarshalling and marshalling of the object from a DOMSource.

Figure 11-14 Handler mechanism in JAX-WS

Logical
Handlers

Client
JAX-WS

Runtime

Network

SOAP
Handlers

Logical
Handlers

Service
JAX-WS

Runtime

SOAP
Handlers

Figure 11-15 Performance impact of handlers

T
h

ro
u

g
h

p
u

t
R

at
io

0
5 900

0.2

0.4

0.6

0.8

1.2

1

Payload Size (kilobytes)

No handler

SOAPHandler

LogicalHandler

LogicalHandlerJAXB

ptg6882136

486 Chapter 11 � Web Services Performance

In summary, Web service performance is influenced by the size and complexity of
the message as well as the presence of any Handlers. The response time of a Web
service increases as the payload size increases. However, if Web service performance
is measured in terms of transactions per byte of data transferred, the performance
increases as the payload size is increased up to an optimum payload size beyond
which the performance decreases. Different schema types show different perfor-
mance characteristics, and this should be taken into account while designing Web
services. Use the higher performing data types if these types can meet the applica-
tion requirements. Addition of SOAP Handlers degrades the overall performance
significantly, especially for large documents.

Performance Best Practices

Web services participating in complex business processes are expected to service
a variety of operations. In addition to the supporting request-response of simple
messages, they may have to process large XML documents of the order of several
megabytes or process binary data such as images or audio files.

Consider a simple order processing service for example. The client first submits a
purchase order consisting of several line items. The service processes the order, which
could be potentially very large, by iterating over each line item and then sending an
acknowledgment back to the client. At a later time, the client may inquire about the
status of the order (simple request/response messages) to check whether the work
has been completed or invoke a request to get the invoice (potentially very large). The
process is completed with the client submitting a scanned copy of the signed invoice
as an image back to the service. A complete work flow consists of several steps, each
involving a different message exchange model. Certain best practices can be applied
in the design and implementation of the sample purchase order service that would
make it perform significantly better than the simple out-of-the-box implementation.
This section describes some of these best practices.

Processing Binary Payload

XML, being a textual format, requires all elements including binary data to be
represented as characters when embedded in an XML document. Binary data

Tip

The handler mechanism provides an easy way for applications to access inbound and
outbound messages. Addition of Handlers degrades the overall performance significantly.

ptg6882136

Performance Best Practices 487

specified using XML schema type base64Binary and hexBinary is converted
to text using Base64 encoding, which traverses the binary data stream and cre-
ates a textual representation of the data using 64 characters ([a-z]-[A-Z]-[0-9]
+/). The encoded text is roughly about one-third larger in size than the origi-
nal binary data. Transmission of a SOAP document containing binary data thus
entails binary to text encoding at the sender and text to binary decoding at the
receiver. The encoding/decoding costs along with the bloated message size make
transmission of binary data, especially large binary data such as images and audio
files expensive.

The SOAP Message Transmission Optimization Mechanism (MTOM) together
with XML-binary Optimized Packaging (XOP) were proposed to address the inef-
ficiencies encountered in the transmission of binary data in SOAP documents. The
W3C XOP specification describes XOP as follows:

A means of more efficiently serializing XML infosets that have certain types of
content. An XOP package is created by placing a serialization of the XML infoset
inside of an extensible packaging format (such as MIME Multipart/Related). Then
selected portions of its content that are base64-encoded binary data are extracted
and re-encoded (i.e., the data is decoded from base64) and placed into the package.
The locations of those selected portions are marked in the XML with a special
element that links to the packaged data using URIs. In a number of important XOP
applications, binary data need never be encoded in base64 form. If the data to be
included is already available as binary octet stream, then either an application or
other software acting on its behalf can directly copy that data into a XOP package,
at the same time preparing suitable linking elements for use in the root part;
when parsing a XOP package, the binary data can be made available directly to
applications, or, if appropriate, the base64 binary character representation can be
computed from the binary data.

MTOM provides an optimization for exchanging messages between SOAP nodes
using an XOP-based selective encoding. This allows the binary blobs of type base
64Binary or hexBinary to be transmitted as MIME attachments in a way that is
transparent to the application. Since the binary data is an attachment and not part
of the XML payload, base64 encoding of the binary data is not required.

JAX-WS 2.0 supports MTOM for the optimal transmission of binary data as
follows:

� The binary attachment is packaged in a MIME multipart message.
� An <xop:include> element is used to mark where the binary data is.
� The actual binary data is kept in a different MIME part.

The Base64 encoded as well as the MTOM on-the-wire message corresponding to
the following schema appear in the following two examples.

ptg6882136

488 Chapter 11 � Web Services Performance

<xsd:complexType name=”Synthetic”>
 <xsd:sequence>
 <xsd:element name=”barray” type=”xsd:base64Binary” />
 </xsd:sequence>
</xsd:complexType>

If your message contains binary data, you should use MTOM for the optimized
transmission of the payload.

--uuid:e18b7da7-8169-44a0-9465-cd9d2694850d
Content-Id: <rootpart*e18b7da7-8169-44a0-9465-cd9d2694850d@example.jaxws.sun.
com
>
Content-Type: application/xop+xml;charset=utf-8;type=”text/xml”
Content-Transfer-Encoding: binary
<?xml version=”1.0” ?>
 <S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/”>
 <S:Body>
 <echoSynthetic xmlns=”http://www.sun.com/wstest/testcases/test/wsdltypes”>
 <synthetic>
 <barray>
 <Include xmlns=”http://www.w3.org/2004/08/xop/include”
href=”cid:3fa1ce96-
3f3e-4db9-bee8-c04e85b852a4@example.jaxws.sun.com”/>
 </barray>
 </synthetic>
 </echoSynthetic>
 </S:Body>
</S:Envelope>
--uuid:e18b7da7-8169-44a0-9465-cd9d2694850d
Content-Id: <3fa1ce96-3f3e-4db9-bee8-c04e85b852a4@example.jaxws.sun.com>
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

MTOM Message

Content-Type: text/xml;charset=”utf-8”
...
<?xml version=”1.0” ?>
 <S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/”>
 <S:Body>
 <echoSynthetic
xmlns=”http://www.sun.com/wstest/testcases/test/wsdltypes”>
 <synthetic>
 <barray>AAAAAAAAAAAAAA==</barray>
 </synthetic>
 </echoSynthetic>
 </S:Body>
 </S:Envelope>

Base64 Encoded In-line Message

ptg6882136

Performance Best Practices 489

The process for enabling MTOM at the server and client for JAX-WS RI is
described in the following paragraphs. There are multiple ways of enabling MTOM
at the server. Two of them are given in the following list.

� Annotating the Service Endpoint Interface (SEI) with @MTOM as shown in the
following code snippet:

Tip

Use MTOM for the transmission of large binary payloads.

 @javax.xml.ws.SOAP.MTOM
 @javax.xml.ws.WebService
 public class TestServiceImpl implements TestService {
 ...
 }

� Setting the enable-mtom element within the port-component element of the
Web services deployment descriptor (webservices.xml).

 <webservices ..>
 <port-component>
 ...
 <enable-mtom>true</enable-mtom>
 </port-component>
 </webservice>

� At the client side, the MTOM support is automatically enabled if the server
WSDL advertises that it supports MTOM.

� IT can also be enabled programmatically as follows:

 import javax.xml.ws.soap.MTOMFeature;

 TestServicePortType test =
 new TestService().getTestServicePort (new MTOMFeature());

A performance cost is associated with enabling MTOM: the cost of packaging
the message as a MIME package. Does this cost offset the benefits, making it more
expensive to use MTOM over base64 encoding? There is no straightforward answer
since it depends on the size of the payload and the MTOM implementation. The cost

ptg6882136

490 Chapter 11 � Web Services Performance

of base64 encoding/decoding is proportional to the data size and the larger size of
the encoded payload adds to the message transmission cost. Since MTOM does not
do any data processing, the MTOM setup cost is fixed and does not depend on the
size of the binary data. So for small messages, the setup cost associated with MTOM
may be more than transmitting the data as encoded inline text. Experiments have
shown that this limit is around 5–6 kilobytes. This value may vary depending on
the server type, container type, and the MTOM implementation that you use. If you
work with small binary data, for optimum performance, it is a good practice to carry
out experiments in your environment to identify whether MTOM should be enabled.
JAX-WS provides APIs that allow users to set a threshold value above which MTOM
should be enabled. At the server side, this can be achieved through the use of @MTOM
(threshold = <value in bytes>) annotation.

At the client side, the threshold can be specified as an argument to the MTOM
Feature constructor (e.g., getTestServicePort (new MTOMFeature (6000))).
Alternatively, this can also be achieved by setting the MTOM_THRESHOLD_VALUE
property in the RequestContext object as shown in the following code snippet:

TestServicePortType proxy = new TestService().getTestServicePort();
java.util.Map<String, Object> requestContext = ((BindingProvider)proxy).
getRequestContext();
requestContext.put (
com.sun.xml.ws.developer.JAXWSProperties.MTOM_THRESHOLD_VALUE, 6000);

As the size of the attachment becomes sufficiently large, JVM memory limita-
tions and high GC costs become a factor since the entire data needs to be read into
memory. The Metro 1.2 implementation of JAX-WS RI provides memory optimiza-
tions to the attachment handling mechanism that allows the application to process
large payloads (several megabytes in size). If the size of the MIME part is larger
than a predefined value (1 megabyte), during processing, the attachment is written
to a temporary file with only a portion of the data loaded into memory, thus enabling
JAX-WS to reduce the memory usage. However, it should be noted that the lower
memory usage comes with the added overhead of file I/O operations.

The performance of the attachment handing mechanism has been further enhanced
with the introduction of a JAX-WS RI specific data handler, StreamingDataHandler.
The StreamingDataHandler is a specialized data handler that applications can use,
through the use of readOnce() method, to eliminate the file I/O operations men-
tioned previously if the attachments are consumed sequentially. This is usually the
case with a single attachment or when the application consumes the MIME parts in
the same order as they are attached. The StreamingDataHandler thus allows even
large attachments to be processed efficiently as small payloads with reduced memory
usage. Another convenience method within this handler is the moveTo method that
allows the application to move the downloaded attachment to a new location. The

ptg6882136

Performance Best Practices 491

following code snippet shows the use of StreamingDataHandler at the client and
server sides.

At the client, the StreamingAttachmentFeature allows the user to specify a
threshold value below which the attachment is kept in memory without writing to the
file system. It is important to enable HTTP chunking so that the data is sent in chunks
rather than the connection buffering the entire attachment before sending the request.

import javax.xml.ws.soap.MTOMFeature;
import com.sun.xml.ws.developer.StreamingAttachmentFeature;
import com.sun.xml.ws.developer.JAXWSProperties;

public EchoDocPortType initProxy() {
 MTOMFeature feature = new MTOMFeature();
 // Configure such that whole MIME message is parsed eagerly,
 // Attachments under 4MB are kept in memory
 StreamingAttachmentFeature stf =
 new StreamingAttachmentFeature(null, true, 4000000L);
 EchoDocPortType proxy =
 new EchoDocService().getEchoDocPort(feature, stf);
 java.util.Map<String, Object> ctxt =
 ((BindingProvider)proxy).getRequestContext();

 // Enable HTTP chunking mode, otherwise HttpURLConnection buffers
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);
 return proxy;
}

The StreamingDataHandler can be used at the server side to specify that the
attachment below a specified threshold be read as chunks into memory rather than
written to the file system.

import com.sun.xml.ws.developer.StreamingDataHandler;

public void echoDoc (EchoOctetDocAttachIn ecd) {
 DataHandler dh = ecd.getDoc();
 try {
 java.io.InputStream is;
 if (dh instanceof StreamingDataHandler) {
 is = ((StreamingDataHandler)dh).readOnce();
 }
 else {
 is = dh.getInputStream();
 }

 // Process the data using the InputStream
 // Close the stream as well as the data handler.
 is.close();
 dh.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
}

ptg6882136

492 Chapter 11 � Web Services Performance

Working with XML Documents

JAX-WS provides an abstraction layer that allows developers to work with Java
objects without having to deal with the hassle of generating Java objects from XML
representations. Even though the implementation hides the complexities from the
developer, the application has to pay the processing cost of the various layers that
make the binding possible. For most cases, this is the best approach to take, but may
not be the best option if you work with large documents (more than 500 kilobytes).
In such cases, under load, the memory requirements may be so high that the server
is unable to perform efficiently due to the prohibitively high cost of garbage collec-
tion. This section details some of the alternative approaches that can be used when
working with large documents.

Sending XML Document as Attachment Using MTOM

The previous section described the use of MTOM to transmit binary BLOBs. MTOM
can also be used to transmit XML documents. JAX-WS provides a facility that allows
certain MIME types to be mapped to specific Java types, which makes it easier for
applications to send and receive different data types. A schema element of type base64
Binary can be optionally annotated with the attribute xmime:expectedContentTypes
to indicate the Java mapping of the element. The xmime:expectedContentTypes
to Java type mapping supported by JAXB 2.0 is shown in Table 11-4.

Tip

To reduce memory requirements for transferring large attachments, use the JAX-RI specific
StreamingDataHandler.

Table 11.4 Java Type Mapping for Different MIME Types

MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain Java.lang.String

text/xml or application/xml Java.xml.transform.Source

/ Javax.activation.DataHandler

ptg6882136

Performance Best Practices 493

To send XML payloads as attachments, you would specify the element type as
base64Binary with the attribute xmime:expectedContentTypes set to text/
xml, application/xml, or application/octet-stream. Depending on the
MIME type, wsimport maps the data to either a java.xml.transform.Source
or javax.activation.DataHandler. Table 11-5 shows the schema definition
and the associated code necessary to parse the document using a StAX parser.
Note that creation of XMLInputFactory is expensive and should be cached if
possible. Also keep in mind that the default XMLInputFactory implementa-
tion within the JDK is not thread-safe, which necessitates the factory to be
either pooled or stored as a thread local variable to be used in a multithreaded
environment.

The use of a StAX parser reduces the memory requirements as well as elimi-
nates the JAXB unmarshalling cost. The downside of this approach is that the

Table 11.5 Schema Definition and Code Snippet for Attaching an XML Document

<xsd:element name=”echoDocAttachIn”>
 <xsd:complexType>
 <xsd:sequence> <xsd:element
 name=”doc”
 type=”xsd:base64Binary”
 xmime:expectedContentTypes=”t
ext/xml”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

public String echoDocAttach
(EchoDocAttachIn ecd) {
 Source source = ecd.getDoc();
 try {
 XMLInputFactory sFactory =
XMLInputFactory.newInstance();
 XMLStreamReader reader =
sFactory.createXMLStreamReader
(source);
 }
 catch (Exception e) {
 ...
 }
}

//<xsd:element name=”echoDocAttachIn”>
 <xsd:complexType>
 <xsd:sequence> <xsd:element
 name=”doc”
 type=”xsd:base64Binary”
 xmime:expectedContentTypes=”a
pplication/octet-stream”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

public String echoDocAttach
(EchoDocAttachIn ecd) {
 DataHandler dh = ecd.getDoc();
 try {
 XMLInputFactory sFactory =
XMLInputFactory.newInstance();
 XMLStreamReader reader =
sFactory.createXMLStreamReader (dh.
getInputStream());
 }
 catch (Exception e) {
 ...
 }
}

ptg6882136

494 Chapter 11 � Web Services Performance

user will not be able to leverage the binding facilities provided by JAX-WS and
will have to rely on custom XML message processing. One case in which this
approach is effective is when only a small portion of the document is required to
be parsed.

Consider the scenario of a discount calculation Web service that receives an
invoice, extracts the buyer id, looks up the discount percentage for that buyer, and
returns the discount value back to the sender. The application should be able to
deal with very large payloads (invoices may contain a large number of line items),
and only partial processing of the document is required to extract the data of
interest. In the common Java-centric approach, JAX-WS creates an Invoice object
in memory and then invokes the application method, which extracts the buyer id
from the object. In addition to the parsing and binding cost, the memory footprint
of the application is also increased as the entire message has to be read and the
object created in memory. Working directly on the XML message may be a better
choice in this case. By transmitting the payload as an attachment, the server can
access the XML document directly. Figure 11-16 shows the data from a test case
in which the server extracts just one element (located toward the beginning of the
document) from an invoice. As expected, using the attachment mode for partial
processing provides better performance compared to JAX-WS. The performance
difference increases as the payload size increases, since JAX-WS has to parse and
bind larger amounts of data to create the required JAXB object for the bigger
payload.

Figure 11-16 Performance comparison of partial XML processing using attachments

T
h

ro
u

g
h

p
u

t
R

at
io

0
5 900

1

2

3

4

6

5

Payload Size (kilobytes)

jaxws

Attachment (text/xml)

Attachment (applica-
tion)/octet-stream

ptg6882136

Performance Best Practices 495

The practice of sending XML documents as attachments does not have to be
restricted to the use case described previously. It can also be used if using a custom
streaming parser is deemed to be more efficient than using the binding framework
within JAX-WS. Figure 11-17 shows the comparative performance of a client making
a direct Web service invocation versus sending the document as an attachment where
the entire document is traversed using a StAX parser. The tests were conducted for
invoice documents of two different sizes, 5 kilobytes and 900 kilobytes. For small
sized payloads, the performance between all three is comparable, whereas for large
payloads, using attachments is a better performance option.

Figure 11-17 Performance comparison of full XML processing using attachments

T
h

ro
u

g
h

p
u

t
R

at
io

0
5 900

0.2

0.4

0.6

1

0.8

1.2

1.8

1.6

1.4

Payload Size (Kilobytes)

JAX-WS

Attachment (text/xml)

Attachment (applica-
tion)/octet-stream

Tip

In cases where it is more efficient to work directly with XML payload, sending XML documents
as attachments is a good alternative. To send XML documents as attachments, set the element
type to base64Binary with the attribute xmime:expectedContentTypes specified as
application/octet-stream.

Using the Provider Interface

JAX-WS provides another way to work at the XML message level through the use
of javax.xml.ws.Provider interface. The Provider is a low level generic API that
allows services to work with messages or payloads. The service instance’s invoke()
method is called for each message received for the service. The Provider instance
can be configured to either receive the entire protocol message or just the mes-
sage payload. The configuration is achieved through the use of ServiceMode

ptg6882136

496 Chapter 11 � Web Services Performance

annotation of the Provider instance. @ServiceMode(value=MESSAGE) can be used
to indicate that the instance wants to receive and send the entire protocol message.
@ServiceMode(value=PAYLOAD) indicates that the provider instance is interested
in the message payload only. For the SOAP binding, MESSAGE mode allows the pro-
vider to get access to the entire SOAP message, whereas the PAYLOAD mode provides
access to the contents of the SOAP Body. The following code sample shows a sample
Web service that processes the message payload as a source.

import javax.xml.ws.Provider;
import javax.xml.transform.Source;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class InvoiceProcessService implements Provider<Source> {
 //Cache factory when appropriate
 private XMLInputFactory sFactory = XMLInputFactory.newInstance();
 public InvoiceProcessService() {}
 public Source invoke (Source request) {
 // Obtain a StAX Reader from the source
 try {
 XMLStreamReader reader =
 staxFactory.createXMLStreamReader(request);
 }
 catch (XMLStreamException ex) {
 return processError();
 }
 return processPayload (reader);
 }
}

On arrival of a message, the invoke() method of the InvoiceProcessorService
is called. Since we have specified the ServiceMode to be PAYLOAD, the SOAP Body
is passed to the method (the entire SOAP message is delivered in the case of MES-
SAGE). Once the payload is available as a Source, it can then be parsed using any
XML parser as described in the previous section.

In addition to the Source based provider, JAX-WS also defines a SOAPMessage based
provider where the message is delivered to the application as a SOAPMessage (which is
based on DOM). This provider only supports the MESSAGE ServiceMode, and the SOAP
body can be retrieved using the getSOAPBody() method.

Additionally, the JAX-WS RI provides an implementation specific Message based
provider. The Message object is an optimized structure that allows efficient access
to the message stream. As in the case of the SOAPMessage provider, this one works
only with the MESSAGE ServiceMode. Applications can access the envelope or
the payload through a variety of methods including readEnvelopeAsSource(),

ptg6882136

Performance Best Practices 497

readAsSOAPMessage(), readPayload(), readPayloadAsJAXB(), and readPay-
loadAsSource(). It is important to note that the Message object allows reading
of the data only once. So if multiple passes of the stream are required, a copy of the
message has to be created (using message.copy()). The Message based provider
is implemented as follows.

import import com.sun.xml.ws.api.message.Message;

public class CustomMessageProvider implements Provider<Message> {
 ..
 public Message invoke(Message message) {..}
}

By default, providers support the SOAPBinding but can be configured to support
HTTP binding instead, using the @BindingTypeAnnotation as follows:

@WebServiceProvider()
@ServiceMode(value=Service.Mode.PAYLOAD)
@BindingType (value=HTTPBinding.HTTP_BINDING)
public class SourceProviderDocService implements Provider<Source> { .. }

The combination of the ServiceMode=PAYLOAD and BindingType=HTTP_Bind-
ing allows the provider to receive XML messages sent over HTTP as opposed to the
SOAP messages expected by providers in the default mode.

Since providers allow applications to access the XML payload directly, the fol-
lowing questions are worth asking: Is it possible to achieve better performance by
writing custom providers rather than using JAX-WS? Is it more efficient to use
XML/HTTP rather than using SOAP? The answer depends on how the application
processes the incoming message. If only a small portion of the document is parsed
as described in the previous section, using custom providers may give better perfor-
mance than using JAX-WS. However, in the majority of the cases, use of a custom
provider results in the application performing poorer than using JAX-WS.

Figure 11-18 compares JAX-WS performance to different types of providers:
SourceSOAP is a Source based provider with SOAP binding and ServiceMode
set to PAYLOAD, SourceHTTP is a Source based provider with ServiceMode set
to PAYLOAD and BindingType set to HTTPBinding, SOAPMessage is a SOAP
Message based provider, and Message is a Message based provider. The perfor-
mance results were based on an echoMessage test in which the service receives
an invoice document that is bound to a JAXB object and the same object is echoed
back to client. In the case of SOAPMessage provider, the application uses the
SOAPMessage directly without creating a JAXB object. The poor performance of
the SOAPMessage provider is to be expected since the provider needs to convert

ptg6882136

498 Chapter 11 � Web Services Performance

the payload to the DOM based SOAPMessage. However, the extremely poor per-
formance of Source based provider is surprising. The main reasons for this are
the inefficiencies involved in the interaction between the codec, the parser, and the
binding layers. The JAX-WS stack, built on top of a Message based provider has
several optimizations including the use of proprietary internal APIs for its interac-
tion between the different layers, the sharing of symbol table information between
StAX and JAXB, and the efficient marshalling of the JAXB objects directly into
the output stream. The providers on the other hand have to use a standards based
layered approach that substantially increases the overall message processing cost.
The results shown here are based on a fairly complex schema. The performance
degradation for simpler and smaller documents may be smaller than what is shown
here.

Figure 11-18 also compares the performance of providers that handle SOAP versus
Plain Old XML (POX), SourceSOAP versus SourceHTTP. The data shows that there
is no difference in performance between the two message types (for SOAP messages
without any additional headers). Additional performance cost may be incurred for
SOAP messages that incorporate header information that requires extra process-
ing (e.g., WS-Security headers for message encryption and/or digital signature). As
mentioned earlier, the cost of processing the SOAP envelope is significantly less
than that of other components and hence using POX does not provide any tangible
performance benefits.

Figure 11-18 Performance impact of using providers

T
h

ro
u

g
h

p
u

t
R

at
io

0
5 900

0.2

0.4

0.6

0.8

1.2

1

Payload Size (kilobytes)

JAX-WS

SourceSOAP

SourceHTTP

SOAPMessage

Message

ptg6882136

Performance Best Practices 499

Fast Infoset

The SOAP 1.2 specification defines a SOAP message as an XML Information Set
(XML Infoset). While XML 1.0 is the most commonly used serialization, a variety
of other binary encodings can be used for improved performance. MTOM and XOP
can be used for optimized binary encodings of XML content within SOAP 1.2 pay-
loads as described in the sections “Processing Binary Payloads” and “Sending XML
Document as Attachment Using MTOM” earlier in the chapter. These specifications
enable encoding of XML content as MIME body parts and encapsulation of those
parts within SOAP 1.2 envelopes.

JAX-WS RI also supports binary encoding based on the Fast Infoset technology.
The Fast Infoset specification (ITU-T Rec. X.891 | ISO/IEC 24824-1) defines a rep-
resentation of an instance of the W3C XML Information Set using binary encod-
ings. These binary encodings are specified using the ASN.1 notation and the ASN.1
Encoding Control Notation (ECN). In simple terms, this means that FI can be used
to encode XML documents in a binary format. Fast Infoset documents are usually
faster to serialize and parse and are smaller in size than the equivalent XML docu-
ments. Thus, Fast Infoset documents may be used whenever the size and processing
time of XML documents is an issue. The Java platform bundles Fast Infoset parsers
and serializers that support SAX, StAX, and the DOM APIs.

Fast Infoset uses tables and indexes to compress many of the strings present
in the XML infoset. Recurring strings may be replaced with an index (an integer
value) that points to a string in a table. A serializer adds the first occurrence of a
common string to the string table, and then, on the next occurrence of that string,
refers to it using an index into the table. This compression results in Fast Infoset
documents being smaller in size compared to the equivalent XML documents. The
size of Fast Infoset documents is related to the number of repeating information in
the XML document. Small XML documents tend to have less amount of repeating
information and hence the size of the Fast Infoset document will only be slightly
smaller than the XML document. Larger XML documents may result in better size
reduction because there is more chance of repeating information (for example, a
large invoice document may have several line items). Our experiments showed a
wide variation in size reduction depending on the size and type of XML document.
For large invoice documents, the Fast Infoset document size was about 20% of the
XML document size.

JAX-WS RI supports the Fast Infoset technology that improves Web services per-
formance. At the service endpoint, Fast Infoset processors are initiated for content
types declared as application/fastinfoset, and no application level modifi-
cations are necessary to harness the performance benefits of using Fast Infoset
payloads. However, clients need to be configured to use Fast Infoset by setting the
following system property to one of the values shown in Table 11-6.

ptg6882136

500 Chapter 11 � Web Services Performance

Setting the property to pessimistic allows the client to auto-negotiate with the
server and use it only if the server supports Fast Infoset. The client sends the first
request as XML with application/fastinfoset defined as one of the accepted
types. The server responds with a binary message for clients that accept Fast Infoset
or an XML message for others. Once the handshake is completed, the negotiated
mode is used for all further communications between the client and the server. By
default, the content negotiation attribute is set to pessimistic.

Since Fast Infoset parser and serializer are faster than their XML counterparts,
the overall performance of the Web service is improved with the use of Fast Infoset.
Figure 11-19 shows the performance of echoing invoice documents of various sizes with
and without using Fast Infoset. A throughput ratio greater than one indicates that the
performance of the Fast Infoset based Web service is better than the one not using Fast
Infoset. Enabling Fast Infoset increases the throughput by about 60% for the small
document, and the performance benefits increase as the size of the payload increases.

Table 11.6 Fast Infoset Client Content Negotiation Properties

System Property Comments

com.sun.xml.ws.client.
ContentNegotiation=none

Disables Fast Infoset

com.sun.xml.ws.client.
ContentNegotiation=optimistic

Enables Fast Infoset

com.sun.xml.ws.client.Content
Negotiation=pessimistic

Client negotiates with server (see details
below)

Figure 11-19 Performance improvements with Fast Infoset

T
h

ro
u

g
h

p
u

t
R

at
io

 (
F

I/X
M

L
)

XML Payload Size (kilobytes)

0
0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ptg6882136

Performance Best Practices 501

There are limitations to how much performance improvement Fast Infoset can
provide, since it improves the performance of only the parsing layer, which is just
one part of the overall Web service processing. The performance improvements may
be smaller for documents with limited repeating elements as well as for documents
that have much higher binding cost compared to the parsing expense (e.g., documents
based on complex nested schemas).

The major limitation of Fast Infoset is the lack of interoperability with other ser-
vices since it is not a widely implemented standard. However, in intranet applications
where interoperability with other systems is not a consideration, the performance of
the service can be improved by using Fast Infoset.

Tip

Using Fast Infoset improves Web services performance. Since Fast Infoset documents are
smaller in size compared to XML documents, Fast Infoset based Web services are ideally suited
for devices with low network bandwidth. Enabling the auto-negotiation feature allows the
service to communicate with both Fast Infoset and non-Fast Infoset based clients.

HTTP Compression

Web services that use HTTP binding can use data compression at the transport
level to decrease the size of the transmitted data. HTTP compression reduces the
size of the payload, which results in smaller data transmission costs. However, use
of compression increases the CPU load on both the client and the server. Compres-
sion is useful for clients with limited network bandwidth. JAX-WS clients use HTTP
compression by setting up appropriate HTTP headers using the RequestContext
object available through the BindingProxy.

A client can inform the server that it is capable of receiving compressed messages
by setting the Accept-Encoding header as follows. This does not cause any side
effects even if the server does not support compression, in which case the server
responds with uncompressed data.

Map<String, List<String> httpHeaders = new HashMap<String,
List<String>>();
httpHeaders.put(”Accept-Encoding”, Collections.singletonList(”gzip”));
Map<String, Object> reqContext =
((bindingProvider)proxy).getRequestContext(); requestContext.
put(MessageContext.HTTP_REQUEST_HEADERS, httpHeaders);

The client can send and receive compressed data if it is known that the server
supports compression (GlassFish supports it) by setting up the additional header,
Content-Encoding.

ptg6882136

502 Chapter 11 � Web Services Performance

Web Service Client Performance

The clients access the Web service using the client proxy. Client applications can
either create a new proxy for each request or create a single proxy and reuse it for
subsequent requests. The creation of the service and getting the Port steps involved
in setting up the proxy are expensive operations including the access of remotely
deployed WSDL, so it is important to reuse an existing proxy for optimal perfor-
mance. For the most part, the proxy within JAX-WS RI is thread-safe and can be used
concurrently from multiple threads. However, it should be noted that the Request
Context object within the proxy is shared among the different threads. So the only
limitation in reusing proxies is if the RequestContext object needs to be modified
in a thread specific manner.

Map<String, List<String> httpHeaders = new HashMap<String,
List<String>>();
httpHeaders.put(”Content-Encoding”, Collections.singletonList (”gzip”));
httpHeaders.put(”Accept-Encoding”, Collections.singletonList (”gzip”));
Map<String, Object> reqContext =
((bindingProvider)proxy).getRequestContext(); requestContext.
put(MessageContext.HTTP_REQUEST_HEADERS, httpHeaders);

Tip

It is a good performance practice to create the client proxy once and reuse it for subsequent
requests.

As mentioned earlier, creation of the client proxy involves the access of WSDL/
Schema documents deployed on a remote server. For performance reasons, it may
sometimes be preferable to eliminate this network access and use a local copy of the
artifacts bundled with the application. As in the case of XML Entity resolvers, using
an XML Catalog is the best way to achieve this. A sample Catalog file, jax-ws-catalog.
xml file follows.

<catalog xmlns=”rn:oasis:names:tc:entity:xmlns:xml:catalog” prefix=”system>
 <system systemId=”http://javaperf.sun.com/wstest?wsdl”
uri=”DocumentService.wsdl”/>
</catalog>

The JAX-WS runtime locates the catalog files as follows:

� Servlet based endpoints or JSR 109 based Web module. WEB-INF/
jax-ws-catalog.xml

ptg6882136

Bibliography 503

� JSR 109 based EJB modules. META-INF/jax-ws-catalog.xml
� Client. META-INF/jax-ws-catalog.xml picked up from the classpath

When working with large payloads, performance can be improved by enabling
HTTP chunking at the client. HTTP chunking allows the connection to send the
data in chunks thus avoiding the need to buffer the entire message in memory. The
“Sending XML Document as Attachment Using MTOM” section earlier in the chapter
details how to enable HTTP chunking at the client.

Bibliography

Litani, Elena, and Michael Glavassevich. “Improve performance in your XML appli-
cations, Part 1.” http://www.ibm.com/developerworks/xml/library/x-perfap1.html.

JAXB Architecture. http://download.oracle.com/docs/cd/E17802_01/webservices/web-
services/docs/1.5/tutorial/doc/JAXBWorks2.html.

Sandoz, Paul, Alessando Triglia, and Santiago Pericas-Geertsen. “FastInfoset.” http://
java.sun.com/developer/technicalArticles/xml/fastinfoset/.

“Java Web Services Performance Analysis and Benefits of Fast Infoset.” http://java.
sun.com/performance/reference/whitepapers/Java_FastInfoset.pdf.

“XML Processing Performance in Java and .NET.” http://java.sun.com/performance/
reference/whitepapers/XML_Test-1_0.pdf.

Mundlapudi, Bharath. “Implementing High Performance Web Services Using JAX-WS
2.0.” http://www.oracle.com/technetwork/articles/javase/high-performance-142343.
html.

http://www.ibm.com/developerworks/xml/library/x-perfap1.html
http://www.oracle.com/technetwork/articles/javase/high-performance-142343.html
http://www.oracle.com/technetwork/articles/javase/high-performance-142343.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.5/tutorial/doc/JAXBWorks2.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.5/tutorial/doc/JAXBWorks2.html
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://java.sun.com/performance/reference/whitepapers/Java_FastInfoset.pdf
http://java.sun.com/performance/reference/whitepapers/Java_FastInfoset.pdf
http://java.sun.com/performance/reference/whitepapers/XML_Test-1_0.pdf
http://java.sun.com/performance/reference/whitepapers/XML_Test-1_0.pdf

ptg6882136

This page intentionally left blank

ptg6882136

505

12
Java Persistence and
Enterprise Java Beans
Performance

Enterprise Java Beans (EJB) is a component-based architecture for large scale,
distributed, transaction-oriented enterprise applications. Enterprise beans are the
server side components in this architecture that run within an EJB container of
the application server. Some of the salient characteristics of the enterprise bean
instances are they are created and managed at runtime by the EJB container, can
be customized at deployment time, are portable across EJB compliant containers,
can make use of container provided services such as security and transactions, which
can be specified separately from the business logic, and their access is mediated by
the container.

The EJB container provides certain fundamental and commonly used services
needed by enterprise applications such as bean life cycle management, transaction
management, security, object persistence, and messaging. These services enable a
developer to quickly build and deploy enterprise beans. The services are exposed by
the runtime through standard hooks defined in the EJB specification, and any enter-
prise bean that makes use of the services exposed in this manner is portable across
containers that are EJB specification compliant. EJB containers may also provide
additional services with vendor-specific extensions. The vendor-specific extensions
are not portable across different containers, and hence it is a good programming
practice to limit their use.

The EJB specification defines three kinds of components: session beans, message
driven beans, and persistent entities. (Note: The JPA specification is a separate speci-
fication referenced in the EJB 3.0 specification.) Session beans usually implement the
core business logic of an enterprise application and represent the interactive session

ptg6882136

506 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

between a client and a server. Even though session bean implementations are shared
between clients, at any point session beans can represent only one client. There are
two kinds of session beans: stateless session beans and stateful session beans. State-
less session beans provide synchronous stateless services and optionally can also
implement a Web services endpoint. Stateful session beans provide synchronous
stateful services and in addition also maintain conversational state between client
invocations. Persistent entities embody the persistent state of business objects and
through object-relational mapping in annotations or in deployment descriptors map to
relational databases. Clients usually interact with persistent entities through session
beans. Message driven beans provide asynchronous stateless services and are driven
by the arrival of messages and expose no client interfaces. In the following discus-
sions, references to client interfaces implicitly apply only to entity and session beans.

As of the writing of this book, the EJB specification is in its third version, and the
programming model has changed significantly between EJB 2.1 and EJB 3.0. Access
to session beans has been simplified considerably in EJB 3.0; enterprise bean attri-
butes along with their interactions with the container can be customized through
annotations in addition to deployment descriptors. Arcane interfaces for using persis-
tent entities have been removed, creating a simplified Plain Old Java Object (POJO)
based persistence model. The performance aspects of two programming models are
discussed separately in the following sections. In spite of all the changes in the EJB
specification, remember that the changes are essentially in the access and use of
these enterprise components; under the covers enterprise beans still essentially work
to provide the same services as before. A choice between the two different EJB ver-
sions should be based on a preference for a programming model and not performance.
However, with a much simplified programming model in EJB 3.0, it would seem more
pragmatic to choose EJB 3.X over EJB 2.1. The examples in this book have been
written for EJB 2.1/EJB 3.0 running on GlassFish Server Open Source Edition V2.1
(also referred to as GlassFish hereafter). The performance characteristics of EJB 3.1
included with the JavaEE 6 specification is similar to that of EJB 3.0 described here.

EJB Programming Model

An EJB 2.1 component has a Home interface, a Business interface, and a bean imple-
mentation. This is true for both session and entity beans, whereas message driven
beans have only the bean implementation. A Home interface is used by a client to create
an instance of a bean implementation. The Business interface represents the avail-
able business methods in the bean implementation. When a client creates an instance
of a bean using the Home interface, it is returned an instance of the Business interface
by the EJB container. The client then invokes the business method on this implementa-
tion of the Business interface.

ptg6882136

The Java Persistence API and Its Reference Implementation 507

The Enterprise JavaBeans 3.0 specification is a revision of the Enterprise Java-
Beans 2.1 specification. The EJB 3.0 specification simplifies the EJB 2.1 program-
ming model by

� Using metadata annotations to reduce the amount of code needed to interact
with container services and eliminate the need for deployment descriptors

� Following a “configuration by exception” approach, by specifying programmatic
defaults for the most common scenarios

� Eliminating the need for EJB component interfaces and reducing the need for
checked exceptions

� Simplifying entity persistence by using a Plain Old Java Object (POJO) model (dis-
cussed in more detail in the “Best Practices from EJB 2.1” section of the chapter)

The Java Persistence API and Its Reference Implementation

The Java Persistence API (JPA) specification defines object/relational database map-
ping for applications using a Java domain model to interact with relational data-
bases. The JPA specification is a simplification over the EJB 2.1 persistent entity
programming model. It does so through the elimination of required interfaces for
entities and also by following the “configuration by exception” model through the
extensive use of programmatic defaults.

The JPA 1.0 specification defines certain important concepts in the following man-
ner. It defines an Entity, as a lightweight persistent domain object. The entity is the
primary programming artifact in the JPA programming model. An EntityManager
instance is used to manage the life cycle of entities within a persistence context. A
persistence context is essentially a set of persistent entities being managed by an
entity manager instance, such that given an entity identity, there’s only one instance
of the entity in the persistent context. The persistent context in the JPA implementa-
tion is conceptually similar to a level one (L1) cache.

A cache keeps in memory copies of entities stored in the database to expedite
entity access. A persistent context (L1 cache) is an integral part of the JPA specifica-
tion. A persistent context can be transactional or extended. A transactional persistent
context’s lifetime spans the life cycle of a transaction, whereas an extended persistent
context’s lifetime may span multiple transactions.

Starting with GlassFish V3, EclipseLink (http://www.eclipse.org/eclipselink/
jpa.php) is the Reference Implementation of the JPA 2.0 specification. Although
ToplinkEssentials is the Reference Implementation of JPA 1.0 in previous versions
of GlassFish, starting with GlassFish V2.1 EclipseLink can be used in a seamless
manner. EclipseLink is the JPA implementation discussed in the following section.

http://www.eclipse.org/eclipselink/jpa.php
http://www.eclipse.org/eclipselink/jpa.php

ptg6882136

508 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Level Two Cache

While the JPA 1.0 specification does not require an implementation to provide a sec-
ond level cache (L2 cache), most JPA implementations, including EclipseLink, provide
one. In EclipseLink the L2 cache is referred to as the session cache. A single instance
deployment of an enterprise application usually has one L1 cache per client session
and one L2 cache shared across client sessions on the same JVM. Each client session
works with its own persistent context when executing a business operation and at
the time transaction commit changes made to entities are committed to the database
and written to the shared L2 cache. Figure 12-1 shows the interaction between the
persistence context and the session cache.

The size of the L2 cache can affect the performance of an application. While an
L2 cache can significantly improve access to entities because it stores in memory
copies of objects retrieved from the database, it can also lead to a large number of
in-memory objects in a heavily used application. This in turn can force the JVM to do
frequent garbage collections to reclaim unused memory, leading to large pause times
and severely degrading the application performance, negating any performance boost
from using caches. On the other hand an underallocated cache may result in objects
being evicted from the cache more often and leading to more trips to the database,
providing little or no benefit from caching. Thus it is important to understand how
to configure the L2 cache for a JPA implementation.

Figure 12-1 JPA session cache

session
cache

commit
or merge

transaction

registers
objects
with
persistent
context

read from
database

write to
database

database

EclipseLink Session

persistent
context

ptg6882136

The Java Persistence API and Its Reference Implementation 509

Configuring the cache correctly is an iterative process requiring a preliminary
configuration, followed by one or more cycles of monitoring of cache hits and misses,
and tweaking the configuration. Monitoring of JPA caches is discussed in the moni-
toring EclipseLink Session Cache section later in the chapter.

The following discussion covers the object cache in EclipseLink. This object cache
is not to be confused with the JPS QL results cache, which is used for storing JPA
QL query results. The query results cache is discussed in a later section.

EclipseLink provides options for the kind of cache to use and also to set the size
of the cache. The cache is implemented using a HashMap and inherently satisfies
the requirement of object identity (only one object per entity identity). The options
available for cache type and examples for setting those options in the persistence.
xml using EclipseLink’s JPA extensions are given in the following list.

� Full Identity Map. Objects are never evicted from the cache unless they are
deleted. This should be used only for applications that use a small number of
persistent objects and have a large amount of memory allocated.

<properties>
 <property name=”eclipselink.cache.type.default” value=”Full”/>
</properties>

� Weak Identity Map. Objects are held in Weak References, which allows the
JVM to garbage collect them when there are no other references from the appli-
cation. This may not provide reliable caching across transactions, but provides
a more efficient use of memory than the Full Identity Map option.

<properties>
 <property name=”eclipselink.cache.type.default” value=”Weak”/>
</properties>

� Soft Identity Map. Objects are held in Soft References, which allows the
JVM to garbage collect them when memory is low. This provides all the benefits
of the Weak Identity Map and in addition the JVM will garbage collect objects
from the cache when the memory is low.

<properties>
 <property name=”eclipselink.cache.type.default” value=”Soft”/>
</properties>

ptg6882136

510 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

� Soft Cache Weak Identity Map. Similar to the Weak Identity Map, but
additionally this option maintains a most frequently used subcache in addition
to the Identity Map cache. In this option, the subcache is a linked list of Soft
References, and objects will be released when the JVM determines it is low on
memory. The size of the subcache is fixed and equal to the size of the Identity
Map cache initially. The Identity Map starts at the specified size and may grow
based on application usage until the objects in the Identity Map are garbage col-
lected. When the identity map is garbage collected, the application still benefits
from caching as the objects in the fixed-size most frequently used subcache will
be available until the JVM’s free memory becomes low.

<properties>
 <property name="eclipselink.cache.type.default"
 value="SoftWeak"/>
</properties>

� Hard Cache Weak Identity Map. Similar to the Weak Identity Map, but
additionally, this option maintains a most frequently used subcache, which is a
linked list with hard references. This is essentially similar to Soft Cache Weak
Identity, but since some JVM implementations do not differentiate between
weak and soft references, leading to the subcache being garbage collected with
each GC, this option guarantees that the subcache exists and that the applica-
tion benefits from caching.

Tip

It is recommended to set the size of the cache to be at least as large as the number of
objects of the same type used in a transaction.

<properties>
 <property name="eclipselink.cache.type.default"
 value="HardWeak"/>
</properties>

� No Identity Map. This option does not provide object caching or preserve
identity. This is not a recommended option and is mentioned here only for com-
pleteness. If for any reason you do not want to use caching, use isolated caches
in EclipseLink.

ptg6882136

Monitoring and Tuning the EJB Container 511

The default cache type in EclipseLink is Soft Cache Weak Identity Map with a
subcache size equal to the size specified for the Identity Map. The default size of the
Weak Identity Map cache is 100. The default size can be overridden and specified
explicitly. For example, the Weak Identity Map cache size can be explicitly set to
a size of 1500. This implies that the last 1500 objects accessed by the application
are stored in the subcache and the rest are in the IdentityMap until garbage is col-
lected by the JVM. Explicit sizing of the cache size is configured with the following
EclipseLink property in the persistence.xml file:

<properties>
 <property name=”eclipselink.cache.type.default” value=”None”/>
</properties>

 <properties>
 <property name="eclipselink.cache.size.default " value="1500"/>
 </properties>

Recall previously that the default value is 100. This cache size additionally sets
the overall cache size for all entities managed in the persistence unit. EclipseLink
also provides the option for setting the cache size for individual entities. This allows
for a more fine-grained control on the cache size.

<properties>
 <property name="eclipselink.cache.size.Order" value="1000"/>
 </properties>

Monitoring and Tuning the EJB Container

Chapter 9, “Benchmarking Multitiered Applications,” discussed how the various con-
tainers within an application server can be monitored to identify potential performance
bottlenecks and use the observed values to tune the container for optimal performance.
By tuning the containers appropriately, we hope to maximize the use of the resources.
This section discusses the important parameters to monitor within the EJB container.
The examples are based on the GlassFish application server, but the general principles
should apply to other application servers as well. Refer to the “GlassFish Monitoring”
section in Chapter 9 for how to enable monitoring of the different containers in Glass-
Fish. Setting the monitoring level of the EJB container to HIGH can cause significant
performance degradation (as much as 20% in our experiments). It is recommended
that this level be used for debugging purposes and not on production systems. The
examples in this section are based on the GlassFish V2.1 server, not on GlassFish V3.

ptg6882136

512 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Thread Pool

The thread pool used to process the business logic of an EJB instance depends on the
invocation pattern. In the case of a local bean (for all bean types—stateless, stateful,
or entity), the processing is executed on the thread that invokes the bean’s method.
Consider the example of a Web application, in which a servlet invokes a local bean’s
business method. The execution of the method including any database interaction
is carried out on one of the HTTP processing threads. In this case, for optimal per-
formance, the HTTP worker thread pool needs to be monitored and tuned. Refer to
the “HTTP Listener” section of Chapter 10, “Web Application Performance,” for more
information regarding this.

Remote EJB invocations on the other hand, are handled by a different thread pool
(ORB thread pool). On the arrival of a new request, one of the available threads in
this pool is selected to process the request including database interactions if any,
and commit the response to the client. The same thread pool is used for processing
of the message driven beans, which are activated on the arrival of JMS messages. It
is important to monitor and tune the ORB thread pool to achieve optimal application
performance.

By default, the minimum threads in the ORB thread pool, specified by the attribute
min-thread-pool-size, is set to zero, and the maximum threads (max-thread-
pool-size) is set to 200. These values may need to be tuned depending on the
application. Table 12-1 provides some general guidelines on setting up these values.

For GlassFish, these values can be inspected and changed using the Administra-
tion Console, or using the asadmin CLI.

Table 12-1 Initial Thread Pool Settings

Attribute Initial Value

Minimum Pool Size Number of hardware threads or virtual processors

Maximum Pool Size 2X Number of hardware threads or virtual processors

asadmin get "server.thread-pools.thread-pool.thread-pool-1.*"
server.thread-pools.thread-pool.thread-pool-1.max-thread-pool-size = 8
server.thread-pools.thread-pool.thread-pool-1.min-thread-pool-size = 4

The minimum and maximum values can be changed using the asadmin set com-
mand. In most cases, these values need to be further tuned based on the characteristics
of the application. Since database interactions are typical in EJBs, some of the threads
may be waiting for the I/O operation to complete, thereby freeing up CPU resources
for the processing of other requests. Monitoring of the runtime pool statistics allows
for the determination of whether the size of the pool needs to be modified. The two

ptg6882136

Monitoring and Tuning the EJB Container 513

important attributes to monitor are the numberofavailablethreads-count and
numberofworkitemsinqueue-current as shown in the following example:

asadmin get -m "server.thread-pools.orb\.threadpool\.thread-pool-
1.numberofavailablethreads-count" "server.thread-
pools.orb\.threadpool\.thread-pool-1.numberofworkitemsinqueue-current"
server.thread-pools.orb\.threadpool\.thread-pool-
1.numberofavailablethreads-count = 0
server.thread-pools.orb\.threadpool\.thread-pool-
1.numberofworkitemsinqueue-current = 6

Table 12-2 shows a description of the attributes of interest along with some tun-
ing hints.

Table 12-2 Attributes to Monitor for Tuning Thread Pools

Attribute Description Tuning Hints

numberofavailablethreads-
count

Number of threads
available for request
processing

If this value is consistently zero, it
signifies that there is enough load on
the system to keep the thread pool
fully utilized.

numberofworkitemsinqueue-
current

Number of requests
waiting to be
processed

A consistently high value indicates
either a heavily loaded system or
improper thread pool tuning. No
tuning is necessary if the system
can fully utilize the CPU resources.
Increase the maximum pool size if
CPU resources are available and there
are no available processing threads.

Tip

Tuning the thread pool appropriately is essential for obtaining maximum performance. A
good starting value for max-thread-pool-size is twice the number of cores (the number
of virtual processors for SPARC T-series CPUs). Monitor the numberofavailablethreads-
count value to verify the efficacy of the setting and make further changes as required.

GlassFish supports request partitioning through the use of dedicated thread pools
for the processing of EJBs. Say that an application has two stateless session beans,
one whose business methods are lightweight and are completed in a short time. The
second one handles heavyweight transactions and take several seconds to complete.
In the default case, both invocations are handled by a single thread pool. Under
heavy load, a lightweight method invocation may be queued until a thread becomes

ptg6882136

514 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

available to process the request, which leads to a large response time for that invoca-
tion. The solution to this problem is to provide request partitioning in the container
that allows beans to associate a particular thread pool for its processing. In our
example, the user would create a separate thread pool for handling the lightweight
bean and use the default thread pool for the other EJBs. The sample descriptor snip-
pet shows how to associate a bean with a thread pool in the sun-ejb-jar.xml.

<ejb>
 <ejb-name>SimpleBean</ejb-name>
 <jndi-name>ejb/SimpleBean</jndi-name>
 <use-thread-pool-id>session-pool-1</use-thread-pool-id>
 <bean-cache>
 <max-cache-size>1000</max-cache-size>
 <resize-quantity>512</resize-quantity>
 <cache-idle-timeout-in-seconds>7200</cache-idle-timeout-in-seconds>
 <victim-selection-policy>nru</victim-selection-policy>
 </bean-cache>
</ejb>

As mentioned earlier, the default thread pool is also used for processing message
driven beans. So thread pool partitioning is useful in allocating separate pools for
the processing of remote EJBs and message driven beans.

Tip

Thread pool partitioning is an effective way to dedicate resources to handle requests of
varying processing costs.

Bean Pools and Caches

The “EJB Programming Model” section discussed the various events associated with
the creation and maintenance of different beans. The EJB container uses a vari-
ety of pools and caches to improve the performance of the server. The type of pools
and caches used depends on the type of EJBs—stateless session, stateful session,
entity, or MDB. It is important to make a distinction between the bean instances that
are pooled and/or cached versus the bean references that the client obtains though
resource injection, EJBHome.create, or JNDI (Java Naming and Directory Interface)
lookup. All client interactions utilize a bean reference; the container intercepts the
method calls, retrieves the appropriate bean instance from the pool and/or cache,
executes the necessary business logic, and returns them to the pool (at the end of
business method or at transaction commit/rollback). This section describes how the
pools and caches can be tuned for optimal performance.

ptg6882136

Monitoring and Tuning the EJB Container 515

Bean Pools

There are multiple ways to configure the bean pool properties. The properties can be
set at the EJB container level such that it applies to all deployed EJBs. The following
asadmin command lists the different EJB container properties.

asadmin get server.ejb-container.*

Individual properties can then be modified using the asadmin set command.
EJBs within an application can choose to override the default behavior by specify-

ing it in the sun-ejb-jar.xml deployment descriptor where EJB configurations can be
specified individually. In this section, we describe the individual EJB configuration
approach since it provides finer grain control over the cache settings.

Bean pools are used by stateless session, entity, and message driven beans. In
the case of stateless session beans, on bean invocation, an instance of the bean is
retrieved from the pool and used for executing the business method. At the comple-
tion of the method invocation, the bean is returned to the pool. In the case of message
driven beans, an instance is retrieved from the pool at the arrival of a message, and
the instance is returned to the pool at the completion of the onMessage() method.
Entity bean pools contain instances of entity beans that are not associated with a primary
key. The instances in this pool are typically used for executing finder methods.

Bean pool configuration is not very relevant for simple beans with relatively small
creation and destruction cost. However, pooling can improve performance in some
cases, for example, a bean that does a JNDI lookup of a resource and stores the ref-
erence for future use.

The properties of the bean pool can be specified using the sun-ejb-jar.xml deploy-
ment descriptor. Some of the important properties that can be tuned include steady-
pool-size, max-pool-size, and pool-idle-timeout-in-seconds.

The steady-pool-size specifies the minimum number of instances maintained
in the pool, whereas max-pool-size specifies the maximum number of beans in the
pool. The element pool-idle-timeout-in-seconds specifies the maximum time
that a stateless session bean or message driven bean is allowed to be idle in the pool.
After this time, the bean is passivated to the backup store.

The monitoring framework in GlassFish allows inspection of the bean pool statis-
tics as shown in the following sample.

asadmin get -m
server.applications.SPECjAppServer.mfg_jar.LargeOrderSes.bean-pool.*count
server.applications.SPECjAppServer.mfg_jar.LargeOrderSes.bean-
pool.totalbeanscreated-count = 5
server.applications.SPECjAppServer.mfg_jar.LargeOrderSes.bean-
pool.totalbeansdestroyed-count = 5

ptg6882136

516 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

As specified earlier, the decision to tune the pool is based on the cost of instance
creation and destruction. The primary tunings include increasing the max-pool-
size and/or pool-idle-timeout-in-seconds. Use caution in increasing the size
of the pool—pooling a large number of instances can reduce performance due to the
increased memory pressure.

Bean Caches

In addition to the bean pools, the container also maintains several caches to hold
bean instances. The two main caches visible to users are the stateful session bean
cache and the entity bean cache.

The stateful session bean cache holds the bean instances used to maintain the
data associated with stateful session beans. Once a stateful session bean has been
created, its state is maintained either in the cache or in persistent storage until
the bean is destroyed. The life cycle of the bean instances in the cache is as follows.
When a new stateful session bean is created, a bean instance is created and added
to the cache. Any subsequent method invocation on the bean causes the container
to retrieve the bean instance from the cache, execute the method, and return the
instance back to the cache.

While returning the instance back to the cache, if the number of instances has
exceeded the maximum cache size, then one of the existing instances in the pool is
evicted to make space for the returning instance (more details on the eviction policy
are provided later). Eviction and reloading of stateful session bean instances from
the cache are expensive operations and can affect the performance of the application.
Eviction of an instance causes bean passivation resulting in serialization of the bean
to persistent storage. Any method invocation on an evicted bean causes reloading of
the bean from persistent storage resulting in a high response time for that interac-
tion. Thus it is important to size the cache size of stateful session beans appropriately
for optimal performance.

There are two types of caches for entity beans—Transactional Cache and Ready
Cache. The Transactional Cache is an internal cache and is not visible to the user.
The user can, however, monitor and tune the Ready Cache. The caching of entities
depends on whether the request is part of a transaction and is explained in the fol-
lowing paragraphs.

The Transactional Cache is an intermediate cache where all entities involved in a
particular transaction are stored. The key used to identify an instance in this cache
is a tuple consisting of the transaction ID and the primary key of the entity. When
a method in an entity bean is invoked as part of a transaction, the container first
checks the Transactional Cache to see whether an instance of the bean exists in the
cache. If it does, then the instance is used for further processing. If an instance is
not found, the container checks the Ready Cache for the existence of an instance of
this bean (the key in this case is the primary key of the entity). If a bean instance

ptg6882136

Monitoring and Tuning the EJB Container 517

with that primary key is found, it is removed from the Ready Cache, ejbLoad() is
called to refresh the bean from the database, and the bean is added to the Transac-
tion Cache and used for further processing. In the absence of an entity bean with the
specified primary key in the Ready Cache, the container removes a bean instance
from the entity bean pool, calls ejbLoad(), adds the bean instance to the Transac-
tion Cache, and uses it for further processing.

At the end of the transaction, the container removes the bean entities associated
with that transaction from the Transactional Cache and adds them to the Ready
Cache. If the Ready Cache is at maximum capacity, then one of the entities is evicted
from the cache and passivated. Passivation is not an expensive operation for con-
tainer managed beans, but that may not be the case for some bean managed entities.

If instances in the Ready Cache need to be synchronized with the database at the
start of the transaction, then the question is what is the benefit of using a Ready
Cache? If all requests to an entity are transactional, then there is no benefit in keep-
ing an instance of that entity in the Ready Cache. In such cases, the use of commit
option C allows Ready Cache to be bypassed, and the instance is returned to the bean
pool rather than being cached. Another case for using commit option C is when an
entity with a specified primary key is used only once, say, a new instance is created
for every request and never used again. The commit option can be specified by set-
ting the commit-option element to C under the ejb element in the sun-ejb-jar.xml
(<commit-option>C</commit-option>).

Tip

For GlassFish, it is recommended that the deployer use commit option C for entity beans that
are used only in transactions or used only once or twice (hence no benefit in caching the
instances).

Ready Cache improves performance for entities that are invoked without transac-
tion. In this case the container checks the Ready Cache and if a suitable instance is
found, it is removed from the cache and used without any additional ejbLoad() call,
thereby improving the performance. Absence of an instance in the cache results in
the retrieval of an instance from the bean pool, followed by ejbLoad().

As discussed earlier, when the cache is full, the container uses an eviction policy
to select the bean instance to be removed. GlassFish supports three eviction policies:
FIFO (first in first out), LRU (least recently used), and NRU (not recently used). The
recommended option is NRU, which is an optimized selection policy similar to LRU that
provides better performance, especially under high load. The eviction selection policy
is specified using the element victim-selection-policy in the sun-ejb-jar.xml.

The individual bean caches can be monitored once the EJB container’s monitor-
ing level is set to LOW. The asadmin list -m command can be used to list all the

ptg6882136

518 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

different caches as shown in the following example (the sample application is SPEC-
jAppServer2004 benchmark).

asadmin list -m "server*bean-cache*"
server.applications.SPECjAppServer.corp_jar.CustomerEnt.bean-cache
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.bean-cache
...

Statistics of individual bean caches can be obtained using asadmin get -m
<cache>.* where cache is one of the listed caches as shown in the following example.

asadmin get -m
server.applications.SPECjAppServer.corp_jar.CustomerEnt.bean-cache.*

The first step in tuning the stateful session bean cache is to identify the number of
active stateful session beans in use in the container. This can be achieved by inspect-
ing the number of instance creations and removals as shown here.

asadmin get -m beanName.createcount-count beanName.removecount-count

where beanName is the name of the bean (obtained using the list command). An
example follows:

asadmin get -m
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.createcount
-count
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.removecount
-count
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.createcount
-count = 20492
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.removecount
-count = 19087

Once the number of active stateful session beans has been determined, the next
step is to look at the cache hit ratio and the number of passivations. This can be
achieved by inspecting the bean cache as follows.

asadmin get -m
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.bean-cache.
cachehits-current
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.bean-cache.
cachemisses-current
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.bean-cache.
numpassivations-count
server.applications.SPECjAppServer.orders_jar.ItemBrowserSes.bean-cache.
numbeansincache-current

ptg6882136

Monitoring and Tuning the EJB Container 519

A high hit ratio suggests that the cache settings are working reasonably well. A
high miss rate or a high number of passivations, on the other hand, indicates room
for improvement. As mentioned earlier, active stateful session beans are stored in
the cache, and they are passivated to persistent storage under one of the following
conditions: the instance has been evicted to make room in the cache or the idle time-
out has expired.

If the current size of the pool is close to the maximum size of the pool and the
number of active stateful session beans is higher than the maximum pool size, then it
is advisable to increase the size of the pool to at least the maximum number of active
stateful session beans. On the other hand, if the number of instances in the pool is
less than the maximum, then the passivations are due to the expiry of idle timeouts.
In this case, one option to improve performance is to increase the idle timeout so that
the instances are kept in cache longer.

As a general note, use caution when increasing the size of the pool. Setting it to
very high values can degrade performance due to increased memory usage and the
associated garbage collection cost.

Monitoring of entity bean caches is similar to the steps described earlier for state-
ful session beans. The primary attributes to monitor are the hit and miss rates. A
high hit rate suggests that the cache is tuned well and also that the bean is accessed
frequently. For such entities, it is worth investigating whether they can be specified
as read only. Setting an entity bean to read only is described in further detail in the
“Read Only Entity Beans” section later in the chapter.

A high miss rate could either mean that the cache is undersized or that the invoca-
tions involve new entities that are not available in the cache. As mentioned earlier,
if the application uses an entity for only one or two invocations, it is better to use
commit option C for such entities. For frequently used entities, a high miss rate
results in degraded performance due to the cost of evicting an existing bean instance
and the cost of activating the bean. In such cases, performance can be improved by
increasing the size of the cache.

As in the case of stateful session beans, an instance is removed from the bean
cache if the idle timeout for that instance has expired. It may be beneficial to change
the idle timeout based on the usage pattern of the entities. Increase the idle timeout
of frequently used beans thus allowing them to stay in the cache longer, thereby
improving the hit rate, and decrease the timeout of infrequently used beans to reduce
the cached instances of the bean.

EclipseLink Session Cache

EclipseLink, the reference implementation of the JPA 2.0 specification, has an L2
cache for caching entities and JPA QL query results. The purpose of the cache is to
provide faster access to entities by eliminating access to the database for frequently

ptg6882136

520 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

accessed entities. However, if the cache is too big, the JVM spends a large amount of
time doing garbage collection, and if the cache is too small EclipseLink may make
trips to the database for a frequently used entity; both of these scenarios have a
negative impact on the performance of an application. To tune the cache optimally,
it is important to know the cache hit and miss statistics for an entity. EclipseLink
provides a configuration in the persistence.xml to print out the cache statistics.

<property name="eclipselink.profiler" value="QueryMonitor"/>

The QueryMonitor configuration for the EclipseLink profiler tells the implemen-
tation to print out running statistics of the cache hits and misses per entity in the
log at regular intervals. A sample output generated at the end of a benchmark run
is as follows:

Cache Hits:[#{com.orangerepublic.entity.Customer-findByPrimaryKey=310,
com.orangerepublic.entity.Order-findByPrimaryKey=698}#] Cache
Misses:[#{com.orangerepublic.entity.Customer-
findByPrimaryKey=4510,com.orangerepublic.entity.Order-
findByPrimaryKey=2398}#]

From the preceding data we can conclude that for both the Customer and Order
entity, the cache miss rate is significantly higher than the hit rate, and increasing
the size of the cache would improve performance. The challenge is to identify the
optimal cache size that balances increasing the hit rate without deteriorating the
performance due to increased garbage collection times. Finding this optimal cache
size often requires a series of experiments while monitoring cache and garbage col-
lection statistics. Refer to Chapter 7, “Tuning the JVM, Step by Step,” for more infor-
mation on tuning the JVM.

To change the cache size of individual entities, modify the following property in
persistence.xml.

<properties>
 <property name="eclipselink.cache.size.Order" value="1000"/>
</properties>

Modifying the preceding value sets the appropriate size of the Order entity cache.

Tip

Use the cache and garbage collection statistics to figure out the optimal size for the object
and query results cache.

ptg6882136

Transaction Isolation Level 521

Transaction Isolation Level

Transaction isolation levels are specified to maintain data integrity during concur-
rent transactions. Usually databases allow for the following transaction isolation
level, listed here in decreasing order of performance:

� READ_UNCOMMITED
� READ_COMMITED
� REPEATABLE_READ
� SERIALIZABLE

READ_UNCOMMITED allows a transaction to read data that can be changed or
removed before the end of another transaction that is writing the data. This offers
the best performance since it does not require any serialization, but may lead to dirty
and ghost reads. READ_COMMITED requires that only committed data is read.

REPEATABLE_READ requires that within a transaction, multiple reads of the
same entity return the data in the same state. This can be achieved through the use
of pessimistic or optimistic locking. In pessimistic locking the corresponding database
row is locked, blocking other transactions from accessing the row until the transaction
completes. In optimistic locking, no lock is obtained on the entity, but data integrity is
maintained through other means, such as version numbers. Stale data is detected if the
version number in the database is greater than the version number in memory indicat-
ing that the entity’s state was changed by another transaction; at this point the applica-
tion can roll back its transaction, refresh the state of the entity from the database, and
retry the transaction. Due to the cost associated with transaction rollbacks, optimistic
locking may not be the best option for highly concurrent applications where the data
is modified frequently. REPEATABLE_READ isolation level can have phantom reads.

SERIALIZABLE requires that all transactions in a system occur in isolation, as
if executed serially. The database may choose to use an optimistic or pessimistic
approach to ensure serializability. In the pessimistic approach this may require lock-
ing a range in a table or a table lock. In the optimistic approach it is required to detect
a concurrent transaction that violates the serializability requirement.

Tip

An optimistic locking approach may provide better performance for applications where the
data is seldom modified. However, the optimistic locking approach may not be the best
option in highly concurrent applications with frequent data modification because of the cost
associated with rollbacks, and in such cases the pessimistic locking approach may provide
better performance.

ptg6882136

522 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Details about how to set transaction isolation levels for EJB and Java persistence
are included in the remainder of this chapter covering performance best practices
with EJBs and Java Persistence.

Best Practices in Enterprise Java Beans

This section describes some of the performance best practices for EJBs. But first, a
short description is provided of the benchmark used to generate the data shown in
this section.

EJB Benchmarking Benchmark Used for Illustration

A micro-benchmark modeling a manufacturer with an online ordering system was
used to illustrate the best practices or performance differences in various approaches.
The benchmarks for EJB 2.1 and EJB 3.0/JPA are somewhat different because of
the inherently different programming models and also because slightly different use
cases were considered for emphasizing different points.

In the EJB 2.1 benchmark there is one stateless session bean, OrderSession
Bean, which is the primary client interface and implements the benchmark’s busi-
ness logic. There are two entity beans, Order and OrderLine, which represent the
business data objects. The benchmark’s driver client uses a servlet to interface with
the server components and data access objects for transfer of entity state between
the EJB container and Web container.

In the EJB 3.0/JPA benchmark there are two session beans, OrderSessionBean,
which is the primary client interface, and a ShippingSessionBean, which is del-
egated various operations from the OrderSessionBean.

EJB 2.1

This section describes the best practices that are applicable to EJB 2.1. It is impor-
tant to note that several of these practices are applicable to EJB 3.0 as well. EJB
2.1-specific tuning mechanisms are discussed here, and EJB 3 tunings are covered
later in the chapter.

Container Managed Transaction Versus Bean Managed Transaction

In container managed transactions, the enterprise bean developer delegates the
responsibility of managing transactions to the EJB container. The EJB container
is responsible for starting, committing, and rolling back transactions. Enterprise
bean developers can customize the transaction characteristics of the enterprise bean
through predefined transaction attributes specified through deployment descriptors.

ptg6882136

Best Practices in Enterprise Java Beans 523

In bean managed transactions, the application is responsible for managing trans-
actions, and the enterprise bean developer writes code to demarcate the transaction
boundaries. The advantage of using bean managed transaction is that enterprise
bean developers decide when to start and end a transaction. This is advantageous
when dealing with large method implementations in which a transaction is required
only for a small part or only if certain conditions are met. On the other hand, in con-
tainer managed transactions the scope of the transaction is over the entire method
without providing any mechanism to narrow the scope of the transaction.

Tip

Use bean managed transactions to limit the scope of a transaction or if a transaction is needed
conditionally.

Choose Correct Transaction Attributes

Enterprise bean developers can customize transaction characteristics by using one
of the six transaction attributes in the deployment descriptor.

� Required
� Requires New
� Mandatory
� Not Supported
� Supports
� Never

All EJBs default to the Required attribute when container managed transaction
is specified. It is important to override the default transaction attribute if appropri-
ate for improved performance. For example, if a transaction is not required, but is
supported on a bean method, then mark the method with the Supports attribute;
otherwise the container will needlessly start and end a transaction with each invoca-
tion of the method since the transaction attribute defaults to Required.

Tip

Avoid unnecessary transactions by choosing appropriate transaction attributes.

Control Serialization

The EJB container may need to temporarily transfer the state of an idle stateful
session bean instance to secondary storage to efficiently manage the size of its pool

ptg6882136

524 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

of stateful session beans. This transfer of state to a secondary storage is called pas-
sivation and involves the serialization of the fields of the stateful session bean and
also all the objects that can be reached from the stateful session bean through Java
references. Serialization and deserialization are expensive operations, and any attri-
bute that does not need to be passivated should be marked with the transient
keyword to eliminate the unnecessary serialization/deserialization overhead. The
following section provides an example regarding the use of transient for caching
resource references.

Remote EJB invocation is another instance in which the bean is serialized. Dur-
ing an EJB invocation from the client, each object parameter in the call is serialized
at the client side and deserialized at the server side. The same serialization and
deserialization process is repeated for the returned object as well. As mentioned
earlier, this includes all objects that are reachable through Java references from
the parameter objects. As in the case of EJB passivation, when making remote calls
it is important to mark the fields that don’t need to be serialized as transient.
The cost of serialization depends on the complexity and size of objects. The factors
that affect serialization cost are discussed in the “Session Persistence” section of
Chapter 10.

Tip

Mark member fields of a stateful session bean that don’t need to be serialized as transient.
Keep the size and complexity of the attributes that need to be serialized to a minimum.

Cache Static Resource References

An enterprise bean often has references to external resources such as a data source,
a JMS (Java Message Service) destination, or to a session bean that are looked up
through JNDI. Lookup of resources using JNDI is expensive and should be mini-
mized if possible. Static resources thus should be looked up once and cached to
improve performance. The resource references can be created in the session bean’s
ejbCreate() method, which is called once by the container before any business
method is invoked.

In stateful session beans, the resource references should be cached as transient
fields and should be released in their ejbPassivate() method. Marking the
resource references as transient prevents these references from being passivated,
which as mentioned earlier is expensive. The references should be looked up again in
the ejbActivate() method. The following sample code demonstrates how to cache
static database references. Resource references acquired and cached by an enterprise
bean should eventually be released in the ejbRemove() method.

The following example demonstrates caching a Handle to the EJBObject instance
of a remote stateless session bean in a stateful session bean.

ptg6882136

Best Practices in Enterprise Java Beans 525

public class CartSessionBean implements SessionBean{
 transient OrderSessionRemote session;
 transient OrderSessionHome sessionHome;
 javax.ejb.Handle handle;
 javax.ejb.HomeHandle homeHandle;
 SessionContext ctx;

 /**
 * Creates a bean.
 * @exception throws CreateException, RemoteException.
 */
 public void ejbCreate() throws CreateException {
 session=getOrderSession();
 }

 /**
 * Removes the bean. Required by EJB spec.
 */
 public void ejbRemove() {}

 /**
 * Loads the state of the bean from secondary storage.
 * Required by EJB spec.
 */
 public void ejbActivate() {
 session = getOrderSession();
 }

 /**
 * Keeps the state of the bean to secondary storage.
 * Required by EJB spec.
 */
 public void ejbPassivate() {}

 /**
 * Sets the session context. Required by EJB spec.
 * @param sc A SessionContext object.
 */
 public void setSessionContext(SessionContext sc) {
 this.ctx=sc;
 }

 private OrderSessionRemote getOrderSession() {
 try {
 if (sessionHome == null && homeHandle == null) {
 sessionHome = (OrderSessionHome) ctx.lookup(
 "java:comp/env/ejb/OrderSession");
 homeHandle = sessionHome.getHomeHandle();
 } else if (sessionHome == null) {
 sessionHome =
 (OrderSessionHome) homeHandle.getEJBHome();
 }
 if (session == null && handle == null) {
 session = sessionHome.create();
 handle = session.getHandle();
 } else if (session == null) {
 session = (OrderSessionRemote) handle.getEJBObject();

Continued

ptg6882136

526 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

In the preceding example, the stateful session bean creates a reference to the
OrderSession object in the bean’s ejbCreate() method and caches a Handle to
the OrderSession object. The javax.ejb.Handle is a serializable reference to
the EJBObject acquired by a client. This Handle, used to uniquely identify an EJB
object (session and entity bean), can be serialized to a persistent store and deserial-
ized at a later time to get a reference to the same EJB object. However, in the case of
session beans, if the EJB object is explicitly destroyed by invocation of the remove()
API, is timed out, or the server crashes, the Handle becomes invalid as the server
no longer has the bean object in memory. The EJBHome object also provides an API
to obtain a serializable Handle (javax.ejb.HomeHandle) to the EJBHome object.

Figure 12-2 shows the performance benefit of caching a remote stateless session
bean’s Handle. There is a 10% difference between the throughput of the cached test
case compared to the throughput of the noncached test case. This difference increases
if more resources are looked up in each business method invocation.

Use Local Interfaces instead of Remote Interfaces

The EJB specification provides both remote and local interfaces to session and entity
beans. All parameters to remote interfaces are pass-by-value, which involves argu-
ment copying, serialization, and deserialization, as well as the additional overhead

Figure 12-2 Performance benefit of caching resource reference

Cached Not Cached

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

 }
 return session;
 } catch (Exception ex) {
 ex.printStackTrace();
 return null;
 }
 }
}

ptg6882136

Best Practices in Enterprise Java Beans 527

The EJB module exposes the session bean’s local interfaces with the following
declaration in the ejb-jar.xml.

<ejb-local-ref>
 <description>EJB Session</description>
 <ejb-ref-name>ejb/Session</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>
 com.orangerepublic.ejb.session.SessionLocalHome
 </local-home>
 <local>
 com.orangerepublic.ejb.session.SessionLocal
 </local>
 <ejb-link>SessionBean</ejb-link>
 </ejb-local-ref>

 <enterprise-beans>
 <session>
 <ejb-name>SessionBean</ejb-name>
 <local-home>
 com.orangerepublic.ejb.session.SessionLocalHome
 </local-home>
 <local>
 com.orangerepublic.ejb.session.SessionLocal
 </local>
 <ejb-class>
 com.orangerepublic.ejb.session.SessionBeanImpl
 </ejb-class>
 <session-type>Stateless</session-type>
...
 </session>
</enterprise-beans>

The GlassFish application server provides an extension that allows parameters
to a method call to be passed by reference, even if a client is invoking the remote
interfaces on the enterprise beans, if the beans are co-located on the same JVM. This
provides the same performance benefit as a local invocation. There are a couple of
limitations to using this performance optimization. It should be used only if the called
method does not modify the objects being passed as parameters, and this approach is
not portable across application servers. Specifying pass-by-reference when invoking
local interfaces on enterprise beans has no effect.

of communicating to a server over the network. In contrast, parameters to local
interfaces are pass-by-reference since method invocations are contained within the
same JVM, and thus it is much faster. It is recommended to use local interfaces when
making enterprise bean method invocations whenever possible.

In a Web application, the reference to a local interface is defined in the web.xml
as in the following example.

ptg6882136

528 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

This significantly improves the performance by avoiding the copying of param-
eter and return objects. In the test results shown in Figure 12-3, a session bean is
used to look up and return an Order entity. In the Local scenario, a local session
bean is used, and all parameters and the return value are pass-by-reference. In
the Remote scenario, a remote session bean is used, and all parameters and return
values are pass-by value. The Order entity has an average of 50 line items, and
instances of all OrderLine objects that are referenced by the Order entity are
also copied when using Remote interfaces. The test returned Data Access Objects
instead of the Order or OrderLine entity instances to return the state of the cor-
responding Order and OrderLine entities; the reason for which is explained in
the next section.

In the case shown in Figure 12-3 there was a 11% difference between the Local and
Remote interface scenarios. The performance difference increases as the complexity
and/or the number of parameters are increased.

<ejb>
 <ejb-name>Session</ejb-name>
 <jndi-name>ejb/Session</jndi-name>
 <pass-by-reference>true</pass-by-reference>

</ejb>

Figure 12-3 Performance comparison of local versus remote invocation

Remote Local

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

The pass-by-reference configuration is done for individual enterprise beans in
the sun-ejb-jar.xml. For example, the ServletDriver invokes the remote method
of OrderSessionBean enterprise bean co-located on the same JVM, and if we still
wanted to pass parameters by-reference instead of by-value, we would use the fol-
lowing entry in the sun-ejb-jar.xml:

ptg6882136

Best Practices in Enterprise Java Beans 529

In the preceding example the CheckoutSession class implements a Session
Façade design pattern. The placeOrder() business method encapsulates multiple
operations so that the client can avoid making multiple method invocations to place
an order. In this case it also simplifies the transaction management, since we would
want to debit the bank account only if the order is successfully sent to the warehouse.

public interface CheckoutSessionLocal extends javax.ejb.EJBLocalObject {
 public void placeOrder(String cartID);
}

/**
 * Session Facade that encapsulates multiple smaller tasks
 * associated with placing an order
 */
public class CheckoutSession implements javax.ejb.SessionBean {
 public OrderDAO placeOrder(String cartID){
 ShoppingCart cart = getShoppingCart(cartID);
 //create the order from cart’s content
 Order order = createOrder(cartID);
 //debit amount from bank
 charge(order.getTotal(), cart.getChargeDetails());

 //send order to warehouse & update inventory
 String whsID = scheduleWarehouseMessage(order);

 //arrange shippping
 ship(whsID);

 //update records in order history
 updateOrderHistory(order, cart.getPerson());

 //send confirmation email
 sendEmailConfirmation(order);

 //create data access object
 OrderDAO odao = createOrderDAO(order);

 //remove cart
 ...
 return odao;
 }
}

Coarse-Grained Access

The performance cost of making remote calls can be reduced by using a coarse grained
access model when accessing session beans, which is more commonly known as the
Session Façade design pattern. In the Session Façade design pattern, the server
encapsulates multiple smaller tasks into one business operation. The client, instead
of making multiple remote invocations makes one invocation to complete the business
operation. The following code demonstrates the use of a coarse-grained access model.

ptg6882136

530 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Another place where a coarse-grained access model can be applied is the access
of entity bean fields. If an entity bean state is directly accessed from a client, each
access to the entity’s attribute would result in a remote invocation and the client
would encounter unnecessary network latency as well as serialization and deseri-
alization costs. The better approach to accessing the entity bean state is to access
it through a Session Façade model, which returns the entity state in a Data Access
Object (DAO). Since the DAO is not an enterprise bean, all access to its state is
local. In the preceding example the placeOrder()API returns an OrderDAO object
instance, which is a copy of the state of the Order entity bean.

Use Lazy Loading or Prefetching

Container-managed persistence (CMP) allows enterprise developers to define rela-
tionships between entity beans. Lazy loading is a strategy used by many persistence
implementations to load a related entity only when it has been explicitly accessed.
This approach allows the underlying persistence implementation to quickly create
an entity bean instance that was requested by the application without having to cre-
ate all the entity beans it is related to. Lazy loading in EJB 2.1 is specified through
vendor-specific descriptors.

Prefetching, on the other hand, allows related entities to be fetched along with
the parent entity. In GlassFish, prefetching or eager fetching can be enabled by
specifying the Fetch Group of entities in the sun-cmp-mappings.xml deployment
descriptor. Following is an example that specifies the fetch group in the sun-
cmp-mappings.xml file.

<?xml version=”1.0” encoding=”UTF-8”?>
<sun-cmp-mappings>
 <sun-cmp-mapping>
 <schema>EJB21</schema>
 <entity-mapping>
 <ejb-name>Order</ejb-name>
 <table-name>ORORDER</table-name>
 ...
 <cmr-field-mapping>
 <cmr-field-name>lines</cmr-field-name>
 <column-pair>
 <column-name>ORORDER.ID</column-name>
 <column-name>ORDERLINE.ORDER_ID</column-name>
 </column-pair>
 <fetched-with>
 <default/>
 </fetched-with>
 </cmr-field-mapping>
 ...
 </sun-cmp-mapping>
</sun-cmp-mappings>

ptg6882136

Best Practices in Enterprise Java Beans 531

The preceding excerpt from sun-cmp-mappings.xml defines the mapping of the
Order entity to the ORORDER database table and also the relationship between the
Order entity and the OrderLine entity. The <fetched-with> subelement <none/>
specifies that the lines field should be fetched lazily. The persistence implementa-
tion is allowed to create an instance of the Order entity bean with only a shell object
for the related OrderLine instances, which will be populated only if an explicit
access is made to those instances. This enables an implementation to create an entity
bean instance without having to do multiple joins across tables for creating related
entity beans that may not be accessed.

On the other hand, if the related entity beans are likely to be accessed when the
entity bean is loaded, it should have the <default/> fetch group; otherwise, the
implementation needs to make multiple JDBC (Java Database Connectivity) calls. In
the preceding example, the Order entity bean has a one-to-many relationship with
OrderLine entity bean, and since we expect the order’s line items to be accessed
when the Order entity is loaded, we specify a default fetch group, which results in
the underlying CMP implementation to load the Order and OrderLine entity beans
in a single SQL using a SQL Join.

Figure 12-4 shows the performance comparison of lazy versus eager fetching. In
the lazy scenario, the Order-OrderLine relationship has a fetched-with subelement
of <none/> so that the OrderLines are not fetched when the Order is looked up.
In the eager scenario, the Order-OrderLine relationship has a fetched-with sub-
element of <default/> so that the OrderLines are fetched when the Order is
looked up. The throughput of the eager scenario is 38% of the lazy scenario. So in
the case when OrderLine entities are not accessed immediately after an Order
entity is looked up, using the lazy fetch type provides a significant performance
advantage.

Figure 12-4 Performance comparison of eager versus lazy fetching

LAZY EAGER

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

ptg6882136

532 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

<entity-mapping>
 <ejb-name>Order</ejb-name>

 <consistency>
 <check-version-of-accessed-instances>
 <column-name>ORORDER.version</column-name>
 </check-version-of-accessed-instances>
 </consistency>
</entity-mapping>

Tip

Use lazy loading of relationships if the related entity beans are not accessed when the parent
entity is accessed. Conversely, use eager fetching if the related entity beans are accessed when
the parent entity is accessed.

Choose Correct Database Locking Strategy

To ensure data integrity, you can choose from one of two commonly used strategies:
optimistic locking or pessimistic locking. In pessimistic locking, the corresponding
database row is locked, blocking other transactions from accessing the row until the
transaction completes. Pessimistic locking assumes that modification data is likely
and prevents concurrent access.

Optimistic locking, on the other hand, assumes that concurrent data modification
is not likely and handles the case of data modification with an optimistic lock excep-
tion and a transaction rollback.

If your application has a large user load, then contrary to common belief, you may
not benefit from optimistic locking if the accessed data is updated frequently. In such
cases, optimistic locking may result in a large number of transaction rollbacks, which
are expensive operations. In this situation, pessimistic locking may provide better
performance than optimistic locking.

The locking strategy is specified in the vendor-specific deployment descriptor.
Optimistic locking on an entity bean is implemented using version consistency in
the GlassFish Application Server’s CMP 2.1 implementation. In this approach, a ver-
sion column is checked to determine whether an entity bean’s state is stale, before
it is flushed to the database.

To specify optimistic locking on an entity bean

 1. Create a version column with numeric data type in the primary table
representing the entity bean in the database.

 2. Create triggers on the version column so that each time the database row is
updated, the row’s version column is incremented.

 3. In the sun-cmp-mappings.xml file specify the following under the
<consistency> element.

ptg6882136

Best Practices in Enterprise Java Beans 533

The following code snippet shows an implementation using findByPrimaryKey:

Pessimistic locking in CMP 2.1 requires database support of row locking. Pessimis-
tic locking can be specified in the following manner in the sun-cmp-mappings.xml.

EJB Query Language

EJB Query Language (QL) queries enable defining custom queries. In some situations
EJB QL select queries are preferable over the use of findByPrimaryKey. Consider the fol-
lowing example, which given an orderID returns a collection (ArrayList<OrderLines>)
of line items from an order that may have been marked as discounted.

<entity-mapping>
 <ejb-name>Order</ejb-name>

 <consistency>
 <lock-when-loaded/>
 </consistency>
</entity-mapping>

Tip

Use optimistic locking if data is not likely to be modified frequently by concurrent transactions.
Use pessimistic locking if data is likely to be modified by concurrent transactions frequently.

public ArrayList<OrderLine> getDiscountedLines(String orderID);

public ArrayList<OrderLines> getDiscountedLines(String orderID){
 ArrayList<OrderLine> dLines = new ArrayList();
 try {
 InitialContext ic = new InitialContext();
 OrderHome oh =
 (OrderHome)ic.lookup(“java:comp/env/ejb/local/Order”);
 Order order = oh.findByPrimaryKey(orderID);
 ArrayList<OrderLine> lines = order.getLines();
 for (int i = 0; i < lines.size(); i++) {
 OrderLine ol = (OrderLine)lines.get(i);
 if(ol.getDiscount() > 0){
 dLines.add(ol);
 }
 }
 } catch (NamingException nex) {

 } catch (FinderException fex) {
 ...
 }
 return dLines;
}

ptg6882136

534 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

public interface OrderLineLocalHome extends javax.ejb.EJBLocalHome {
 ...
 public Collection findByDiscountedLines(String id)
 throws javax.ejb.FinderException;
}

<entity>
 <description/>
 <display-name>OrderLine</display-name>
 <ejb-name>OrderLine</ejb-name>
 ...
 <query>
 <description>Find discounted line items from order</description>
 <query-method>
 <method-name>findByDiscountedLines</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(l) FROM OrderLine AS l WHERE l.discount > 0 AND
l.orderInfo.id = ?1
 </ejb-ql>
 </query>
 ...
</entity>

public ArrayList<OrderLine> getDiscountedLinesByQuery(String orderID){
 ArrayList<OrderLine> dLines = null;
 try {
 InitialContext ic = new InitialContext();
 OrderLineLocalHome olh = (OrderLineLocalHome) ic.lookup(
 “java:comp/env/ejb/OrderLine”);

 Collection<OrderLine> lines = olh.findByDiscountedLines(orderID);

 if(lines==null){
 System.out.println(“Lines: “ + orderID+” is null!”);
 }

 dLines = new ArrayList<OrderLine>(lines);
 }

In the preceding implementation, the getLines() brings all the order lines into
memory, and the appropriate items are selected by applying the filter condition on
each item. This in-memory filtering approach is both CPU and memory intensive. It
would be more appropriate to delegate the selection process to the database which
is optimized for handling such operations. EJB QL allows us to specify SQL to be
executed by the database. So our alternate implementation will use the EJB Select
query shown in the following listing.

The ejb-jar.xml looks like the following:

ptg6882136

Best Practices in Enterprise Java Beans 535

The preceding client code invokes the findByDiscountedLines method on the
OrderLine entity to get a list of discounted line items in one SQL query.

Figure 12-5 compares the performance of using in-memory filtering versus the use
of SQL to select the appropriate items. In this example, the throughput when using
the findByPrimaryKey scenario is only 22% of using EJB QL.

Read-Only Entity Beans

For entity beans, every access to an entity’s attribute, if in a separate transaction,
triggers a database call. If the entity’s corresponding row in the database table is not
modified often or if the application can tolerate outdated data, this synchronization of
the entity bean’s instance state with the database is redundant and expensive. Most
application servers including GlassFish allow configuring entity beans as read-only
entities.

Figure 12-5 Performance benefit of using EJB QL

findByPrimary
Key (Iterative)

EJB QL lookup

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

Tip

The use of appropriate EJB QL queries can provide better performance than filtering items
in memory.

 catch (NamingException nex) {
 nex.printStackTrace();
 }
 catch(FinderException fex){
 fex.printStackTrace();
 }
 return dLines;
}

ptg6882136

536 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

The refresh-period-in-seconds parameter is the number of seconds before
the state of the entity instance is reloaded from the database. In the preceding exam-
ple, the BookCatalog bean is marked as a read-only entity bean, and in transactions
access to its attributes will not trigger access to the database; also the entity state
will be considered stale after 600 seconds and refreshed.

<sun-ejb-jar>
 <enterprise-beans>
 ...
 <ejb>
 <ejb-name>BookCatalog</ejb-name>
 <jndi-name>ejb/BookCatalog</jndi-name>
 <is-read-only-bean>true</is-read-only-bean>
 <refresh-period-in-seconds>600</refresh-period-in-seconds>
 </ejb>
 ...
 </enterprise-beans>
</sun-ejb-jar>

Tip

For entities whose values do not change or where stale data can be tolerated, use read-only
entity beans.

EJB 3.0

As noted in the previous section, both EJB 2.1 and EJB 3.0 share several optimization
techniques. However, the implementation details vary between the two EJB types,
which are covered first. This is followed by EJB 3.0 specific optimization techniques.

Best Practices from EJB 2.1

Though there has been a significant change in the programming models between
EJB 2.1 and EJB 3.0, most best practices that apply to the EJB 2.1 also apply to
EJB 3.0, but the ways to implement them have changed. These are discussed in this
section.

In CMP such read-only entities are read from the database only once, and every
time the entity bean is used the cached data is copied. In Bean-managed persistence
(BMP), the entities are read once, and every time an entity is used within a trans-
action its cached values are used. However, when used outside a transaction, every
use of the entity bean triggers a reload of its state from the database. Thus CMP
entities and in-transaction BMP entities get the maximum benefit of the read-only
configuration. The following example shows configuring a rarely changing entity
bean as read-only.

ptg6882136

Best Practices in Enterprise Java Beans 537

EJB 3.0 allows for resource injection into enterprise beans, thus eliminating the
need to do JNDI lookups. When resource injection is used, the container ensures that
each time the resource is used a valid reference is available.

Tip

As in the case of EJB 2.1, use local interfaces over remote interfaces whenever possible. If
only remote interfaces are available, use pass-by-reference in co-located modules to avoid
expensive copying of parameters.

The coarse-grained access best practice that relates to using DAOs is not relevant
in EJB 3.0 since entities are essentially Plain Old Java Objects (POJO) and all access
to their state on the client side is essentially local method invocations. On the other
hand, coarse-grained access through the use of a Session Façade is still relevant for
accessing enterprise beans through remote interfaces as it reduces network latency.
As in EJB 2.1, wherever possible, it is recommended to make use of local interfaces
instead of remote interfaces in EJB 3.0 as well.

Tip

EJB 3.0 containers manage the life cycle of injected resources efficiently, and the developer
does not have to explicitly cache resource references.

Persistence related best practices such as lazy loading and database locking strat-
egy are discussed in the “Best Practices in Java Persistence” section later in the
chapter.

Business Method Interceptors

Interceptors are enterprise bean developer defined methods that intercept a busi-
ness method invocation. An interceptor method can be used for a variety of purposes
including but not limited to validation and preprocessing of data. An interceptor
method can be defined within the enterprise bean class itself or defined in a separate
class. There can be only one interceptor method per class.

When defined within the bean class itself, by default the interceptor method is
invoked for every method the enterprise bean exposes to its clients. This can be an
unnecessary overhead for a frequently invoked enterprise bean method, especially
if the interception is not required for every method and the interceptor method has
expensive operations.

When defined in an external class, there are three levels at which an interceptor
method can be bound to the enterprise bean class.

ptg6882136

538 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

� Default. Default interceptor methods are invoked for all session bean invo-
cations for all session beans in a deployment unit. Default interceptors can be
specified through deployment descriptors only.

@Stateless
@Interceptors({com.orangerepublic.ejb.session.interceptor.
AuthorizationInterceptor.class})
public class ShoppingCart{
 ...
}

<assembly-descriptor>
<!-- Class interceptor-->
 <interceptor-binding>
 <ejb-name>OrderSessionBean</ejb-name>
 <interceptor-class>

com.orangerepublic.ejb.session.interceptor.AuthorizationInterceptor
 </interceptor-class>
 <interceptor-class>

com.orangerepublic.ejb.session.interceptor.ValidationInterceptor
 </interceptor-class>
 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.AuditInterceptor
 </interceptor-class>

� Class level. Class level interceptor methods are invoked for all method invo-
cations on the session bean they are bound to. Class-level interceptors can be
specified on the enterprise bean class or in the deployment descriptor.

 <assembly-descriptor>
 <!-- Default interceptor-->
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
com.orangerepublic.ejb.session.interceptor.AuthorizationInterceptor
 </interceptor-class>
 <interceptor-class>
com.orangerepublic.ejb.session.interceptor.ValidationInterceptor
 </interceptor-class>
 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.AuditInterceptor
 </interceptor-class>
 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.LoggingInterceptor
 </interceptor-class>
 </interceptor-binding>

</assembly-descriptor>

ptg6882136

Best Practices in Enterprise Java Beans 539

� Method level. Method level interceptor methods are specified on the enter-
prise bean method and invoked when the method on the session bean is invoked.

@Interceptors({com.orangerepublic.ejb.session.interceptor.
AuthorizationInterceptor.class})
 public void getItem(){
 ...
 }

<assembly-descriptor>
 <!-- Method interceptor-->
 <interceptor-binding>
 <ejb-name>OrderSessionBean</ejb-name>
 <interceptor-class>
com.orangerepublic.ejb.session.interceptor.AuthorizationInterceptor
 </interceptor-class>
 <interceptor-class>
com.orangerepublic.ejb.session.interceptor.ValidationInterceptor
 </interceptor-class>
 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.AuditInterceptor
 </interceptor-class>
 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.LoggingInterceptor
 </interceptor-class>
 <method>
 <method-name>getItem</method-name>
 </method>
 </interceptor-binding>
 ...
</assembly-descriptor>

 <interceptor-class>
 com.orangerepublic.ejb.session.interceptor.LoggingInterceptor
 </interceptor-class>
 </interceptor-binding>
 ...
</assembly-descriptor>

Using a default interceptor in cases where a class level or method level intercep-
tor would suffice adds overhead. This is especially true for expensive interceptor
methods. If only lightweight operations are included in the interceptor methods, the
overall impact including the cost of Java reflection used to invoke the interceptor
can be negligible.

The specification provides mechanisms to exclude a bean from the default inter-
ceptors or for some methods to be excluded from the class interceptors for the bean.
This can be achieved via annotations or through the use of deployment descriptors.

ptg6882136

540 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Best Practices in Java Persistence

This section discusses some of the best practices for the use of the Java Persistence
APIs. Most of the best practices described in this section apply independently of
the JPA implementation. The examples as well as the implementation discussions
are based on the EclipseLink JPA implementation, which conforms to the JPA 1.0
specification. The newer version of the specification, JPA 2.0, is not covered here,
and readers are encouraged to check it to see how some of the vendor-specific items
discussed here can be done in a standardized way. The discussion also assumes a
Java EE container environment, but the same concepts apply to EclipseLink in a
Java SE environment.

JPA Query Language Queries

The JPA 1.0 specification defines the following kinds of queries:

� Named queries
� Named native queries

<assembly-descriptor>
 <!-- Method interceptor-->
 <interceptor-binding>
 <ejb-name>OrderSessionBean</ejb-name>
 <exclude-default-interceptors>true</exclude-default-interceptors>
 <exclude-class-interceptors>true</exclude-class-interceptors>
 <method>
 <method-name>getItem</method-name>
 </method>
 </interceptor-binding>
 ...
</assembly-descriptor>

Tip

Use appropriate level of granularity when using interceptors. Inappropriate use of class and
default interceptors can degrade application performance.

To exclude the default interceptor, apply the @javax.ejb.ExcludeDefault
Interceptors annotation to a bean class or a method. To avoid the invocation
of a class interceptor on a bean method, use the @javax.ejb.ExcludeClass
Interceptors annotation. The exclusion can also be specified in the deployment
descriptor as follows:

ptg6882136

Best Practices in Java Persistence 541

� Dynamic queries
� Native queries

Named queries are static JPA Query Language queries defined as part of an enti-
ty’s metadata information. Since these queries do not change, most JPA implementa-
tions precompile the queries during deployment. These queries support parameter
binding. The following example shows a NamedQuery used to look up an Order entity
based on a Customer’s id.

@NamedQuery(name="ordersByCustomer",
 query="SELECT o FROM OROrder o WHERE o.customer.id=:id")

Query q = em.createNamedQuery("ordersByCustomer");
q.setParameter("id", nid);
List<Order> o = q.getResultList();

Named native queries are static SQL queries defined as part of an entity’s meta-
data information. These queries also support parameter binding, and additionally it
is possible to map the result set to an entity. The following example shows a Named
NativeQuery version of the preceding NamedQuery using a resultClass to map
the returned result set to an Order entity. Alternatively, a resultSetMapping string,
which contains the mapping between the database fields and the entity attributes,
can also be used.

@NamedNativeQuery(name="ordersByCustomerNative",
 query="SELECT t1.ID, t1.DESCRIPTION, t1.TOTAL, t1.STATUS,"+
 "t1.CUSTOMER_ID FROM CUSTOMER t0, ORORDER t1 " +
 "WHERE ((t0.ID = t1.CUSTOMER_ID) AND (t0.ID = ?))",
 resultClass=Order.class)

Query q = em.createNamedQuery("ordersByCustomerNative");
q.setParameter(1, nid);
List<Order> o = q.getResultList();

Dynamic queries are JPA Language Queries created at runtime. These queries are
compiled during runtime. However, some implementations, such as EclipseLink, keep
a cached copy of the compiled query if it is parameterized and subsequent invoca-
tions of the same query do not result in compilation. The query shown previously is
parameterized on the ID of the customer.

However, if a dynamic query is not parameterized, as shown in the following code
snippet, the implementation has to compile the JPA QL query on each invocation.

Query q = em.createQuery(
 "SELECT o FROM OROrder o WHERE o.customer.id="+id);
List<Order> o = q.getResultList();

ptg6882136

542 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Figure 12-6 shows the performance of named, named native, dynamic parameter-
ized, and dynamic nonparameterized queries. There is a distinct advantage in using
named queries or parameterized dynamic queries whenever possible, as the JPA
provider can skip the compilation stage during runtime and uses the precompiled
queries from its cache.

The JPA specification also supports pagination through the javax.persistence.
Query API. This enables an application to control how much data is retrieved from

public class Order {
 ...
 public static final String nativeQuery = "SELECT t1.ID, "+
 "t1.DESCRIPTION, t1.TOTAL, t1.STATUS, t1.CUSTOMER_ID"+
 "FROM CUSTOMER t0, ORORDER t1 " +
 "WHERE ((t0.ID = t1.CUSTOMER_ID) AND (t0.ID = ?))";
 ...

 }

 Query q = em.createNativeQuery(Order.nativeQuery,
 com.orangerepublic.entity.Order.class);
 q.setParameter(1, nid);
 List<Order> o = q.getResultList();
 ...
}

Figure 12-6 Performance comparison of different query types

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

NamedQuery NamedNative
Query

Non
Parameterized
DynamicQuery

Parameterized
Dynamic

Query

Since each query string is unique, each execution of the query requires the JPA
implementation to recompile the query.

Since native SQL queries may be nonportable, their use should be limited to spe-
cial cases when the use of JPA QL queries do not suffice. The following example
illustrates a native SQL query with a resultClass to map the returned result set
to the Order entity.

ptg6882136

Best Practices in Java Persistence 543

the database and can significantly improve performance in cases where a large col-
lection is retrieved from the database.

This can be done through the following Query apis:

//sets the maximum number of results to retrieve
public Query setMaxResults(int maxResult);

//sets the start position of the first result to retrieve
public Query setFirstResult(int startPosition);

Query Results Cache

Most JPA implementations support caching of named query results. If a named query
is executed with the same parameters and the query results cache is enabled, the
persistence provider returns the results from the query results cache, saving a trip
to the database. If the query results cache is not enabled, EclipseLink still executes
the query on the database, checks whether the objects in the result set already exist
in its object cache, and, if they do, returns the cached object instead of recreating it.
In EclipseLink a query results cache can be specified through the object relationship
mapping file, orm.xml. Following is an example of configuring a query results cache
for the Order entity in the orm.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xsi:schemaLocation="http://www.eclipse.org/eclipselink/
xsds/persistence/orm xsd/eclipselink_orm_1_0.xsd" xmlns="http://www.
eclipse.org/eclipselink/xsds/persistence/orm" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" version="1.0">

 <named-query name="findByStatus">
 <query>SELECT o FROM OROrder o WHERE o.status=:status</query>
 <hint name="eclipselink.query-results-cache" value="true"/>
 <hint name="eclipselink.query-results-cache.size" value="200"/>
 </named-query>

 <entity name="OROrder" class="com.orangerepublic.entity.Order"/>
</entity-mappings>

The orm.xml in the preceding example configures a query results cache for the
query named “findByStatus”, which stores the last 200 result sets of distinct
parameters; the default is 100 result sets. The query results cache, even though it is
a part of the session cache, is different from the EclipseLink object cache mentioned
earlier, while the object cache is keyed on the object’s primary key, the query results
cache is keyed on the query and its parameters. The query results cache is main-
tained using hard references, so it is not garbage collected when the JVM is running
low on memory as is the Soft Cache Weak Identity Map Object Cache.

ptg6882136

544 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

This expires the cache every 30 minutes and forces the query to execute on the
database. By default, the results obtained by the query do not update the shared ses-
sion cache in EclipseLink; to change this behavior consider using the following hint:

<hint name="eclipselink.query-results-cache.expiry" value="1800000"/>

<hint name="eclipselink.query-results-cache.refreshOnlyIfNewer "
value="true"/>

This forces all queries that go to the database to refresh the cache only if the data
received from the database by a query is newer than the data in the cache based on
the optimistic locking field.

The preceding query hints can also be specified through the Query interface’s
setHint(String hintName, Object value) API.

Tip

It is a good performance practice to use named query whenever possible. Use pagination to
restrict the number of entities retrieved from the database. Use a query results cache for named
queries where applicable.

FetchType

FetchType specifies the data-fetching strategy used by a persistence provider
to fetch data from the database. FetchType is used on the @Basic annotation,
@LOB annotation, and relationship annotations such as @OneToMany, @Many
ToMany, @ManyToOne, and @OneToOne. The default for FetchType is EAGER, except
for many-to-many and one-to-many relationships, for which the default is LAZY. A
FetchType of EAGER means that a persistence provider loads the attributes of an
entity, whether basic or an entity relationship, when fetching an entity instance,
whereas a FetchType of LAZY is a hint to the provider that the attribute need not
be fetched along with the entity.

A FetchType of EAGER is a requirement on the persistence provider, whereas a
FetchType of LAZY is only a hint. So even though you may specify the FetchType
on an entity attribute to be LAZY, the persistence provider may choose to load the
attribute eagerly. In EclipseLink, specifying a FetchType of LAZY loads the entity
attribute lazily in the Java EE environment as bytecode enhancements are done

While caching provides a boost to performance, cached data may become stale.
EclipseLink provides for invalidation of cache using the following hints that can be
specified as a subelement of the query element in the orm.xml:

ptg6882136

Best Practices in Java Persistence 545

For the lazy fetchType, the relationship between the Order entity and the Order-
Line entity is marked as follows:

Figure 12-7 Performance comparison of eager versus lazy fetch types

EAGER LAZY

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

@OneToMany(cascade=CascadeType.ALL, mappedBy="order",
fetch=FetchType.EAGER)
 private Collection<OrderLine> lines;

@OneToMany(cascade=CascadeType.ALL, mappedBy="order",
fetch=FetchType.LAZY)
 private Collection<OrderLine> lines;

It is unlikely that a single fetchType on an entity relationship fits all use cases
in an application. Even though in most cases lazy fetch may be a good option, for
some cases, using eager fetch would be better. In such situations, it is best to specify
a fetchType of LAZY on the relationship through the annotations or deployment
descriptors so that a lazy fetch happens by default for the use cases that need a lazy
fetch and to use a JPA join fetch query to do an eager fetch for the use cases that
need an eager fetch.

on the deployed JPA entities. However, in the Java SE environment, by default, the
FetchType of LAZY is ignored for the following types of annotations: @OneToOne, @
ManyToOne, and @Basic.

A FetchType of LAZY benefits entities with one-to-many or many-to-many rela-
tionships, where the cardinality of the relationship is high, and the attributes are not
accessed immediately after the entity is loaded. Figure 12-7 shows the performance
of loading an Order entity with a 1:M relationship with OrderLine entity. The mean
cardinality of the relationship is around 50.

The eager fetch relationship between the Order entity and the OrderLine entity
is marked as follows:

ptg6882136

546 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

The named query in the preceding example when executed fetches the related
OrderLine objects along with the Order object with a specific status. The LEFT
keyword specifies that an order should be fetched even if it doesn’t contain any
related OrderLine objects

@NamedQuery(name=”selectByStatus”,
 query=”SELECT DISTINCT o FROM Order o LEFT JOIN FETCH o.lines
WHERE o.status = :status”)
@Entity
@Table(name = “ORORDERS”)
public class Order implements Serializable {
 ...
 @OneToMany(cascade=CascadeType.ALL, mappedBy=”order”)
 private Collection<OrderLine> lines;
 ...
}

<?xml version=”1.0” encoding=”UTF-8”?>
<persistence xmlns=”http://java.sun.com/xml/ns/persistence”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 <persistence-unit name=”ejb30”>
 <provider>org.eclipse.persistence.jpa.PersistenceProvider </provider>
 <jta-data-source>jdbc/ejb30</jta-data-source>
 </persistence-unit>
</persistence>

Tip

Select the fetchType based on the relationship. Use eager fetch for entities loaded together.
In cases where related entities may not be loaded together, use lazy fetch.

Connection Pooling

A JDBC connection pool allows a database client, EclipseLink in our case, to reuse
connections without having to go through the time-consuming process of creating
new connections to the database. Applications deployed in a Java EE container can
use the JDBC connection pool support provided by the container. For more informa-
tion on monitoring and tuning JDBC connection pools, refer to the “Monitoring and
Tuning Resource Pools” section in Chapter 9.

In the Java SE environment, EclipseLink connection pooling can be configured
through the use of EclipseLink-specific JPA extensions in the persistence.xml. In
the Java EE environment, EclipseLink can make use of application server-provided
connection pooling through the use of a predefined DataSource. Following is an
example of setting up the DataSource in the persistence.xml for EclipseLink in a
Java EE environment.

ptg6882136

Best Practices in Java Persistence 547

In this example, the ejb30 persistence unit is configured with an EclipseLink
provider and a JTA enabled DataSource with a JNDI name jdbc/ejb30. The Data
Source makes use of a JDBC connection pool whose max pool size should be set to
the number of request processing threads. In the case of an application that is purely
Web-based, this would be the HTTP request processing threads. If the application is
accessed through a direct client connection using the ORB such as in the case of a
direct client connection to a session bean, and the session bean accesses the database,
then the max connection pool size should also include the number of ORB threads.

Setting this value less than the number of request processing threads may force
the JPA implementation to block for an available database connection, reducing
the overall application throughput. To illustrate the effect of connection pool size,
the named query in Figure 12-8 was executed with a connection pool size of 4 and a
connection pool size of 12. The GlassFish application server was configured with 12
HTTP request processing threads.

As demonstrated in Figure 12-8, with a connection pool size of 4, the throughput
is 76% of the throughput with a connection pool size of 12. This is because in the case
of the connection pool of size 4, the request processing threads are waiting to get a
connection from the connection pool.

Figure 12-8 Performance impact of setting the connections pool size incorrectly

Size = 4 Size = 12

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1

1.2

Connection Pool Size

Tip

Set your connection pool size to be at least as high as the number of request processing
threads.

Refer to the “Application Server Monitoring” section of Chapter 9 for more details
on how to monitor the JDBC connection pools in GlassFish.

ptg6882136

548 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

The JDBC driver used to access the database is typically provided by the database
vendor. It is often the case that each driver has its own set of tuning parameters that
provide the best performance. For example, when using the Oracle JDBC driver, it is
important to enable statement caching as follows:

ImplicitCachingEnabled=true
MaxStatements=200

Bulk Updates

JPA QL allows bulk updates and deletes on entities of a single entity class and its
subclasses. In a bulk update or delete only one abstract schema type can be speci-
fied. Executing a bulk update using a JPA QL query can reduce the number of SQL
statements executed on the database. Consider the following example that cancels
all orders belonging to a customer.

Tip

Apply appropriate JDBC driver specific tunings for best performance.

} public cancelOrder(String customerID){
 Query q = em.createQuery(“ordersByCustomer”);
 q.setParameter(“customerID”, customerID);
 Collection<Order> orders = q.getResultList();

 for(Order o:orders){
 o.setStatus(Order.OrderStatus.CANCELLED);
 em.merge(o);
 }
}

The preceding implementation would result in as many SQL statements as there
are orders in the Collection returned by the query execution. Alternatively, we can
write the same implementation with a JPA QL query that updates the status on the
orders with a single SQL query.

@Entity(name=”OROrder”)
@NamedQueries(
 @NamedQuery(name=”bulkUpdateStatus”,
 query=”UPDATE order c SET c.status = ‘cancelled’ WHERE
c.customer.id=:customerID”))
public class Order implements Serializable{
 ...
 public cancelOrder(String customerID){
 Query q = em.createQuery(“bulkUpdateStatus”);
 q.setParameter(“customerID”, customerID);
 q.executeUpdate();
}

ptg6882136

Best Practices in Java Persistence 549

Figure 12-9 shows the performance of iterative versus bulk update for a customer
that has on average ten orders associated with it. The throughput of an iterative
update is 20% of the throughput achievable through a JPA QL bulk update.

It is important to note that the persistence context is not synchronized with the
result of a bulk update or delete, so bulk updates may result in inconsistencies between
the database and the persistence context. In general a safe approach to bulk updates
and deletes is to do it in a separate transaction or do it at the beginning of a transac-
tion before entities whose state might be affected by such operations are accessed.

Choose Correct Database Locking Strategy

As mentioned in the EJB 2.1 section, optimistic locking is a good strategy for main-
taining data consistency in applications without sacrificing performance but may
not always give the best performance for applications where the data is modified
often due to the cost of transaction rollbacks. In such cases pessimistic locking may
provide better performance. In Java Persistence, optimistic locking is implemented
using version consistency. Entities using this strategy are required to have a numeric
version attribute with a corresponding version column in database table. The follow-
ing example demonstrates how to configure optimistic locking.

Figure 12-9 Performance benefit of using bulk update

EM find
(Iterative)

JPAQL Bulk
Update

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

0

0.2

0.4

0.6

0.8

1.0

1.2

public class Order implements Serializable {
 ...
 @Version(column=”version”)
 private Long version;

 public Long getVersion() {
 return version;
 }
}

ptg6882136

550 Chapter 12 � Java Persistence and Enterprise Java Beans Performance

Reads without Transactions

The Java Persistence specification allows for entity manager operations that are
read-only to execute without a transaction. Nontransactional reads do not have the
overhead of starting and stopping a transaction and should be preferred in cases
where entity state is not being modified.

@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public Order getOrder(String id) {
 return em.find(Order.class, id));
}

In the preceding example, if the client code does not invoke the getOrder()
method in a transaction, the em.find() method looks up the appropriate Order
instance without a transaction.

Inheritance

The Java Persistence specification allows for an entity to inherit from another entity
or a nonentity. There are three strategies in the Java Persistence 1.0 specification for
mapping inheritance hierarchy to database tables.

� SINGLE_TABLE. Uses one table for all classes and distinguishes between
instance types by using a discriminator column.

� JOINED. Uses one table for the root class, and each subclass is represented
by a table that contains attributes specific to the subclass.

� TABLE_PER_CLASS. Uses one table per concrete class; this is an optional
strategy and is not required to be implemented by persistence providers.

The JOINED table strategy requires the use of SQL join operations on potentially
one or more tables and would seem to be poor in performance. However, the JOINED
inheritance strategy is not necessarily a bad choice with respect to performance.
Typically a SQL join will perform worse compared to a single table lookup when the
SQL join statement results in a table or index scan. As the cardinality of the join
increases, the performance correspondingly decreases. However, in the case of inheri-
tance using the JOINED strategy the cardinality of the relationship is always one,
and looking up single records using the primary key across tables through indexes,
which most databases automatically provide for records using their primary key,
makes no perceptible difference in performance.

ptg6882136

Bibliography 551

Bibliography

Enterprise JavaBean 3.0 Specification. http://jcp.org/aboutJava/communityprocess/
final/jsr220/index.html.

Enterprise JavaBeans 2.1 Specification. http://jcp.org/en/jsr/detail?id=153.

Biswas, Rahul, and Ed Ort. “The Java Persistence API—A Simpler Programming
Model for Entity Persistence.” http://www.oracle.com/technetwork/articles/javaee/
jpa-137156.html.

Java Persistence 2.0. http://jcp.org/aboutJava/communityprocess/final/jsr317/index.
html.

EclipseLink. http://www.eclipse.org/eclipselink/.

“Oracle Database Concepts: Data Concurrency and Consistency.” http://download.
oracle.com/docs/cd/B28359_01/server.111/b28318/consist.htm.

Sucharitakul, Akara. “Seven Rules for Optimizing Entity Beans.” http://java.sun.com/
developer/technicalArticles/ebeans/sevenrules/.

Oaks, Scott, Eileen Loh, and Rahul Biswas. “Writing Performant EJB Beans in the
Java EE 5 Platform (EJB 3.0) Using Annotations.” http://java.sun.com/developer/
technicalArticles/ebeans/ejb_30/.

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.eclipse.org/eclipselink/
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://jcp.org/en/jsr/detail?id=153
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/consist.htm
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/consist.htm
http://java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://java.sun.com/developer/technicalArticles/ebeans/ejb_30/
http://java.sun.com/developer/technicalArticles/ebeans/ejb_30/

ptg6882136

This page intentionally left blank

ptg6882136

553

Appendix A
HotSpot VM
Command Line
Options of Interest

This appendix contains a listing of Java HotSpot VM (also referred to as HotSpot here-
after) command line options of performance interest and any mentioned within this
book, along with a description of each option and when it is most applicable to use it.

Command line options that toggle on or off a feature or attribute of the HotSpot
VM have the form -XX:<+|−>FeatureName where + indicates enable the feature
and − indicates disable the feature.

Command line options that require a numerical value have the form
-XX:FeatureName=<n> where n is some numerical value. All command line options
that require a numerical value that controls the size of some attribute in kilobytes,
megabytes, or gigabytes accept the following suffixes: g, m, k. Other command line
options require a numerical value to express a ratio or a percentage.

-client
Specifies that the HotSpot VM should optimize for client applications. At the present
time, this option results in the use of the client JVM as the runtime environment.
This command line option should be used when application startup time and small
memory footprint are the most important performance criteria for the application,
much more important than high throughput.

-server
Specifies that the HotSpot VM should optimize for server applications. At the present
time, this option results in the use of the server JVM as the runtime environment.
This command line option should be used when high application throughput is more
important than startup time and small memory footprint.

ptg6882136

554 Appendix A � HotSpot VM Command Line Options of Interest

-d64
Loads the 64-bit HotSpot VM instead of the default HotSpot 32-bit VM.

This command line option should be used when there is a need to use a larger Java
heap size than is possible with a 32-bit HotSpot VM. -XX:+UseCompressedOops
should also be used in conjunction with this command line option for -Xmx and -Xms
values less than 32 gigabytes. HotSpot versions later than Java 6 Update 18 enable
-XX:+UseCompressedOops by default.

Also see -XX:+UseCompressedOops.

-XX:+UseCompressedOops
Enables a feature called compressed oops. Oops stands for ordinary object pointer, which
is the means by which the HotSpot VM represents a reference to a Java object internally.

64-bit JVMs come with a performance penalty due to an increase in the size of
Java references from 32 bits to 64 bits. This increase in width results in fewer ordi-
nary object pointers being available on a CPU cache line, and as a result decreases
CPU cache efficiency. The decrease in CPU cache efficiency on 64-bit JVMs often
results in about an 8% to 20% performance degradation compared to a 32-bit JVM.
-XX:+UseCompressedOops can yield 32-bit JVM performance with the benefit

of larger 64-bit JVM heaps. Some Java applications realize better performance with
a 64-bit HotSpot VM using compressed oops than with a 32-bit HotSpot VM. The
performance improvement realized from compressed oops arises from being able to
transform a 64-bit pointer into a 32-bit offset from a Java heap base address.

Useful when you want a Java heap larger than what can be specified for a 32-bit
HotSpot VM but are not willing to sacrifice 32-bit VM performance. It should be used
when specifying a Java heap up to 32 gigabytes (-Xmx32g), though best performance
is realized up to about 26 gigabytes (-Xmx26g).

Also see -d64.

-Xms<n>[g|m|k]
The initial and minimum size of the Java heap, which includes the total size of the
young generation space and old generation space. <n> is the size. [g|m|k] indicates
whether the size should be interpreted as gigabytes, megabytes, or kilobytes. The
Java heap will never be smaller than the value specified for -Xms.

When -Xms is smaller than -Xmx, the size of Java heap may grow or contract
depending on the needs of the application. However, growing or contracting the
Java heap requires a full garbage collection. Applications with a focus on latency or
throughput performance tend to set -Xms and -Xmx to the same value.

-Xmx<n>[g|m|k]
The maximum size of the Java heap, which includes the total size of the young gen-
eration space and old generation space. <n> is the size. [g|m|k] indicates whether
the size should be interpreted as gigabytes, megabytes, or kilobytes. The Java heap
will never grow to more than the value specified for -Xmx.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 555

When -Xmx is larger than -Xms, the size of Java heap may grow or contract depend-
ing on the needs of the application. However, growing or contracting the Java heap
requires a full garbage collection. Applications with a focus on latency or throughput
performance tend to set -Xms and -Xmx to the same value.

-XX:NewSize=<n>[g|m|k]
The initial and minimum size of the young generation space. <n> is the size. [g|m|k]
indicates whether the size should be interpreted as gigabytes, megabytes, or kilo-
bytes. The young generation space will never be smaller than the value specified.

When -XX:NewSize is smaller than -XX:MaxNewSize, the size of the young
generation space may grow or contract depending on the needs of the application.
However, growing or contracting the young generation space requires a full garbage
collection. Applications with a focus on latency or throughput performance tend to
set -XX:NewSize and -XX:MaxNewSize to the same value.

-XX:MaxNewSize=<n>[g|m|k]
The maximum size of the young generation space. <n> is the size. [g|m|k] indicates
whether the size should be interpreted as gigabytes, megabytes, or kilobytes. The
young generation space will never be larger than the value specified.

When -XX:MaxNewSize is larger than -XX:NewSize, the size of the young
generation space may grow or contract depending on the needs of the application.
However, growing or contracting the young generation space requires a full garbage
collection. Applications with a focus on latency or throughput performance tend to
set -XX:MaxNewSize and -XX:NewSize to the same value.

-Xmn<n>[g|m|k]
Sets the initial, minimum, and maximum size of the young generation space. <n>
is the size. [g|m|k] indicates whether the size should be interpreted as gigabytes,
megabytes, or kilobytes. The young generation space size will be set to the value
specified.

A convenient shortcut command line option to use when it is desirable to set
-XX:NewSize and -XX:MaxNewSize to the same value.

-XX:NewRatio=<n>
The ratio between the young generation space size and old generation space size. For
example, if n is 3, then the ratio is 1:3, and the young generation space size is one-
fourth of the total size of young generation space and old generation space. The ratio
of the sizes of both young generation space and old generation space are maintained
if the Java heap grows or contracts.

A convenient command line option when -Xms and -Xmx are different sizes and
there is a desire to maintain the same ratio of space between young generation space
and old generation space.

ptg6882136

556 Appendix A � HotSpot VM Command Line Options of Interest

-XX:PermSize=<n>[g|m|k]
The initial and minimum size of the permanent generation space. <n> is the size.
[g|m|k] indicates whether the size should be interpreted as gigabytes, megabytes, or
kilobytes. The permanent generation space will never be smaller than the value specified.

When -XX:PermSize is smaller than -XX:MaxPermSize, the size of the per-
manent generation space may grow or contract depending on the needs of the
application, in particular the need to load classes or store interned Strings. How-
ever, growing or contracting the permanent generation space requires a full garbage
collection. Applications with a focus on latency or throughput performance tend to
set -XX:PermSize and -XX:MaxPermSize to the same value.

-XX:MaxPermSize=<n>[g|m|k]
The maximum size of the permanent generation space. <n> is the size. [g|m|k] indi-
cates whether the size should be interpreted as gigabytes, megabytes, or kilobytes.
The permanent generation space will never be larger than the value specified.

When -XX:MaxPermSize is larger than -XX:PermSize, the size of the per-
manent generation space may grow or contract depending on the needs of the
application, in particular the need to load classes or store interned Strings. How-
ever, growing or contracting the permanent generation space requires a full garbage
collection. Applications with a focus on latency or throughput performance tend to
set -XX:PermSize and -XX:MaxPermSize to the same value.

-XX:SurvivorRatio=<n>
The ratio of the size of each survivor space to the eden space size, where <n> is the
ratio. The following equation can be used to determine the survivor space size for a
ratio specified with -XX:SurvivorRatio=<n>:
survivor size = -Xmn<n>/(-XX:SurvivorRatio=<n> + 2)where -Xmn<n>

is the size of the young generation space and -XX:SurvivorRatio=<n> is the value
specified as the ratio. The reason for the + 2 in the equation is there are two sur-
vivor spaces. The larger the value specified as the ratio, the smaller the survivor
space size.
-XX:SurvivorRatio=<n> should be used when you want to explicitly size sur-

vivor spaces to manipulate object aging with the concurrent garbage collector, or to
manipulate object aging with the throughput garbage collector when adaptive sizing
is disabled using the command line option -XX:-UseAdaptiveSizePolicy.
-XX:SurvivorRatio=<n> should not be used with the throughput collector with

adaptive sizing enabled. By default adaptive sizing is enabled with the throughput
garbage collector by -XX:+UseParallelGC or -XX:+UseParallelOldGC. If an ini-
tial survivor ratio is desired for the throughput garbage collector’s adaptive sizing to
begin with, then -XX:InitialSurvivorRatio=<n> should be used.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 557

-XX:InitialSurvivorRatio=<n>
The initial survivor space ratio to use with the throughput garbage collector, where
<n> is the ratio. It is only the initial survivor space ratio. This command line option
is intended to be used with the throughput garbage collector with adaptive sizing
enabled. Adaptive sizing resizes survivor spaces as the application behavior warrants.

The following equation can be used to determine the initial survivor space size for
a ratio specified with -XX:InitialSurvivorRatio=<n>:
initial survivor size = -Xmn<n>/(-XX:InitialSurvivorRatio=<n> +

2)where -Xmn<n> is the size of the young generation space and -XX:Initial
SurvivorRatio=<n> is the value specified as the ratio. The reason for the + 2 in
the equation is there are two survivor spaces. The larger the value specified as the
initial ratio, the smaller the initial survivor space size.
-XX:InitialSurvivorRatio=<n> should be used with the throughput collec-

tor with adaptive sizing enabled when there is a desire to specifically initially size
survivor spaces. By default, adaptive sizing is enabled with the throughput garbage
collector using -XX:+UseParallelGC or -XX:+UseParallelOldGC.

If adaptive sizing is disabled, or the concurrent collector is in use, the
-XX:SurvivorRatio=<n> command line option should be used when you want to
explicitly size survivor spaces to manipulate object aging for the entire execution of
the application.

-XX:TargetSurvivorRatio=<percent>
The survivor space occupancy the HotSpot VM should attempt to target after a minor
garbage collection. The value to specify is a percentage of the size of a survivor space,
rather than a ratio. Its default value is 50%.

Tuning the target survivor occupancy is rarely required. Through extensive test-
ing of a vast variety of different types of application workloads by the HotSpot VM
engineering team, a 50% target survivor space occupancy tends to work best for most
applications since it helps deal with spikes in surviving objects seen at minor garbage
collections in many disparate types of Java applications.

If the application being fine-tuned has a relatively consistent object allocation
rate, it is acceptable to raise the target survivor occupancy to something as high as
-XX:TargetSurvivorRatio=80 or -XX:TargetSurvivorRatio=90. The advan-
tage of being able to do so helps reduce the amount of survivor space needed to
age objects. The challenge with setting -XX:TargetSurvivorRatio=<percent>
higher is the HotSpot VM not being able to better adapt object aging in the presence
of spikes in object allocation rates, which can lead to tenuring objects sooner than
you would like. Tenuring objects too soon can contribute to increasing old generation
space occupancy, which may lead to a higher probability of fragmentation since some
of those promoted objects may not be long-lived objects and must be garbage collected

ptg6882136

558 Appendix A � HotSpot VM Command Line Options of Interest

in a future concurrent garbage collection cycle. Fragmentation is a situation to avoid
since it contributes to the eventual likelihood of a full garbage collection.

-XX:+UseSerialGC
Enables the single threaded, stop-the-world, young generation, and old genera-
tion garbage collector. It is the oldest and most mature of the HotSpot VM garbage
collectors.

Generally, -XX:+UseSerialGC should be used only for small Java heap sizes such
as -Xmx256m or smaller. The throughput garbage collector or concurrent garbage col-
lector should be used in favor of -XX:+UseSerialGC with larger heap sizes.

-XX:+UseParallelGC
Enables the HotSpot VM’s multithreaded, stop-the-world throughput garbage col-
lector. Only the young generation space utilizes a multithreaded garbage collector.
The old generation space uses a single-threaded stop-the-world garbage collector.

If -XX:+UseParallelOldGC is supported by the version of the HotSpot VM in
use, -XX:+UseParallelOldGC should be used in favor of -XX:+UseParallelGC.

Also see -XX:ParallelGCThreads.

-XX:+UseParallelOldGC
Enables the HotSpot VM’s multithreaded, stop-the-world throughput garbage collec-
tor. Unlike -XX:+UseParallelGC, both a multithreaded young generation garbage
collector and a multithreaded old generation garbage collector are used.
-XX:+UseParallelOldGC auto-enables -XX:+UseParallelGC.
If -XX:+UseParallelOldGC is not available in the HotSpot VM ver-

sion in use, either migrate to a more recent version of the HotSpot VM or use
-XX:+UseParallelGC.

Also see -XX:ParallelGCThreads.

-XX:-UseAdaptiveSizePolicy
Disables, (note the ‘–’ after the –XX: and before UseAdaptiveSizePolicy), a feature
called adaptive sizing of the young generation’s eden and survivor spaces. Only the
throughput garbage collector supports adaptive sizing. Enabling or disabling adap-
tive sizing with either the concurrent garbage collector or the serial garbage collec-
tor has no effect.

Specifying the throughout garbage collector via -XX:+UseParallelGC and
-XX:+UseParallelOldGC auto-enables adaptive sizing.

Adaptive sizing should be disabled only in situations where there is a desire to
achieve higher performance throughput than can be offered with adaptive sizing
enabled.

Also see -XX:+PrintAdaptiveSizePolicy.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 559

-XX:+UseConcMarkSweepGC
Enables the HotSpot VM’s mostly concurrent garbage collector. It also auto-enables
-XX:+UseParNewGC a multithreaded young generation garbage collector to use with
the old generation concurrent garbage collector called CMS.

The concurrent garbage collector should be used when application latency require-
ments cannot be met by the throughput garbage collector. Fine-tuning of young gen-
eration size, survivor space size, and the initiating of the CMS garbage collection
cycle are usually required when using the concurrent garbage collector.

-XX:+UseParNewGC
Enables a multithreaded, stop-the-world, young generation garbage collector that
should be used with the mostly concurrent old generation garbage collector CMS.
-XX:+UseParNewGC is auto-enabled when -XX:+UseConcMarkSweepGC is

specified.
Also see -XX:ParallelGCThreads.

-XX:ParallelGCThreads=<n>
Controls the number for parallel garbage collection threads to run when the multi-
threaded garbage collectors <n> is the number of threads to run.

<n> defaults to the number returned by the Java API Runtime.available
Processors() if the number returned is less than or equal to 8; otherwise, it
defaults to 5/8 the number returned by Runtime.availableProcessors().

In cases where multiple applications are running on the same system, it is
advisable to explicitly set the number of parallel garbage collection threads with
-XX:ParallelGCThreads to a number lower than the default chosen by the Hot-
Spot VM. The total number of garbage collection threads running on a system should
not exceed the value returned by Runtime.availableProcessors().

-XX:MaxTenuringThreshold=<n>
Sets the maximum tenuring threshold to <n>.

Used by the HotSpot VM as the maximum object age threshold at which it should
promote objects from the young generation space to the old generation space.

The -XX:MaxTenuringThreshold should be used when using the concurrent
collector and fine-tuning the survivor spaces for effective object aging.

Also see -XX:+PrintTenuringDistribution.

-XX:CMSInitiatingOccupancyFraction=<percent>
The percent of old generation space occupancy at which the first CMS garbage col-
lection cycle should start. Subsequent starts of the CMS cycle are determined at a
HotSpot ergonomically computed occupancy.

If -XX:+UseCMSInitiatingOccupancyOnly is also specified, it is the percent of
old generation space occupancy at which all CMS garbage collection cycles should start.

ptg6882136

560 Appendix A � HotSpot VM Command Line Options of Interest

Generally, it is advisable to use both -XX:CMSInitiatingOccupancyFraction=
<percent> and -XX:+UseCMSInitiatingOccupancyOnly.

-XX:+UseCMSInitiatingOccupancyOnly
Indicates all concurrent garbage collection CMS cycles should start based on the
value of the -XX:CMSInitiatingOccupancyFraction.

Generally, it is advisable to use both -XX:CMSInitiatingOccupancyFraction=
<percent> and -XX:+UseCMSInitiatingOccupancyOnly.

Also see -XX:CMSInitiatingPermOccupancyFraction and -XX:CMSInitiat
ingOccupancyFraction=<percent>.

-XX:CMSInitiatingPermOccupancyFraction=<percent>
The percent of permanent generation space occupancy at which the first CMS gar-
bage collection cycle should start. Subsequent starts of the CMS cycle are determined
at a HotSpot ergonomically computed occupancy.

If -XX:+UseCMSInitiatingOccupancyOnly is also specified, it is the percent of
permanent generation space occupancy at which all CMS garbage collection cycles
should start.

Generally, it is advisable to use both -XX:CMSInitiatingPermOccupancy
Fraction=<percent> and -XX:+UseCMSInitiatingOccupancyOnly.

Also see -XX:+UseCMSInitiatingOccupancyOnly.

-XX:+CMSClassUnloadingEnabled
Enables concurrent garbage collection of permanent generation.

Use -XX:+CMSClassUnloadingEnabled when it is desirable for garbage collec-
tion of permanent generation to use CMS.

Use of the Java 6 Update 3 or earlier also requires the use of -XX:+CMSPermGen
SweepingEnabled.

-XX:+CMSPermGenSweepingEnabled
Enables permanent generation CMS garbage collection sweeping.
Only applicable for Java 6 Update 3 or earlier JDKs and when

-XX:+CMSClassLoadingEnabled is used.

-XX:+CMSScavengeBeforeRemark
Instructs the HotSpot VM to perform a minor garbage collection prior to executing
a CMS remark.

A minor garbage collection just prior to a CMS remark can minimize the amount of
work for the remark phase by reducing the number of objects that may be reachable
from the old generation space into the young generation space.

Useful when wanting to reduce the duration of time it takes to complete a CMS
cycle, especially a CMS remark.

Also see -XX:+UseConcMarkSweepGC.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 561

-XX:+ScavengeBeforeFullGC
Instructs the HotSpot VM to garbage collect the young generation space before exe-
cuting a full garbage collection.

This is the default behavior for the HotSpot VM.
It is generally not advisable to disable this option via -XX:-ScavengeBeforeFullGC

since garbage collecting the young generation space before a full garbage collection can
reduce the number of objects that may be reachable from the old generation space into
the young generation space.

-XX:+ParallelRefProcEnabled
Enables multithreaded reference processing.

This option can shorten the amount of time it takes the HotSpot VM to process
Reference objects and finalizers.

-XX:+ExplicitGCInvokesConcurrent
Requests the HotSpot VM to execute any explicit GCs, i.e., System.gc() calls, to
invoke a CMS cycle rather than a stop-the-world GC.

Useful when it is desirable to avoid an explicit stop-the-world full garbage
collection.

It is generally advisable to use -XX:+ExplicitGCInvokesConcurrentAndUn
loadsClasses in favor of -XX:+ExplicitGCInvokesConcurrent.

Also see -XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses.

-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses
Same as -XX:+ExplicitGCInvokesConcurrent with the addition of unloading of
classes from the permanent generation space.

It is generally advisable to use the -XX:+ExplicitGCInvokesConcurrentAnd
UnloadsClasses command line option over -XX:+ExplicitGCInvokesConcur
rent.

-XX:+DisableExplicitGC
Disables full garbage collections invoked as a result of an explicit call to System.
gc().

Useful in applications that explicitly call System.gc() without a known or justi-
fied reason to explicitly request a full garbage collection.

Also see -XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses and
-XX:+ExplicitGCInvokesConcurrent.

-XX:+CMSIncrementalMode
Enables the incremental CMS concurrent garbage collector in which the concurrent
phases of CMS are done incrementally, periodically stopping the concurrent phase
to yield back the processor to application threads.

Generally not recommended for multicore systems or large Java heaps.

ptg6882136

562 Appendix A � HotSpot VM Command Line Options of Interest

-XX:+CMSIncrementalPacing
Enables automatic control of the amount of work the incremental CMS collector is
allowed to do before giving up the processor, based on application behavior.

Use only with -XX:+CMSIncrementalMode.

-verbose:gc
Enables reporting of basic garbage collection information at each garbage collection.

Recommend using -XX:+PrintGCDetails over -verbose:gc.

-XX:+PrintGC
Enables reporting of basic garbage collection information at each garbage collection.
Reports the same information as -verbose:gc.

Recommend using -XX:+PrintGCDetails over -XX:+PrintGC.

-Xloggc:<filename>
Enables reporting of garbage collection statistics to a file with the supplied name
for <filename>.

A recommended practice is to capture to a log file with a minimum of the
output of -XX:+PrintGCTimeStamps or -XX:+PrintGCDateStamps and
-XX:+PrintGCDetails.

-XX:+PrintGCDetails
Enables detailed reporting of garbage collection statistics from young generation, old
generation, and permanent generation space.

Recommended to use -XX:+PrintGCDetails over -verbose:gc and use
-Xloggc:<filename> to capture the data in a log file.

-XX:+PrintGCTimeStamps
Enables the printing of a time stamp at each garbage collection indicating the amount
of elapsed time since the JVM launched.

Recommended to use -XX:+PrintGCTimeStamps or -XX:+PrintGCDateStamps
with -XX:+PrintGCDetails to provide a context of time when a garbage collection
occurred.

-XX:+PrintGCDateStamps
Enables the printing of a localized date and time stamp at each garbage collection
indicating the current date and time.

Use -XX:+PrintGCDateStamps over -XX:+PrintGCTimeStamps when it is desir-
able to see wall clock time over a time stamp representing the time since JVM launch.

Recommended to use -XX:+PrintGCTimeStamps or -XX:+PrintGCDateStamps
with -XX:+PrintGCDetails to provide a context of time when a garbage collection
occurred.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 563

-XX:+PrintTenuringDistribution
Enables the reporting of object tenuring statistics including the desired occupancy
of survivor spaces to avoid premature tenuring of objects from a survivor space into
old generation space, the HotSpot VM’s calculated tenuring threshold, the current
maximum tenuring threshold, and an object age histogram showing object ages cur-
rently held in the survivor space.

Useful to obtain tenuring information and object age information when tuning
the young generation’s survivor spaces to control object aging or when objects are
tenured to the old generation with the concurrent or serial garbage collector.

Advisable to use this option in applications emphasizing low latency and continu-
ously fine-tuning object aging or when objects are promoted from survivor space to
old generation space.

-XX:+PrintAdaptiveSizePolicy
Enables the reporting of detailed garbage collection statistics of the throughput gar-
bage collector including information on the number of bytes that have survived a
minor garbage collection, how many bytes have been promoted in a minor garbage
collection, whether survivor space has overflowed, a time stamp of when the minor
garbage collection started, the major cost, mutator cost, the throughput goal, the
amount of live space bytes, amount of free space bytes, the previous promotion size,
the previous eden size, the desired promotion size, the desired eden size, and the
current survivor space sizes.

When adaptive sizing is disabled via -XX:-UseAdaptiveSizePolicy, reports
only the number of bytes that have survived a minor garbage collection, how many
bytes have been promoted in a minor garbage collection, and whether survivor space
has overflowed.

Useful when disabling adaptive sizing, -XX:-UseAdaptiveSizePolicy. The
statistics produced are useful when explicitly fine-tuning the sizes of young genera-
tion’s eden and survivor spaces for effective object aging and tenuring of objects from
survivor spaces to old generation space.

Also see -XX:-UseAdaptiveSizePolicy.

-XX:+PrintGCApplicationStoppedTime
Enables the printing of the amount of time application threads have been stopped
as the result of an internal HotSpot VM operation including stop-the-world garbage
collections, stop-the-world phases of the CMS garbage collector, and any other safe-
point operations.

Useful in applications emphasizing low latency and wanting to correlate latency
events to HotSpot VM induced latencies as the result of safepoint operations.

Also see -XX:+PrintGCApplicationConcurrentTime and -XX:+PrintSafe
pointStatistics.

ptg6882136

564 Appendix A � HotSpot VM Command Line Options of Interest

-XX:+PrintGCApplicationConcurrentTime
Enables the printing of the amount of time application threads have been executing
concurrently with internal HotSpot VM threads. In other words, the amount of time
application threads have been executing between HotSpot VM operations that caused
application threads to be stopped.

Useful in an application emphasizing low latency and wanting to correlate latency
events to HotSpot VM induced latencies as the result of safepoint operations.

Also see -XX:+PrintGCApplicationStoppedTime and -XX:+PrintSafepoint
Statistics.

-XX:+PrintSafepointStatistics
Enables the printing of HotSpot VM safepoint operations that have occurred and
when they occurred. The output is printed at VM exit time. The output contains a
line of output for each safepoint that occurred. Each line contains the time since VM
launch of the safepoint operation occurred, type of VM operation, current number
of threads active in the VM, current number of threads, current number of threads
initially running, current number of threads waiting to block, amount of time in
milliseconds threads spent spinning, amount of time in milliseconds threads spent
blocked, amount of time threads spent in milliseconds synchronizing, amount of time
in milliseconds threads spent cleaning, amount of time in milliseconds spent in VM
operations, and number of page traps.

A summary is printed at the end of the output summarizing the number of differ-
ent safepoint operations along with a maximum synchronization time in milliseconds
and the safepoint operation that took the maximum amount of time.

Useful for applications emphasizing low latency and wanting to correlate latency
events to HotSpot VM induced latencies as the result of safepoint operations.

Also see -XX:+PrintGCApplicationStoppedTime and -XX:+PrintGCAppli
cationConcurrentTime.

-XX:+BackgroundCompilation
Instructs the JIT compiler to run as a background task, running the method in inter-
preter mode until the background compilation is finished.

This option is enabled by default in HotSpot VMs.
When writing micro-benchmarks, it can be useful to disable background compila-

tion, -XX:-BackgroundCompilation, in an attempt to produce more deterministic
behavior of the JIT compiler and more deterministic results of the micro-benchmark.
-XX:-BackgroundCompilation, disabling background compilation, is also

accomplished with -Xbatch.
Also see -Xbatch.

-Xbatch
Disables JIT compiler background compilation, equivalent to -XX:-Background
Compilation. Normally the HotSpot VM compiles the method as a background task,

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 565

running the method in interpreter mode until the background compilation is finished.
-XX:-BackgroundCompilation and -Xbatch disable background compilation so
that JIT compilation of methods proceeds as a foreground task until completed.

When writing micro-benchmarks, it can be useful to disable background compila-
tion in an attempt to get more deterministic behavior of the JIT compiler and more
deterministic results of the micro-benchmark.
-Xbatch, disabling background compilation, is also accomplished with

-XX:-BackgroundCompilation.
Also see -XX:+BackgroundCompilation.

-XX:+TieredCompilation
Enables a JIT compilation policy to make initial quick JIT compilation decisions
analogous to optimizations made by the HotSpot VM’s -client runtime and then
continue to make more sophisticated JIT compilation decisions similar to those made
by the VM’s -server runtime for frequently called Java methods in the program.

In short, it uses a combination of the best of both -client and -server run-
times, quick compilation along sophisticated optimizations for frequently called Java
methods.

At the time of this writing, it is not recommended to use this command line option
as a replacement for the -server runtime since the -server runtime offers bet-
ter peak performance. This recommendation may change in the future as the tiered
compilation feature is enhanced.

Client applications running Java 6 Update 25 or later may consider using this com-
mand line option with the -server runtime (-server -XX:+TieredCompilation)
as an alternative to the -client runtime. It is recommended you measure appli-
cation startup performance and application responsiveness to assess whether the
-server runtime with -XX:+TieredCompilation is better suited for the applica-
tion than the -client runtime.

-XX:+PrintCompilation
Enables the printing of JIT compilation information for each method optimized by
the HotSpot VM’s JIT compiler.

Useful when wanting to know more about JIT compilation activities and in the
creation or evaluation of micro-benchmarks.

Description of the output produced is as follows:
<id> <type> <method name> [bci] <(# of bytes)>
where id is
 compile id, (uses at least three columns)
 --- if compiled method is a native method
type is none or more of
 % – compile for on stack replacement (osr)

ptg6882136

566 Appendix A � HotSpot VM Command Line Options of Interest

 * | n – compiled method is native
 s – compiled method is synchronized
 ! – compiled method has exception handler
 b – interpreter blocked until compile completes
 1 – compile without full optimization, tier 1 compilation
 made not entrant – method deoptimized
 made zombie – compiled method no longer valid
method name is
 method name without signature
bci is
 @ ## - for osr compiles, bytecode index of osr
of bytes is
 (## bytes) - # of bytes of bytecodes in method
Additional information on “made not entrant” and “made zombie”: “made not

entrant” and “made zombie” are life cycle states of a JIT compiled method. Live JIT
compiled methods are “made not entrant” as a result of executing an uncommon trap
in the generated (machine) code. Uncommon traps are used to handle situations
such as references to unloaded classes and to recover from some optimistic optimiza-
tion that made assumptions that later turned out to be invalid. More formally, JIT
compiled methods reported as “made not entrant” may still have live activations but
are not allowed to run new activations. JIT compiled methods that are reported as
“made zombie” are a later life cycle state. It means that there are no live activations
of that compiled method. JIT compiled methods can go directly to the zombie state
when a class is unloaded since it is known that all methods referencing that class
are no longer live. JIT compiled methods reported as “made not entrant” transition
to a reported “made zombie” state after the JIT compiler has detected that there no
longer exists any live activations for that JIT compiled method. Once the JIT com-
piler is sure no other compiled method has references to a “made zombie” method,
the “made zombie” method is freed. That is, it can be freed from the VM’s code cache
where generated code is stored.

It is possible the output from -XX:+PrintCompilation may suggest that a
method that is known to be executed frequently by an application has been deopti-
mized, but the output does not reflect that the method has been reoptimized. This
can occur as a side-effect of method inlining done by the JIT compiler. If a frequently
executed method is reported as deoptimized and it had been inlined, it is possible
the -XX:+PrintCompilation output may not report the method as having been
reoptimized.

-XX:+PrintInlining
Reports methods that are inlined or attempted to be inlined along with method byte
size in bytecode.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 567

Use of -XX:+PrintInlining requires what is known as a HotSpot debug VM.
Information from -XX:+PrintInlining can be used to fine-tune

-XX:MaxInlineSize=<n>.

-XX:MaxInlineSize=<n>
Sets the maximum bytecode size beyond which a method is not inlined unless there
is strong evidence that it should be inlined, such as profile information that suggests
the method is a hot method.

It is not advisable to use this command line option. Rarely do applications benefit
from explicitly setting -XX:MaxInlineSize.

This command line option is only included since it is mentioned in Chapter 8,
“Benchmarking Java Applications,” as part of illustrating unexpected observations
in micro-benchmarks.

Also see -XX:+PrintInlining.

-XX:+PrintOptoAssembly
Reports optimization decisions made by the HotSpot Server JIT compiler including
generated assembly.

Requires a HotSpot debug Server VM (works only with -server switch on Hot-
Spot debug VMs).

Useful for understanding and evaluating optimization decisions made by the
Server JIT compiler, especially in micro-benchmarks.

Generally, using a profiling tool such as Oracle Solaris Studio Performance Ana-
lyzer on Oracle Solaris or Linux offers a better way to observe compiler generated
code for applications larger than a micro-benchmark. But, it does not offer any infor-
mation on optimization decisions the compiler made in arriving at the generated
assembly code shown in the Performance Analyzer.

-XX:+HeapDumpOnOutOfMemoryError
Enables the generation of a heap dump of the JVM’s heap spaces when an Out-
OfMemoryError occurs.

The heap dump created in the directory where the JVM is launched having a
filename of the form java_pid<JVM process id>.hprof, where <JVM process
id> is the process id of the JVM process executing the Java application.

Useful when wanting to be able to perform memory usage analysis in the event
an OutOfMemoryError occurs in a Java application.

Also see -XX:HeapDumpPath=<path>.

-XX:HeapDumpPath=<path>
Sets the directory path to where a heap dump file is created to the path specified as
<path>.

ptg6882136

568 Appendix A � HotSpot VM Command Line Options of Interest

Useful when wanting to direct the generation of a heap dump file to a specific
directory location.

Also see -XX:+HeapDumpOnOutOfMemoryError.

-XX:OnOutOfMemoryError=<command or set of commands>
Enables the ability for a command or set of commands to be run when the HotSpot
VM experiences an OutOfMemoryError.

Useful when specific commands or operations are desirable if an OutOfMemory-
Error occurs.

Also see -XX:+HeapDumpOnOutOfMemoryError and -XX:HeapDumpPath.

-XX:+ShowMessageBoxOnError
Enables an ability to have the HotSpot VM, before it exits, to display a dialog (GUI)
box saying it has experienced a fatal error.

This command line option essentially prevents the VM from exiting and provides the
opportunity to attach a debugger to the VM to investigate the cause of the fatal error.

Useful when wanting to diagnose a VM before it exits as a result of a fatal error.

-XX:OnError=<command or set of commands>
Enables the ability to invoke a set of commands when the application experiences
an unexpected HotSpot VM exit.

Useful when it is desirable to collect specific system information or invoke a debug-
ger such as Oracle Solaris or Linux dbx or Window’s Winddbg to immediately exam-
ine the unexpected VM exit.

-Xcheck:jni
Enables an alternative set of debugging interfaces to be used by a Java application using
the Java Native Interface to help with debugging issues associated with or introduced by
the use of native code in a Java application. The alternative Java Native Interface intro-
duced with this command line option verifies arguments to Java Native Interface calls
more stringently, as well as performing additional internal consistency checks.

Useful when wanting to confirm a JVM execution issue is not the result of an issue
in how Java Native Interface methods are invoked.

-XX:+AggressiveOpts
Enables the latest HotSpot VM performance optimizations.

Useful for a Java application in need of all the performance it can find.
Performance optimizations when first introduced in the HotSpot VM usually come

in under this command line option. After one or more releases, those optimizations
are made the default.

For application’s where stability or availability of the application is more impor-
tant than performance, it is not suggested to use this command line option.

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 569

-XX:+AggressiveHeap
An encompassing command line option that enables a larger set of aggressive options
including, but not limited to Java heap size and configuration or performance features.

It is recommended to use -XX:+AggressiveOpts in favor of using
-XX:+AggressiveHeap.

Also see -XX:+AggressiveOpts.

-XX:+UseBiasedLocking
Enables biased locking feature.

Introduced in Java 5 HotSpot VMs; when enabled, it biases locking to the thread
that previously held the lock. In uncontended lock situations, near lock free overhead
can be realized.

In Java 5 HotSpot VMs -XX:+UseBiasedLocking must be explicitly enabled
to use the feature. In Java 6 HotSpot VMs this feature is automatically enabled by
default. It must be explicitly disabled, -XX:-UseBiasedLocking, if this feature is
not desired with Java 6 HotSpot VMs.

Generally useful for most Java applications.
Applications that predominately utilize locks in a manner where the thread that

acquires a lock is not the same as the thread that acquired it last. An example would
be an application where locking activity is dominated by locking activity around
worker thread pools and worker threads. In this family of Java applications, since
a HotSpot VM safepoint operation is required to revoke bias, it may be beneficial to
explicitly disable biased locking, -XX:-UseBiasedLocking.

-XX:+DoEscapeAnalysis
Enables escape analysis optimization feature. An object, after it is allocated by some
executing thread “escapes” if some other thread can ever see the allocated object. If
an object does not escape, the HotSpot VM Server JIT compiler may perform any or
all of the following optimizations:

� Object explosion; allocate an object’s fields in different places and potentially
eliminate object allocations.

� Scalar replacement; store scalar fields in CPU registers.
� Thread stack allocation; store object fields in a stack frame.
� Eliminate synchronization.
� Eliminate garbage collection read/write barriers.

-XX:+DoEscapeAnalysis is automatically enabled with -XX:+AggressiveOpts,
but otherwise disabled by default in Java 6 updates prior to Java 6 Update 23.

Introduced in Java 6 Update 14.
Also see -XX:+AggressiveOpts.

ptg6882136

570 Appendix A � HotSpot VM Command Line Options of Interest

-XX:+UseLargePages
Enables use of large memory pages in the HotSpot VM.

Automatically enabled on Oracle Solaris platforms. Not automatically enabled on
Linux or Windows platforms.

Use of -XX:+UseLargePages can reduce TLB (translation lookaside buffer)
misses.

32-bit Intel and AMD x86 support 4 megabyte pages.
64-bit Intel and AMD x64 support 2 megabyte pages.
Recent 64-bit Intel and AMD x64 supports up to 1 gigabyte pages.
SPARC T-series supports up to 256 megabyte pages with recent T-series support-

ing up to 2 gigabyte pages.
Oracle Solaris pagesize -a command reports page sizes supported by the under-

lying hardware. Large page support on Oracle Solaris requires no additional operat-
ing system configuration changes.

Linux getconf PAGESIZE or getconf PAGE_SIZE reports the currently con-
figured page size. Linux requires additional operating system setup and configura-
tion. The modifications required can vary depending on the Linux distribution and
Linux kernel. It is advisable to consult a Linux administrator or your Linux distribu-
tion documentation for the appropriate changes.

Windows requires additional operating system setup and configuration, see
Chapter 7, Tuning the JVM, Step by Step for instructions. Not all Windows operat-
ing systems provide large page support.

Also see -XX:LargePageSizeInBytes and -XX:+AlwaysPreTouch.

-XX:LargePageSizeInBytes=<n>[g|m|k]
Enables use of large memory pages in the HotSpot VM with an explicit size. The
underlying hardware platform must support the size <n>[g|m|k] page size. Other-
wise, its use falls back to its default page size usage.

Useful when explicitly desiring a page size be used, i.e., 1 gigabyte pages on AMD
or Intel platforms that support 1 gigabyte pages or 256 megabyte pages on SPARC
T-series platforms or 2 gigabyte pages on recent SPARC T-series platforms.

Also see -XX:+UseLargePages and -XX:+AlwaysPreTouch.

-XX:+AlwaysPreTouch
Enables the touching of all memory pages used by the JVM heap spaces during
initialization of the HotSpot VM, which commits all memory pages at initialization
time. By default, pages are committed only as they are needed. In other words, pages
are committed as JVM heap space fills.

A garbage collection that copies to survivor space or promotes objects to the old
generation space, which necessitates a new page may result in a longer garbage

ptg6882136

Appendix A � HotSpot VM Command Line Options of Interest 571

collection pause as a result of zeroing and committing the new page. Note, this addi-
tional overhead only occurs the first time there is a need for that additional page.

If the HotSpot VM is using large pages in the absence of this command line option,
the additional overhead of zeroing and committing the new page may be noticeable in
garbage collection times. As a result it can be useful to use -XX:+AlwaysPreTouch
when using large pages.

The enabling of -XX:+AlwaysPreTouch increases application startup time. But
observing lengthier garbage collection pause times as a result of pages being zeroed
and committed as JVM heap space is consumed is less likely.

Also see -XX:+UseLargePages and -XX:LargePageSizeInBytes.

-XX:+UseNUMA
Enables a JVM heap space allocation policy that helps overcome the time it takes
to fetch data from memory by leveraging processor to memory node relationships by
allocating objects in a memory node local to a processor on NUMA systems.

Introduced in Java 6 Update 2.
As of this writing, it is available with the throughput collector only,

-XX:+UseParallelOldGC and -XX:+UseParallelGC.
On Oracle Solaris, with multiple JVM deployments that span more than one pro-

cessor/memory node should also set lgrp_mem_pset_aware=1 in /etc/system.
Linux additionally requires use of the numacntl command. Use numacntl

--interleave for single JVM deployments. For multiple JVM deployments
where JVMs that span more than one processor/memory node, use numacntl
--cpubind=<node number> --memnode=<node number>.

Windows under AMD additionally requires enabling node-interleaving in the
BIOS for single JVM deployments. All Windows multiple JVM deployments, where
JVMs that span more than one processor/memory node should use processor affinity,
use the SET AFFINITY [mask] command.

Useful in JVM deployments that span processor/memory nodes on a NUMA
system.
-XX:+UseNUMA should not be used in JVM deployments where the JVM does not

span processor/memory nodes.

-XX:+PrintCommandLineFlags
Enables the printing of ergonomically selected HotSpot VM settings based on the set
of command line options explicitly specified.

Useful when wanting to know the ergonomic values set by the HotSpot VM such
as JVM heap space sizes and garbage collector selected.

Also see -XX:+PrintFlagsFinal.

ptg6882136

572 Appendix A � HotSpot VM Command Line Options of Interest

-XX:+PrintFlagsFinal
Enables the printing of all production HotSpot VM command line option names and
their corresponding values as they are set by the HotSpot VM based on the command
line options explicitly specified and HotSpot VM defaults for options not specified.

Introduced in Java 6 Update 19.
Useful when wanting to know the configuration of HotSpot VM options in use by

a Java application.
In contrast to -XX:+PrintCommandLineFlags, -XX:+PrintFlagsFinal prints

all HotSpot VM options and their corresponding values as set by the HotSpot VM,
not just those that are ergonomically set.

Also see -XX:+PrintCommandLineFlags.

ptg6882136

573

Appendix B
Profiling Tips and
Tricks Example
Source Code

This appendix contains the source code used in the examples for reducing lock conten-
tion, resizing Java collections, and increasing parallelism presented in Chapter 6, “Java
Application Profiling Tips and Tricks.”

The examples found in this appendix illustrate scalability issues. Since desktop
systems are rarely configured with a large number of virtual processors, scalability
issues may not be observed when attempting to run them on desktop systems. In addi-
tion, these example programs require at least two gigabyte of Java heap to execute
reasonably well without experiencing a lot of garbage collections. Hence, to observe
scalability issues with these examples, they should be run on a system with a large
number of virtual processors and large amounts of memory. In general, the larger the
number of virtual processors, the more likely it is to observe scalability issues.

Lock Contention First Implementation

The first implementation uses a synchronized HashMap.

BailoutMain.java

/**
 * An example program to illustrate lock contention.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;

Continued

ptg6882136

574 Appendix B � Profiling Tips and Tricks Example Source Code

import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

 final public static int TEST_TIME = 240 * 1000;
 final public static Random random =
 new Random(Thread.currentThread().getId());
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 private static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize = TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 System.out.println("\tTax payer database created.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");

ptg6882136

 Lock Contention First Implementation 575

 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0;
 long nullCounter = 0; int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

Continued

ptg6882136

576 Appendix B � Profiling Tips and Tricks Example Source Code

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second -> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ---------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed -------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ---------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList, int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index = random.nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }

ptg6882136

 Lock Contention First Implementation 577

 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = random.nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = random.nextInt(8);
 sb.append(x + 1);
 }
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = random.nextInt(states.length);
 return states[index];
 }
}

Continued

ptg6882136

578 Appendix B � Profiling Tips and Tricks Example Source Code

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

ptg6882136

 Lock Contention First Implementation 579

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

ptg6882136

580 Appendix B � Profiling Tips and Tricks Example Source Code

TaxPayerBailoutDbImpl.java

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String,TaxPayerRecord> db;

 public TaxPayerBailoutDbImpl(int size) {
 db = Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(size));
 }

 @Override
 public TaxPayerRecord get(String id) {
 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {
 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static Random generator = BailoutMain.random;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;

ptg6882136

 Lock Contention First Implementation 581

 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 // Just in case there 'iterations' is about to overflow
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.println(
 "Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println(
 "Iterations per second: " + iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

Continued

ptg6882136

582 Appendix B � Profiling Tips and Tricks Example Source Code

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a tax payer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

ptg6882136

 Lock Contention Second Implementation 583

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

Lock Contention Second Implementation

The second implementation replaces the use of a synchronized HashMap with a
ConcurrentHashMap.

BailoutMain.java

/**
 * An example program to illustrate lock contention.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

Continued

ptg6882136

584 Appendix B � Profiling Tips and Tricks Example Source Code

 final public static int TEST_TIME = 240 * 1000;
 final public static Random random =
 new Random(Thread.currentThread().getId());
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 private static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize = TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 System.out.println("\tTax payer database created.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");

 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");

ptg6882136

 Lock Contention Second Implementation 585

 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0;
 long nullCounter = 0; int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second -> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ---------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed -------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ---------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

Continued

ptg6882136

586 Appendix B � Profiling Tips and Tricks Example Source Code

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList, int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index = random.nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = random.nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

ptg6882136

 Lock Contention Second Implementation 587

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = random.nextInt(8);
 sb.append(x + 1);
 }
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = random.nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index = random.nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = random.nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;

Continued

ptg6882136

588 Appendix B � Profiling Tips and Tricks Example Source Code

 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

ptg6882136

Lock Contention Second Implementation 589

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String,TaxPayerRecord> db;

 public TaxPayerBailoutDbImpl(int size) {
 db = new ConcurrentHashMap<String,TaxPayerRecord>(size);
 }

 @Override
 public TaxPayerRecord get(String id) {

Continued

ptg6882136

590 Appendix B � Profiling Tips and Tricks Example Source Code

 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {
 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static Random generator = BailoutMain.random;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;

ptg6882136

 Lock Contention Second Implementation 591

 TaxPayerRecord tpr = null;
 // Just in case there 'iterations' is about to overflow
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.println(
 "Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println(
 "Iterations per second: " + iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

Continued

ptg6882136

592 Appendix B � Profiling Tips and Tricks Example Source Code

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a tax payer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

ptg6882136

Lock Contention Third Implementation 593

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

Lock Contention Third Implementation

The third implementation replaces the use of a static java.util.Random with a
ThreadLocal java.util.Random.

BailoutMain.java

/**
 * An example program to illustrate lock contention.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};

Continued

ptg6882136

594 Appendix B � Profiling Tips and Tricks Example Source Code

 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final long start = System.nanoTime();
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize = TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 final long initDbTime = System.nanoTime() - start;
 System.out.println("\tTax payer database created & populated " +
 "in (" + initDbTime/(1000*1000) + ") ms.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");
 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];

ptg6882136

Lock Contention Third Implementation 595

 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();

Continued

ptg6882136

596 Appendix B � Profiling Tips and Tricks Example Source Code

 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

ptg6882136

Lock Contention Third Implementation 597

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;

Continued

ptg6882136

598 Appendix B � Profiling Tips and Tricks Example Source Code

 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

ptg6882136

Lock Contention Third Implementation 599

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {

Continued

ptg6882136

600 Appendix B � Profiling Tips and Tricks Example Source Code

 private final Map<String,TaxPayerRecord> db;

 public TaxPayerBailoutDbImpl(int size) {
 db = new ConcurrentHashMap<String,TaxPayerRecord>(size);
 }

 @Override
 public TaxPayerRecord get(String id) {
 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {
 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

ptg6882136

Lock Contention Third Implementation 601

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 // Just in case there 'iterations' is about to overflow
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.println(
 "Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println(
 "Iterations per second: " + iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);

Continued

ptg6882136

602 Appendix B � Profiling Tips and Tricks Example Source Code

 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a tax payer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;

ptg6882136

Lock Contention Fourth Implementation 603

 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

Lock Contention Fourth Implementation

The fourth implementation replaces the java.util.Random with a ThreadLocal java.
util.Random and reverts back to using the synchronized HashMap.

BailoutMain.java

/**
 * An example program to illustrate lock contention.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {
 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());

Continued

ptg6882136

604 Appendix B � Profiling Tips and Tricks Example Source Code

 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 private static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize = TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 System.out.println("\tTax payer database created.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");

 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =

ptg6882136

Lock Contention Fourth Implementation 605

 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

Continued

ptg6882136

606 Appendix B � Profiling Tips and Tricks Example Source Code

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList, int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

ptg6882136

Lock Contention Fourth Implementation 607

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;

Continued

ptg6882136

608 Appendix B � Profiling Tips and Tricks Example Source Code

 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

ptg6882136

Lock Contention Fourth Implementation 609

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String,TaxPayerRecord> db;

Continued

ptg6882136

610 Appendix B � Profiling Tips and Tricks Example Source Code

 public TaxPayerBailoutDbImpl(int size) {
 db = Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(size));
 }

 @Override
 public TaxPayerRecord get(String id) {
 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {
 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;

ptg6882136

Lock Contention Fourth Implementation 611

 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 // Just in case there 'iterations' is about to overflow
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.println(
 "Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println(
 "Iterations per second: " + iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);

Continued

ptg6882136

612 Appendix B � Profiling Tips and Tricks Example Source Code

 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a tax payer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;

ptg6882136

Lock Contention Fifth Implementation 613

 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

Lock Contention Fifth Implementation

The fifth implementation partitions the taxpayer database into 50 HashMaps, one
for each state, and also uses the ThreadLocal Random.

BailoutMain.java

/**
 * An example program to illustrate lock contention for Java Performance
book.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override

Continued

ptg6882136

614 Appendix B � Profiling Tips and Tricks Example Source Code

 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l',
 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize =
 TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db =
 new TaxPayerBailoutDbImpl(dbSize, states.length);
 List<StateAndId>[] taxPayerList =
 new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 new ArrayList<StateAndId>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 System.out.println("\tTax payer database created.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");
 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

ptg6882136

Lock Contention Fifth Implementation 615

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));

Continued

ptg6882136

616 Appendix B � Profiling Tips and Tricks Example Source Code

 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<StateAndId>[] taxPayerList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String taxPayerId = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(taxPayerId, tpr);
 StateAndId stateAndId =
 new StateAndId(taxPayerId, tpr.getState());
 int index = i % taxPayerList.length;
 taxPayerList[index].add(stateAndId);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();

ptg6882136

Lock Contention Fifth Implementation 617

 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

Continued

ptg6882136

618 Appendix B � Profiling Tips and Tricks Example Source Code

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {

ptg6882136

Lock Contention Fifth Implementation 619

 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param taxPayersId - tax payers id
 * @param state - tax payers home state
 * @return tax payers record
 */
 TaxPayerRecord get(String id, String state);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param taxPayersId - tax payer's id
 * @param taxPayersState - tax payer's state
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id, String state);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

ptg6882136

620 Appendix B � Profiling Tips and Tricks Example Source Code

TaxPayerBailoutDbImpl.java

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String, Map<String,TaxPayerRecord>> db;

 public TaxPayerBailoutDbImpl(int dbSize, int numberOfStates) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>(dbSize);
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(
 dbSize/numberOfStates));
 db.put(BailoutMain.states[i], map);
 }
 }

 @Override
 public TaxPayerRecord get(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 if (map == null) {
 System.out.println("Unable to find state: " + state);
 }
 return map.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 Map<String,TaxPayerRecord> map = getStateMap(record.getState());
 // Update tax payer's record if found
 TaxPayerRecord old = map.put(id, record);
 if (old != null) {
 // not found, restore old TaxPayerRecord
 old = map.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 TaxPayerRecord tmpRecord = null;
 if (map != null)
 tmpRecord = map.remove(id);
 return tmpRecord;
 }

 @Override
 public int size() {
 int size = 0;
 Iterator<Map<String,TaxPayerRecord>> itr =
 db.values().iterator();
 while (itr.hasNext()) {
 Map<String,TaxPayerRecord> m = itr.next();

ptg6882136

Lock Contention Fifth Implementation 621

 if (m != null)
 size += m.size();
 }
 return size;
 }

 private Map<String, TaxPayerRecord> getStateMap(String state) {
 Map<String,TaxPayerRecord> map = db.get(state);
 if (map == null) {
 throw new UnsupportedOperationException(
 "State (" + state + ") " +
 "not found in tax payer database.");
 }
 return map;
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private StateAndId stateAndId;
 final private List<StateAndId> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<StateAndId> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));

Continued

ptg6882136

622 Appendix B � Profiling Tips and Tricks Example Source Code

 System.err.
 println("Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println("Iterations per second: " +
 iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a TaxPayer from DB
 tpr = db.remove(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }

ptg6882136

Lock Contention Fifth Implementation 623

 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 StateAndId sai =
 new StateAndId(tmpTaxPayerId, tpr.getState());
 taxPayerList.add(sai);
 newRecordsAdded++;
 }
 return tpr;
 }

 private void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.stateAndId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

ptg6882136

624 Appendix B � Profiling Tips and Tricks Example Source Code

First Resizing Variant

This implementation is a slightly modified implementation of the previous “Fifth
Implementation,” which partitions the taxpayer database into 50 HashMaps, one
for each state, and also uses the ThreadLocal Random and adds the calculating
and reporting of the time it takes to allocate and create 2,000,000 records using the
HashMap constructor using the default HashMap size.

StateAndId.java

final public class StateAndId {
 private String id;
 private String state;

 public StateAndId(String id, String state) {
 this.id = id; this.state = state;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

BailoutMain.java

/**
 * An example program to illustrate lock contention for Java Performance
book.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

ptg6882136

First Resizing Variant 625

import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l',
 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final long start = System.nanoTime();
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize =
 TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db =
 new TaxPayerBailoutDbImpl(dbSize, states.length);
 List<StateAndId>[] taxPayerList =
 new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 new ArrayList<StateAndId>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 final long initDbTime = System.nanoTime() - start;

Continued

ptg6882136

626 Appendix B � Profiling Tips and Tricks Example Source Code

 System.out.println("\tTax payer database created & populated" +
 " in (" + initDbTime/(1000*1000) + ") ms.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");
 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();

ptg6882136

First Resizing Variant 627

 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<StateAndId>[] taxPayerList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String taxPayerId = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(taxPayerId, tpr);
 StateAndId stateAndId =
 new StateAndId(taxPayerId, tpr.getState());
 int index = i % taxPayerList.length;
 taxPayerList[index].add(stateAndId);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {

Continued

ptg6882136

628 Appendix B � Profiling Tips and Tricks Example Source Code

 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }

ptg6882136

First Resizing Variant 629

 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;

Continued

ptg6882136

630 Appendix B � Profiling Tips and Tricks Example Source Code

 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param taxPayersId - tax payers id
 * @param state - tax payers home state
 * @return tax payers record
 */
 TaxPayerRecord get(String id, String state);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

ptg6882136

First Resizing Variant 631

 /**
 * Remove a tax payer's record from the database.
 *
 * @param taxPayersId - tax payer's id
 * @param taxPayersState - tax payer's state
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id, String state);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String, Map<String,TaxPayerRecord>> db;

 public TaxPayerBailoutDbImpl(int dbSize, int numberOfStates) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>(dbSize);
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(
 dbSize/numberOfStates));
 db.put(BailoutMain.states[i], map);
 }
 }

 @Override
 public TaxPayerRecord get(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 if (map == null) {
 System.out.println("Unable to find state: " + state);
 }
 return map.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 Map<String,TaxPayerRecord> map = getStateMap(record.getState());
 // Update tax payer's record if found
 TaxPayerRecord old = map.put(id, record);
 if (old != null) {
 // not found, restore old TaxPayerRecord

Continued

ptg6882136

632 Appendix B � Profiling Tips and Tricks Example Source Code

 old = map.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 TaxPayerRecord tmpRecord = null;
 if (map != null)
 tmpRecord = map.remove(id);
 return tmpRecord;
 }

 @Override
 public int size() {
 int size = 0;
 Iterator<Map<String,TaxPayerRecord>> itr =
 db.values().iterator();
 while (itr.hasNext()) {
 Map<String,TaxPayerRecord> m = itr.next();
 if (m != null)
 size += m.size();
 }
 return size;
 }

 private Map<String, TaxPayerRecord> getStateMap(String state) {
 Map<String,TaxPayerRecord> map = db.get(state);
 if (map == null) {
 throw new UnsupportedOperationException(
 "State (" + state + ") " +
 "not found in tax payer database.");
 }
 return map;
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private StateAndId stateAndId;
 final private List<StateAndId> taxPayerList;
 final private TaxPayerBailoutDB db;

ptg6882136

First Resizing Variant 633

 public TaxCallable(List<StateAndId> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.
 println("Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println("Iterations per second: " +
 iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {

Continued

ptg6882136

634 Appendix B � Profiling Tips and Tricks Example Source Code

 if (iterations % 1001 == 0) {
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a TaxPayer from DB
 tpr = db.remove(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 StateAndId sai =
 new StateAndId(tmpTaxPayerId, tpr.getState());
 taxPayerList.add(sai);
 newRecordsAdded++;
 }
 return tpr;
 }

 private void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.stateAndId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;

ptg6882136

First Resizing Variant 635

 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

StateAndId.java

final public class StateAndId {
 private String id, state;

 public StateAndId(String id, String state) {
 this.id = id; this.state = state;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

ptg6882136

636 Appendix B � Profiling Tips and Tricks Example Source Code

Second Resizing Variant

This implementation is an update of the previous “First Resizing Variant” by using
HashMap constructors taking explicit sizes where the HashMap exceed the default
HashMap size of 16 and StringBuilder constructors taking explicit sizes where the
String being assembled exceeds the default size of 16.

BailoutMain.java

/**
 * An example program to illustrate performance impact of Java Collections
resizing for Java Performance book.
 */
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {
 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l',
 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x',
 'y', 'z'};
 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

ptg6882136

Second Resizing Variant 637

 public static void main(String[] args) {
 final long start = System.nanoTime();
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize =
 TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db =
 new TaxPayerBailoutDbImpl(dbSize, states.length);
 List<StateAndId>[] taxPayerList =
 new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 new ArrayList<StateAndId>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 final long initDbTime = System.nanoTime() - start;
 System.out.println("\tTax payer database created & " +
 "populated in (" +
 initDbTime/(1000*1000) + ") ms.");
 System.out.println("\tTax payer database created.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");
 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");

Continued

ptg6882136

638 Appendix B � Profiling Tips and Tricks Example Source Code

 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(
 BailoutMain.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

ptg6882136

Second Resizing Variant 639

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<StateAndId>[] taxPayerList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String taxPayerId = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(taxPayerId, tpr);
 StateAndId stateAndId =
 new StateAndId(taxPayerId, tpr.getState());
 int index = i % taxPayerList.length;
 taxPayerList[index].add(stateAndId);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder(20);
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder(24);
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {

Continued

ptg6882136

640 Appendix B � Profiling Tips and Tricks Example Source Code

 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);

ptg6882136

Second Resizing Variant 641

 }
 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

ptg6882136

642 Appendix B � Profiling Tips and Tricks Example Source Code

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param taxPayersId - tax payers id
 * @param state - tax payers home state
 * @return tax payers record
 */
 TaxPayerRecord get(String id, String state);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param taxPayersId - tax payer's id
 * @param taxPayersState - tax payer's state
 * @return tax payers record, or null if id not found in database
 */
 TaxPayerRecord remove(String id, String state);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDBImpl.java

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String, Map<String,TaxPayerRecord>> db;

 public TaxPayerBailoutDbImpl(int dbSize, int numberOfStates) {
 final int outerMapSize = (int) Math.ceil(numberOfStates / .75);
 final int innerMapSize =

ptg6882136

Second Resizing Variant 643

 (int) (Math.ceil((dbSize / numberOfStates) / .75));
 db =
 new HashMap<String,Map<String,TaxPayerRecord>>(outerMapSize);
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(innerMapSize));
 db.put(BailoutMain.states[i], map);
 }
 }

 @Override
 public TaxPayerRecord get(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 if (map == null) {
 System.out.println("Unable to find state: " + state);
 }
 return map.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 Map<String,TaxPayerRecord> map = getStateMap(record.getState());
 // Update tax payer's record if found
 TaxPayerRecord old = map.put(id, record);
 if (old != null) {
 // not found, restore old TaxPayerRecord
 old = map.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id, String state) {
 Map<String,TaxPayerRecord> map = getStateMap(state);
 TaxPayerRecord tmpRecord = null;
 if (map != null)
 tmpRecord = map.remove(id);
 return tmpRecord;
 }

 @Override
 public int size() {
 int size = 0;
 Iterator<Map<String,TaxPayerRecord>> itr =
 db.values().iterator();
 while (itr.hasNext()) {
 Map<String,TaxPayerRecord> m = itr.next();
 if (m != null)
 size += m.size();
 }
 return size;
 }

 private Map<String, TaxPayerRecord> getStateMap(String state) {
 Map<String,TaxPayerRecord> map = db.get(state);

Continued

ptg6882136

644 Appendix B � Profiling Tips and Tricks Example Source Code

 if (map == null) {
 throw new UnsupportedOperationException(
 "State (" + state + ") " +
 "not found in tax payer database.");
 }
 return map;
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private StateAndId stateAndId;
 final private List<StateAndId> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<StateAndId> taxPayerList,
 TaxPayerBailoutDB db) {
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond =
 iterations / ((double) (elapsed / 1000));
 System.err.
 println("Iteration counter about to overflow ...");
 System.err.println(
 "Calculating current operations per second ...");
 System.err.println("Iterations per second: " +
 iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();

ptg6882136

Second Resizing Variant 645

 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond =
 iterations / ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a TaxPayer from DB
 tpr = db.remove(stateAndId.getId(), stateAndId.getState());
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {

Continued

ptg6882136

646 Appendix B � Profiling Tips and Tricks Example Source Code

 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 StateAndId sai =
 new StateAndId(tmpTaxPayerId, tpr.getState());
 taxPayerList.add(sai);
 newRecordsAdded++;
 }
 return tpr;
 }

 private void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.stateAndId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

ptg6882136

Increasing Parallelism Single-Threaded Implementation 647

Increasing Parallelism Single-Threaded Implementation

This implementation is a copy of the “Lock Contention Third Implementation” seen
earlier in this appendix with added instrumentation to report how long it takes to
create the fictitious taxpayer records and add them to the database.

StateAndId.java

final public class StateAndId {
 private String id, state;

 public StateAndId(String id, String state) {
 this.id = id; this.state = state;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

BailoutMain.java

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {

 final public static int TEST_TIME = 240 * 1000;

Continued

ptg6882136

648 Appendix B � Profiling Tips and Tricks Example Source Code

 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final long start = System.nanoTime();
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize =
 TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 populateDatabase(db, taxPayerList, dbSize);
 final long initDbTime = System.nanoTime() - start;
 System.out.println("\tDatabase created & populated in (" +
 initDbTime/(1000*1000) + ") ms.");

 System.out.println("Allocating (" + numberOfThreads +
 ") threads ...");
 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);

 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

ptg6882136

Increasing Parallelism Single-Threaded Implementation 649

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " +
 result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

Continued

ptg6882136

650 Appendix B � Profiling Tips and Tricks Example Source Code

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList, int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder(20);
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);

ptg6882136

Increasing Parallelism Single-Threaded Implementation 651

 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder(24);
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,

Continued

ptg6882136

652 Appendix B � Profiling Tips and Tricks Example Source Code

 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {

ptg6882136

Increasing Parallelism Single-Threaded Implementation 653

 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**
 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if tax payer's id not found
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String,TaxPayerRecord> db;

Continued

ptg6882136

654 Appendix B � Profiling Tips and Tricks Example Source Code

 public TaxPayerBailoutDbImpl(int size) {
 db = new ConcurrentHashMap<String,TaxPayerRecord>(size);
 }

 @Override
 public TaxPayerRecord get(String id) {
 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {
 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList, TaxPayerBailoutDB db){
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {

ptg6882136

Increasing Parallelism Single-Threaded Implementation 655

 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond = iterations /
 ((double) (elapsed / 1000));
 System.err.println("Iteration counter overflow ...");
 System.err.println("Calculating current ops per sec.");
 System.err.println("Iterations per second: " +
 iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }
 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond = iterations /
 ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }

Continued

ptg6882136

656 Appendix B � Profiling Tips and Tricks Example Source Code

 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a TaxPayer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();
 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {

ptg6882136

Increasing Parallelism Multithreaded Implementation 657

 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

Increasing Parallelism Multithreaded Implementation

This implementation is a refactored copy of the previous “Increasing Parallelism
Single-Threaded Implementation.” It multithreads the initialization of the taxpayer
database.

BailoutMain.java

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;

public class BailoutMain {
 final public static int TEST_TIME = 240 * 1000;
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };
 private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f',
 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
 static String[] states = {"Alabama", "Alaska", "Arizona",
 "Arkansas", "California", "Colorado", "Connecticut",
 "Delaware", "Florida", "Georgia", "Hawaii", "Idaho",

Continued

ptg6882136

658 Appendix B � Profiling Tips and Tricks Example Source Code

 "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
 "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan",
 "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas", "Utah",
 "Vermont", "Virginia", "Washington", "West Virginia",
 "Wisconsin", "Wyoming"};

 public static void main(String[] args) {
 final long start = System.nanoTime();
 final int numberOfThreads =
 Runtime.getRuntime().availableProcessors();
 final int dbSize = TaxPayerBailoutDB.NUMBER_OF_RECORDS_DESIRED;
 final int taxPayerListSize = dbSize / numberOfThreads;

 System.out.println("Number of threads to run concurrently : " +
 numberOfThreads);
 System.out.println("Tax payer database size: " + dbSize);

 // populate database with records
 System.out.println("Creating tax payer database ...");
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new List[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 Collections.synchronizedList(
 new ArrayList<String>(taxPayerListSize));
 }

 System.out.println("Allocating thread pool and (" +
 numberOfThreads + ") db initializer threads ...");

 // create a pool of executors to execute some Callables
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);
 Callable<DbInitializerFuture>[] dbCallables =
 new DbInitializer[numberOfThreads];
 for (int i = 0; i < dbCallables.length; i++) {
 dbCallables[i] =
 new DbInitializer(db, taxPayerList,
 dbSize/numberOfThreads);
 }

 System.out.println("\tThread pool & db threads allocated.");

 // start all db initializer threads running
 System.out.println("Starting (" + dbCallables.length +
 ") db initializer threads ...");
 Set<Future<DbInitializerFuture>> dbSet =
 new HashSet<Future<DbInitializerFuture>>();
 for (int i = 0; i < dbCallables.length; i++) {
 Callable<DbInitializerFuture> callable = dbCallables[i];
 Future<DbInitializerFuture> future = pool.submit(callable);
 dbSet.add(future);
 }

ptg6882136

Increasing Parallelism Multithreaded Implementation 659

 int recordsCreated = 0;
 for (Future<DbInitializerFuture> future : dbSet) {
 DbInitializerFuture result = null;
 try {
 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 recordsCreated += result.getRecordsCreated();
 }
 final long initDbTime = System.nanoTime() - start;
 System.out.println("\tDb initializer threads completed.");
 System.out.println("\tTax payer db created & populated in (" +
 initDbTime/(1000*1000) + ") ms.");
 System.out.println("\tCreated (" + recordsCreated +
 ") records ...");

 System.out.println("Allocating threads, main processing ...");
 Callable<BailoutFuture>[] callables =
 new TaxCallable[numberOfThreads];
 for (int i = 0; i < callables.length; i++) {
 callables[i] = new TaxCallable(taxPayerList[i], db);
 }

 System.out.println("\tthreads allocated.");

 // start all threads running
 System.out.println("Starting (" + callables.length +
 ") threads ...");
 Set<Future<BailoutFuture>> set =
 new HashSet<Future<BailoutFuture>>();
 for (int i = 0; i < callables.length; i++) {
 Callable<BailoutFuture> callable = callables[i];
 Future<BailoutFuture> future = pool.submit(callable);
 set.add(future);
 }

 System.out.println("\t(" + callables.length +
 ") threads started.");
 // block and wait for all Callables to finish their
 System.out.println("Waiting for " + TEST_TIME / 1000 +
 " seconds for (" + callables.length +
 ") threads to complete ...");

 double iterationsPerSecond = 0;
 long recordsAdded = 0, recordsRemoved = 0, nullCounter = 0;
 int counter = 1;
 for (Future<BailoutFuture> future : set) {
 BailoutFuture result = null;
 try {

Continued

ptg6882136

660 Appendix B � Profiling Tips and Tricks Example Source Code

 result = future.get();
 } catch (InterruptedException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 } catch (ExecutionException ex) {
 Logger.getLogger(BailoutMain.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 System.out.println("Iterations per second on thread[" +
 counter++ + "] -> " + result.getIterationsPerSecond());
 iterationsPerSecond += result.getIterationsPerSecond();
 recordsAdded += result.getRecordsAdded();
 recordsRemoved += result.getRecordsRemoved();
 nullCounter = result.getNullCounter();
 }

 // print number of totals
 DecimalFormat df = new DecimalFormat("#.##");
 System.out.println("Total iterations per second --> " +
 df.format(iterationsPerSecond));
 NumberFormat nf = NumberFormat.getInstance();
 System.out.println("Total records added ----------> " +
 nf.format(recordsAdded));
 System.out.println("Total records removed --------> " +
 nf.format(recordsRemoved));
 System.out.println("Total records in db ----------> " +
 nf.format(db.size()));
 System.out.println("Total null records encountered: " +
 nf.format(nullCounter));

 System.exit(0);
 }

 public static TaxPayerRecord makeTaxPayerRecord() {
 String firstName = getRandomName();
 String lastName = getRandomName();
 String ssn = getRandomSSN();
 String address = getRandomAddress();
 String city = getRandomCity();
 String state = getRandomState();
 return new TaxPayerRecord(firstName, lastName, ssn,
 address, city, state);
 }

 static DbInitializerFuture populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 DbInitializerFuture future = new DbInitializerFuture();
 future.addToRecordsCreated(dbSize);

ptg6882136

Increasing Parallelism Multithreaded Implementation 661

 return future;
 }

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder(20);
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomName() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(8) + 5;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomSSN() {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 11; i++) {
 if (i == 3 || i == 6) {
 sb.append('-');
 }
 int x = threadLocalRandom.get().nextInt(9);
 sb.append(x);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder(24);
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }

Continued

ptg6882136

662 Appendix B � Profiling Tips and Tricks Example Source Code

 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomCity() {
 StringBuilder sb = new StringBuilder();
 int size = threadLocalRandom.get().nextInt(5) + 6;
 for (int i = 0; i < size; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 0) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

 public static String getRandomState() {
 int index = threadLocalRandom.get().nextInt(states.length);
 return states[index];
 }
}

DbInitializer.java

import java.util.List;
import java.util.concurrent.Callable;

public class DbInitializer implements Callable<DbInitializerFuture> {

 private TaxPayerBailoutDB db;
 private List<String>[] taxPayerList;
 private int recordsToCreate;

 public DbInitializer(TaxPayerBailoutDB db,
 List<String>[] taxPayerList,
 int recordsToCreate) {
 this.db = db;
 this.taxPayerList = taxPayerList;
 this.recordsToCreate = recordsToCreate;
 }

 @Override
 public DbInitializerFuture call() throws Exception {
 return BailoutMain.populateDatabase(db, taxPayerList,
 recordsToCreate);
 }
}

ptg6882136

Increasing Parallelism Multithreaded Implementation 663

DbInitializerFuture.java

public class DbInitializerFuture {
 private int recordsCreated;

 public DbInitializerFuture() {}

 public void addToRecordsCreated(int value) {
 recordsCreated += value;
 }

 public int getRecordsCreated() {
 return recordsCreated;
 }
}

TaxPayerRecord.java

import java.util.concurrent.atomic.AtomicLong;

public class TaxPayerRecord {
 private String firstName, lastName, ssn, address, city, state;
 private AtomicLong taxPaid;

 public TaxPayerRecord(String firstName, String lastName, String ssn,
 String address, String city, String state) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.ssn = ssn;
 this.address = address;
 this.city = city;
 this.state = state;
 this.taxPaid = new AtomicLong(0);
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

Continued

ptg6882136

664 Appendix B � Profiling Tips and Tricks Example Source Code

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public void taxPaid(long amount) {
 taxPaid.addAndGet(amount);
 }

 public long getTaxPaid() {
 return taxPaid.get();
 }
}

TaxPayerBailoutDB.java

public interface TaxPayerBailoutDB {

 static final int NUMBER_OF_RECORDS_DESIRED = 2 * 1000000;

 /**
 * Get a tax payers record from the database based on his or her id.
 *
 * @param id - tax payers id
 * @return tax payers record
 */
 TaxPayerRecord get(String id);

 /**

ptg6882136

Increasing Parallelism Multithreaded Implementation 665

 * Add new tax payers record in the database.
 *
 * @param id - tax payer's id
 * @param record - tax payer's record
 * @return taxPayersRecord just added to the database
 */
 TaxPayerRecord add(String id, TaxPayerRecord record);

 /**
 * Remove a tax payer's record from the database.
 *
 * @param id - tax payer's id
 * @return tax payers record, or null if tax payer's id not found
 */
 TaxPayerRecord remove(String id);

 /**
 * Size of the database, i.e. number of records
 *
 * @return number of records in the database
 */
 int size();
}

TaxPayerBailoutDbImpl.java

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String,TaxPayerRecord> db;

 public TaxPayerBailoutDbImpl(int size) {
 db = new ConcurrentHashMap<String,TaxPayerRecord>(size);
 }

 @Override
 public TaxPayerRecord get(String id) {
 return db.get(id);
 }

 @Override
 public TaxPayerRecord add(String id, TaxPayerRecord record) {
 TaxPayerRecord old = db.put(id, record);
 if (old != null) {
 // restore old TaxPayerRecord
 old = db.put(id, old);
 }
 return old;
 }

 @Override
 public TaxPayerRecord remove(String id) {

Continued

ptg6882136

666 Appendix B � Profiling Tips and Tricks Example Source Code

 return db.remove(id);
 }

 @Override
 public int size() {
 return db.size();
 }
}

TaxCallable.java

import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;

public class TaxCallable implements Callable<BailoutFuture> {

 private static long runTimeInMillis = BailoutMain.TEST_TIME;
 final private static ThreadLocal<Random> generator =
 BailoutMain.threadLocalRandom;
 private long nullCounter, recordsRemoved, newRecordsAdded;
 private int index;
 private String taxPayerId;
 final private List<String> taxPayerList;
 final private TaxPayerBailoutDB db;

 public TaxCallable(List<String> taxPayerList, TaxPayerBailoutDB db){
 this.taxPayerList = taxPayerList;
 this.db = db;
 index = 0;
 }

 @Override
 public BailoutFuture call() throws Exception {
 long iterations = 0L, elapsedTime = 0L;
 long startTime = System.currentTimeMillis();
 double iterationsPerSecond = 0;
 do {
 setTaxPayer();
 iterations++;
 TaxPayerRecord tpr = null;
 if (iterations == Long.MAX_VALUE) {
 long elapsed = System.currentTimeMillis() - startTime;
 iterationsPerSecond = iterations /
 ((double) (elapsed / 1000));
 System.err.println("Iteration counter overflow ...");
 System.err.println("Calculating current ops per sec.");
 System.err.println("Iterations per second: " +
 iterationsPerSecond);
 iterations = 0L;
 startTime = System.currentTimeMillis();
 runTimeInMillis -= elapsed;
 }

ptg6882136

Increasing Parallelism Multithreaded Implementation 667

 if (iterations % 1001 == 0) {
 tpr = addNewTaxPayer(tpr);
 } else if (iterations % 60195 == 0) {
 tpr = removeTaxPayer(tpr);
 } else {
 tpr = updateTaxPayer(iterations, tpr);
 }

 if (iterations % 1000 == 0) {
 elapsedTime = System.currentTimeMillis() - startTime;
 }
 } while (elapsedTime < runTimeInMillis);

 if (iterations >= 1000) {
 iterationsPerSecond = iterations /
 ((double) (elapsedTime / 1000));
 }
 BailoutFuture bailoutFuture =
 new BailoutFuture(iterationsPerSecond, newRecordsAdded,
 recordsRemoved, nullCounter);
 return bailoutFuture;
 }

 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer's DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.get().nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

 private TaxPayerRecord removeTaxPayer(TaxPayerRecord tpr) {
 // remove a TaxPayer from DB
 tpr = db.remove(taxPayerId);
 if (tpr != null) {
 // remove record from TaxPayerList
 taxPayerList.remove(index);
 recordsRemoved++;
 }
 return tpr;
 }

 private TaxPayerRecord addNewTaxPayer(TaxPayerRecord tpr) {
 // add a new TaxPayer to the DB
 String tmpTaxPayerId = BailoutMain.getRandomTaxPayerId();

Continued

ptg6882136

668 Appendix B � Profiling Tips and Tricks Example Source Code

 tpr = BailoutMain.makeTaxPayerRecord();
 TaxPayerRecord old = db.add(tmpTaxPayerId, tpr);
 if (old == null) {
 // add to the (local) list
 taxPayerList.add(tmpTaxPayerId);
 newRecordsAdded++;
 }
 return tpr;
 }

 public void setTaxPayer() {
 if (++index >= taxPayerList.size()) {
 index = 0;
 }
 this.taxPayerId = taxPayerList.get(index);
 }
}

BailoutFuture.java

public class BailoutFuture {
 private double iterationsPerSecond;
 private long recordsAdded, recordsRemoved, nullCounter;

 public BailoutFuture(double iterationsPerSecond, long recordsAdded,
 long recordsRemoved, long nullCounter) {
 this.iterationsPerSecond = iterationsPerSecond;
 this.recordsAdded = recordsAdded;
 this.recordsRemoved = recordsRemoved;
 this.nullCounter = nullCounter;
 }

 public double getIterationsPerSecond() {
 return iterationsPerSecond;
 }

 public long getRecordsAdded() {
 return recordsAdded;
 }

 public long getRecordsRemoved() {
 return recordsRemoved;
 }

 public long getNullCounter() {
 return nullCounter;
 }
}

ptg6882136

 669

Algorithms, increasing efficiency, 211–212
Allocated objects, profiling, 205
Allocation, HotSpot VM garbage collectors, 91
Allocations tracked, specifying, 204
Alpha (α), 351–353
Analyzer, definition, 158
APIs. See also JPA (Java Persistence API).

DOM, 459–460
JAXB (Java API for XML Binding), 454,

469–470
JAXP (Java API for XML Processing), 454, 457
showing/hiding, 168
System.currentTimeMillis API, 328–329
System.nanoTime API, 328–329
for XML documents, selecting, 468–471

Application performance
ideal CPU utilization, 15
improving with network I/O utilization, 45

Application server monitoring
disk I/O, 395–398
external systems, 392–395
with GlassFish

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

monitoring resource pools, 398–399
overview, 382
subsystems

JVM, 388–389
network I/O, 390–392

Index

: (colon), keyword delimiter, 182
* (asterisk), wildcard character, 44
\ (backslash), line termination character, 181
- (dash) option, 181
! (exclamation point) keyword, 182
% (percent sign) keyword, 182
+ (plus sign) keyword, 182
. (period) keyword, 182
32-bit runtime environment vs. 64-bit, 260–261

A
α (alpha), 351–353
A keyword, 182
-A option, collect tool, 163
Acceptor threads, monitoring and tuning, 414–417
acceptor-thread property, 415
Access logging, best practices, 446–450
Accessing XML documents, 455, 458–459
Adaptive heap sizing

description, 104–105
disabling, 105, 309–311
enabling/disabling, 558
HotSpot VM, 104–105, 558
policy, printing, 563
throughput, tuning, 309–311

Adaptive tuning. See HotSpot VM adaptive
tuning.

Administration console, monitoring server
applications, 383–384

Aggressive optimization, 568–569
Aging statistics, 145–146

ptg6882136

670 Index

Application server monitoring (continued)
thread dumps, 389–390

tuning resource pools, 398–399
Application threads, isolating, 25, 27
Applications. See also Benchmarking multitiered

applications; Benchmarking Web
applications; Java applications.

concurrent run time, printing, 564
developing. See Software development.
JMX, configuring, 135–137
startup time, decreasing, 68
stop time, printing, 563

Archiving artifacts, 163
asadmin CLI, monitoring server applications,

386–388
Asterisk (*), wildcard character, 44
Asynchronous benchmarks, 381
Asynchronous requests, benchmarking, 360
Attach Mode, specifying, 193–194
Attributed time, definition, 158
Availability

performance metrics, calculating, 365–366
service, benchmarking, 359
tuning the JVM, 255–256

Average age, profiling, 206
Averages, calculating, 349

B
Backedge counters, 95–96
Backslash (\), line termination character, 181
Bandwidth, monitoring, 44
Barriers, memory, 234
Bean caches, monitoring and tuning, 514–520
Bean pools, monitoring and tuning, 514–520
Benchmarking. See also Experiments; Statistics.

compilation activity, eliminating, 333–334
deoptimization, 340–345
EJB best practices, 522
elapsed time, calculating, 328–329
garbage collection pauses, 327–328
inlining methods, 335–339
micro-benchmarks, creating, 345–346
optimizing away dead code, 329–335
warm-ups, 324–327, 333–334
Web services, 473–476

Benchmarking multitiered applications. See also
Applications.

challenges
asynchronous requests, 360
external dependencies, 360
firewalls, 360
nature of enterprise applications, 358
payload sizes, 359
secure interactions, 359
service availability, 359
session maintenance, 359
user scaling, 358

variety of client types, 359
vertical and horizontal scaling, 358, 377

enterprise considerations
availability metrics, calculating, 365–366
cycle time, 365
injection rate, 365
Markov chains, 362–366
micro-benchmarks, developing, 361–362
system boundaries, defining, 360–361
think time, 364
user interaction modeling, 362–366

Little’s Law verification, 372–374
maximum number of concurrent clients,

372–374
performance metrics, calculating

availability, 365–366
page view, 366–367
requests, 366
response time, 368–369
round-trip time, 366
think time, 366
throughput, 369–370
user transactions, 366, 367–368

running the benchmark
asynchronously, 381
isolating the SUT, 378–379
ramp down time, 380
ramp up time, 380
repeatability, 380–381
resource monitoring, 379–380
statistical methods, 381–382
steady state time, 380

scalability
analysis, 377–378
hybrid, 377
user scaling, 358
vertical and horizontal scaling, 358, 377

scalability analysis, 377–378
scaling the benchmark, 370–372
SUT (System Under Test), isolating, 360–361,

378–379
think time

benchmarking, 374–377
calculating, 366
definition, 366
enterprise considerations, 364

Benchmarking Web applications
See also Applications, 446–450
best practices

access logging, 446–450
accessing JavaBean components, 434–436
bean, locating or instantiating, 432–434
compression, 440–443
content caching, 439–443
context listeners, 427–429
distributed caches, 439–443
EL (expression language), 434–436
HTTP compression, 436–438

ptg6882136

Index 671

HTTP Server File Cache, 445–450
JSP, 427–438
JSP include mechanism, 429–430
log file aggregation, 450
object size vs. cost, 444
overview, 427
serialization, 440–443
servlets, 427–438
session persistence, 443–445
trimming whitespaces, 430–431
tuning the file cache, 446

overview, 404–405
Web container components, GlassFish

Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
overview, 405–406
servlet engines, 407–408

Web container monitoring and tuning
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

Web container monitoring and tuning, HTTP
listener

acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Best practices
benchmarking Web applications

access logging, 446–450
accessing JavaBean components, 434–436
bean, locating or instantiating, 432–434
compression, 440–443
content caching, 439–443
context listeners, 427–429
distributed caches, 439–443
EL (expression language), 434–436
HTTP compression, 436–438
HTTP Server File Cache, 445–450
JSP, 427–438
JSP include mechanism, 429–430
log file aggregation, 450
object size vs. cost, 444
overview, 427
serialization, 440–443

servlets, 427–438
session persistence, 443–445
trimming whitespaces, 430–431
tuning the file cache, 446

JPA (Java Persistence API)
bulk updates, 548–549
connection pooling, 546–548
database locking strategies, 549
data-fetching strategy, 544–546
dynamic queries, 541
inheritance, 550
JPA Query Language queries, 540–543
named native queries, 541
named queries, 541
native queries, 542
query results cache, 543–544
reads without transactions, 550

Web service performance
binary payload, 486–495
catalog file locations, 502–503
client performance, 502–503
Fast Infoset, 499–501
HTTP compression, 501–502
MTOM (Message Transmission

Optimization Mechanism), 487–495
overview, 486
Provider interface, 495–498
SOAP messages, 499–501
XML documents, 492
XML documents as attachments, 492–495

Best practices, EJB (Enterprise JavaBeans)
beans, locating or instantiating, 432–434
benchmarking, 522
EJB 2.1

cache static resource references, 524–526
coarse-grained access, 529–530
control serialization, 523–524
database locking strategies, 532–533
EJB Query Language, 533–535
lazy loading, 530–532
local vs. remote interfaces, 526–528
optimistic locking, 532–533
pessimistic locking, 532–533
prefetching, 530–532
read-only entity beans, 535–536
Session Façade pattern, 529–530
transaction attributes, choosing, 523
transactions, container managed vs. bean

managed, 522–523
EJB 3.0

business method interceptors, 537–540
compatibility with EJB 2.1, 536–537

Biased locking, enabling, 569
Binary heap dumps, 140
Binary XML payload, Web service performance

best practices, 486–495
Blocked thread state, 74
Blocking vs. nonblocking sockets, 45

ptg6882136

672 Index

Bootstrap class loader, 65
Bottom up software development, 7–8
buffer-size-bytes property, 415
Bulk updates, JPA best practices, 548–549
Bump-the-pointer technique, 85
Business interface, 506–507
Business method interceptors, 537–540
Bytecode analysis, JIT compilers, 96–97
Bytecode verification, 66–67

C
C++ heap management, 76–77
Cache static resource references, 524–526
calibrate.sh script, 196–197
Call stack trees, displaying, 246
Call stacks, attributed time, 174–175
Call Tree tab, 169–171, 246
Call trees, 157–158, 170–171
Caller-callee relationships, 158, 172–174
Callers-callees, monitoring System CPU usage,

218–221
callers-callees command, 184
Callers-Callees tab, 169–170, 172–174
Callers-Callees tables, printing, 184–185
Card tables, 82–83
Catalog file locations, Web service performance

best practices, 502–503
Catalog resolvers, 463–464
Catching exceptions, 70–71
checkInterval property, 409
Chrome, Developer Tools for, 363
Class data sharing, 65, 67–68
Class Hierarchy Analysis, 94–95
Class level interceptor methods, 538–539
Class loader. See also HotSpot VM Runtime, class

loading.
delegation, 65
time, monitoring, 144

Class metadata, 66
Classes. See also specific classes.

uninitialized, 98
unloaded, 98

Client JIT, 97
Client performance, Web service performance best

practices, 502–503
Client runtime environment vs. server, 260
Client types, benchmarking, 359
Clock cycles. See CPU, cycles.
Clock cycles per CPU instruction (CPI), 15,

211–212
cmetrics command, 186
CMS (Concurrent Mark-Sweep GC)

collection cycle, initiating, 298–303
concurrent collection, enabling, 561
incremental mode, 561
incremental pacing, 562
overview, 88–90
pause time tuning, 305–306

remarks, scavenging before, 560
sample output, 113–114
throughput, tuning, 307–308
tuning latency/responsiveness, 287–289,

298–303
Coarse-grained access, EJB best practices,

529–530
collect tool, 158, 162–164
Colon (:), keyword delimiter, 182
Command line flags, printing, 571
Command line names, printing, 572
-command option, 181
Common subexpression elimination, 93
Compilation

activity, eliminating, 333–334
JIT compilers, 93
policy, JIT compilers, 95–96

Compile time, monitoring, 144
Compiler structure, JIT compilers, 93
compressableMimeType property, 438
Compressed oops, 57, 554
Compression

best practices, 440–443
GlassFish server, 436–438
HTTP, 436–438

Compression property, 438
compressionMinSize property, 438
Concurrent collection, enabling, 560
Concurrent garbage collection, sample output,

115–117
Concurrent marking phase, 88
Concurrent Mark-Sweep GC (CMS). See CMS

(Concurrent Mark-Sweep GC).
Concurrent mode failure, 117
Concurrent permanent generation garbage

collection, 304–305
Concurrent sweeping phase, 89
CONDVAR_WAIT statement, 74
Confidence intervals, calculating, 350–351
Configuring remote systems for profiling, 196–197
Connection pooling, JPA best practices, 546–548
Connection queues, monitoring and tuning,

414–417
Constant folding, 93
Contended operations, 71–72
Content caching, best practices, 439–443
Context listeners, best practices, 427–429
Context switching, monitoring, 37
Control flow representation, JIT compilers,

98–100
Control serialization, EJB best practices, 523–524
Copying collectors, 85
corestat tool

aggregating instruction counts, 52
downloading, 52
monitoring CPU utilization, SPARC T-series,

52
count5xx-count attribute, 419
count200-count attribute, 419

ptg6882136

Index 673

count302-count attribute, 419
count304-count attribute, 419
count404-count attribute, 419
countconnections-count attribute, 417
counthits-count attribute, 417
countoverflows-count attribute, 416
countqueued-count attribute, 416
countqueued*minuteaverage-count attribute,

416
countrefusals-count attribute, 417
countrequests-count attribute, 419
counttimeouts-count attribute, 417
Coyote connector, 407
CPI (clock cycles per CPU instruction), 15, 211–212
CPU

architecture, choosing, 9–10. See also specific
architectures.

cache efficiency, 57
counters, collecting, 163–164
cycles

CPI (clock cycles per CPU instruction), 15
IPC (CPU instructions per clock cycle), 15
monitoring, 14–16. See also Monitoring

CPU utilization.
monitoring context switching, 39
stalls, 15
waiting for data, 15

performance counters
listing, 50
monitoring, 49–50

scheduler’s run queue, monitoring
Linux, 31–32
overview, 28–29
Solaris, 31
Windows, 29–31

utilization. See also Monitoring CPU
utilization.

application performance, ideal situation
for, 15

definition, 15
high, identifying, 246
scalability, ideal situation for, 15
system CPU, 15
user CPU, 15

CPU instructions per clock cycle (IPC), 15
cpubar tool. See also iobar tool.

monitoring CPU utilization, 21–24
monitoring memory utilization, 34–35
monitoring run queue depth, 31

cpustat tool
listing CPU performance counters, 50
monitoring CPU performance counters, 49–50
monitoring CPU utilization, SPARC T-series,

52
monitoring instructions per hardware thread,

52
cputrack tool

listing CPU performance counters, 50
monitoring CPU performance counters, 49–50

Criteria for performance, 2–3. See also Metrics.
csingle command, 185–186
currentthreadsbusy-count attribute, 414

D
-d option, collect tool, 163
-d64 option, 554
Dash (-) option, 181
Data structure resizing

identifying, 235
Java collections, 238
overview, 235
StringBuffer, 235–238
StringBuilder, 235–238

Database locking strategies
EJB best practices, 532–533
JPA best practices, 549

Data-fetching strategy, JPA best practices,
544–546

Date and time stamps
monitoring garbage collection, 117–119
printing, 266, 562

dateTime schema, effects on Web service
performance, 481–482

Dead code, optimizing away, 329–335
Deadlocks, 80
Debug VM, 69
Debugging

alternative interface, enabling, 568
log files, dumping, 79
threads, 74–75
VMError class, 79
-XX:OnError, 79

Default interceptor methods, 538
DefaultServlet servlet engine, 408
DefNew garbage collector, 111, 264
Degrees of freedom, 351–353
Deoptimization, 95, 96–97, 340–345
Deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

Destroying threads, 73–74
DestroyJavaVM method, 62–63
DetachCurrentThread method, 60
Development mode, Web containers, 408–409
Disassembly tab, 169–170
Disk I/O utilization. See Monitoring disk I/O.
Disks, formatting, 49
Distributed caches, best practices, 439–443
DocumentBuilder class, creating, 455–456
DocumentBuilderFactory class, 456
DOM APIs

modifying XML documents, 459–460
XML document performance, 469–470

DTD (document type definition), external subsets,
462–464

Dynamic queries, JPA best practices, 541

ptg6882136

674 Index

E
e keyword, 182
EclipseLink session cache, monitoring and tuning,

519–520
Eden space

description, 83–85
size, compared to survivor space, 290–291, 556
utilization, monitoring, 143, 144

Edge cases, tuning, 316
EJB (Enterprise JavaBeans). See also NetBeans.

Business interface, 506–507
components, 505–506
Home interface, 506–507
message driven beans, 505–506
optimistic locking, 521
persistent entities, 505–506
programming model, 506–507
session beans, 505–506
stateful session beans, 506
stateless session beans, 506
transaction isolation levels, 521–522

EJB (Enterprise JavaBeans), best practices
beans, locating or instantiating, 432–434
benchmarking, 522
EJB 2.1

cache static resource references, 524–526
coarse-grained access, 529–530
control serialization, 523–524
database locking strategies, 532–533
EJB Query Language, 533–535
lazy loading, 530–532
local vs. remote interfaces, 526–528
optimistic locking, 532–533
pessimistic locking, 532–533
prefetching, 530–532
read-only entity beans, 535–536
Session Façade pattern, 529–530
transaction attributes, choosing, 523
transactions, container managed vs. bean

managed, 522–523
EJB 3.0

business method interceptors, 537–540
compatibility with EJB 2.1, 536–537

EJB container, monitoring and tuning
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

EJB Query Language, best practices, 533–535
EL (expression language), best practices, 434–436
Elapsed time

calculating, 328–329

monitoring garbage collection, 114
Endpoint implementation, effects on Web service

performance, 483–484
Entering a Java monitor, 71–72
Enterprise applications, profiling, 399–400
Entity bean caches, monitoring and tuning, 516
Entity resolvers, 462–464
Ergonomics

defaults, printing, 102–103
definition, 100
Java 1.4.2 defaults, 101
Java 5 defaults, 101–103
Java 6 Update 18 defaults, 103–104
server-class machines, 101–103

er_print tool. See also Printing, experiment
profiles.

: (colon), keyword delimiter, 182
\ (backslash), line termination character, 181
- (dash) option, 181
! (exclamation point) keyword, 182
% (percent sign) keyword, 182
+ (plus sign) keyword, 182
. (period) keyword, 182
A keyword, 182
abbreviations, 181
callers-callees command, 184
cmetrics command, 186
-command option, 181
csingle command, 185–186
definition, 158
e keyword, 182
er_print_metric_list command, 183
filters command, 186–187
i keyword, 182
limit command, 183–184
lock keyword, 182
metric keywords, 182–184
outfile command, 187
-script option, 181
scripting, 180, 187–189
sort command, 183
splitting commands, 181
syntax, 180–181
system keyword, 182
user keyword, 182
-V option, 181
viewmode command, 187

er_print_metric_list command, 183
Error checking, XML documents, 460
Error handling, 568
Escape analysis, enabling, 569
Even Faster Web Sites, 404
Event tab, 168–169
Exception handling, 70–71
Exclamation point (!) keyword, 182
Exclusive time

definition, 158, 160
displaying, 176

Exiting a Java monitor, 71–72

ptg6882136

Index 675

Experiment files
creating, 163
opening, 168
specifying a directory for, 163

Experiments. See also Benchmarking; Monitoring;
Performance Analyzer, experiments;
Profiles; Profiling; Tuning.

definition, 158
designing, 347–348

Experiments tab, 170
Expert mode, 178
Explicit garbage collection

monitoring, 121
tuning latency/responsiveness, 303–304

Expression language (EL), best practices, 434–436
External dependencies, benchmarking, 360

F
Factory lookup, 456–457
Factory objects, reusing, 457
Fast allocation, HotSpot VM garbage collectors, 85
Fast Infoset Web service performance best

practices, 499–501
Fast-path code, synchronization, 72
Fatal error handling, 78–80

FetchType, 544–546
File cache tuning, best practices, 446
Filtering data

data presentation, 168, 179–180, 248–249
printing experiment profiles, 186–187

Filters, definition, 158
filters command, 186–187
Firebug plug-in, 363
Firewalls, benchmarking, 360
Footprint. See Memory footprint.
format command, 49
Fragmentation issues, garbage collection, 90
Full garbage collection. See also Major garbage

collection.
definition, 85
monitoring, 109–110, 112–113
sample output, 112
scavenging young generation space, 110, 561
tuning latency/responsiveness, 286

Full Identity Map option, 509
Functions tab, 169–170, 171–174

G
G1 GC, 90–91
Garbage collection. See also HotSpot VM garbage

collectors.
definition, 159
GlassFish server, 411–412
logging results, 562
monitoring. See Monitoring garbage collection.

old generation, enabling, 558
pauses, benchmarking, 327–328
pausing for swapping, 32
stop-the-world, 76, 558
tuning latency/responsiveness, activities

affecting, 278–279
Web containers, 411

Garbage collection reports
adaptive size policy, 563
application concurrent run time, 564
application stop time, 563
date and time stamps, printing, 562
detailed, enabling, 562
enabling, 562
safepoint statistics, 564
tenuring statistics, 563

Garbage collection threads, 75
Garbage collectors. See also HotSpot VM garbage

collectors.
tuning

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262
OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262, 308–311
time stamp, printing, 264, 266

Garbage-First GC, 90–91
GC time, monitoring, 144
GCHisto tool, 121–125
Generational garbage collection. See HotSpot VM

garbage collectors, generational.
Generations, NetBeans Profiler, 206–207
getElementsByTagName method, 459
getElementsByTagNameNS method, 459
GlassFish server

access logging, 447
application server monitoring

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

benchmarking Web container components
Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
servlet engines, 407–408

compression, 436–438
dynamic JSP modification, 408
garbage collection, 411–412

ptg6882136

676 Index

GlassFish server (continued)
maximum connections, 407
monitoring Java applications, 150–151
monitoring server applications

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

RMI server, 411–412
security manager, 410
Web container components

Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
overview, 405–406
servlet engines, 407–408

Web containers
Coyote connector, 407
development mode, 408–409
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
production mode, 408–409
servlet engines, 407–408

GlassFish Server Open Source Edition. See
GlassFish server.

GlassFish Web container
development mode, 408–409
production mode, 408–409

GMT, adjusting to local time, 118–119
GNOME System Monitor, monitoring CPU

utilization, 20–21
gnome-system-monitor command, 20–21
Graph coloring, 94
Graphs panel, 144–145
Grizzly connector, 406–407

H
-h option, collect tool, 163–164
Handler performance, effects on Web service

performance, 484–486
Hard Cache Weak Identity Map option, 510
Hardware threads, SPARC T-series processor, 9–10
hasAttributes method, 459
Heap

aggressive options, 569
definition, 159
initial size, configuring, 275–277
in JConsole. See Memory pools.
layout, 268–272
live data size, calculating, 274–275
management, C++, 76–77
memory, JConsole, 129
profiling. See Memory profiles.
size, specifying, 554–555
size, starting point, 272–274

space, on NUMA systems, 571
space limitation, 57
splitting for garbage collection, 81
utilization, monitoring, 111–113, 114

Heap dumps
analyzing with NetBeans Profiler, 209
directory path, specifying, 567–568
enabling on OutOfMemoryError, 567
on OutOfMemoryError, 567
specifying a location for, 80

Heap sizing, adaptive
description, 104–105
disabling, 105, 309–311
enabling/disabling, 558
HotSpot VM, 104–105, 558
policy, printing, 563
throughput, tuning, 309–311

High Performance Web Sites, 404
Histogram panel, 145–146
Home interface, 506–507
Horizontal scaling, 358, 377. See also Scaling.
Hot locks, isolating, 39–40
HotSpot VM. See also JVM (Java Virtual

Machine), tuning.
64-bit version, loading, 554
architectural overview

32-bit vs. 64-bit versions, 57
compressed oops, 57
CPU cache efficiency, 57
garbage collectors, 57
high level architecture, 56–58
Java heap space limitation, 57
memory address limitation, 57
platforms supporting, 58
register spilling, 58

debug VM, 69, 337
launching, 60–62
lock optimization, 37
shutting down, 62–63

HotSpot VM, optimization
aggressive, 568–569
for client applications, 553
for server applications, 553

HotSpot VM adaptive tuning
adaptive heap sizing

enabling/disabling, 558
overview, 104–105

ergonomics
defaults, printing, 102–103
definition, 100
Java 1.4.2 defaults, 101
Java 5 defaults, 101–103
Java 6 Update 18 defaults, 103–104
server-class machines, 101–103

heap sizing, disabling, 105
overview, 100

HotSpot VM garbage collectors
allocation, 91
bump-the-pointer technique, 85

ptg6882136

Index 677

creating work for, 91
fast allocation, 85
history of, 92
live data size, 91
monitoring. See Monitoring garbage collection.
overhead, reducing, 91–92
overview, 80–81
reference updates in old generation, 91
TLABs (Thread-Local Allocation Buffers), 85

HotSpot VM garbage collectors, generational
card tables, 82–83
copying collectors, 85
full garbage collection, 85. See also Major

garbage collection.
generational, 81–83
major garbage collection, 81. See also Full

garbage collection; Old generation
garbage collection.

minor collection. See also Young generation
garbage collection.

definition, 81
process flow, 84–85
reducing runtime, 82–83

old generation space, 81
permanent generation, 81
premature promotion, 85
promotion, 81
promotion failure, 85
splitting the heap, 81
tenure, 81
weak generational hypothesis, 81
write barriers, 83
young generation collection

definition, 81
eden space, 83–85
layout, 83–85
survivor spaces, 84–85

HotSpot VM garbage collectors, types of. See also
specific types.

CMS (Concurrent Mark-Sweep GC), 88–90
comparison chart, 91
G1 GC, 90–91
Garbage-First GC, 90–91
mark-compact, 86–87
Mostly-Concurrent GC

concurrent marking phase, 88
concurrent sweeping phase, 89
definition, 88
disadvantages of, 89–90
enabling, 559
fragmentation issues, 90
initial mark, 88
phases of, 88–89
pre-cleaning phase, 89
remark pause, 88–89

Parallel GC, 87–88
Parallel Old GC, 87–88
Serial GC, 86–87, 92
sliding compacting mark-sweep, 86–87

Throughput GC. See Parallel GC.
Train GC, 92

HotSpot VM JIT compilers. See JIT compilers.
HotSpot VM Runtime

application startup time, decreasing, 68
bytecode verification, 66–67
C++ heap management, 76–77
class data sharing, 67–68
class loading

bootstrap class loader, 65
class data sharing, 65
class loader delegation, 65
class metadata, 66
definition, 63
initialization phase, 64
internal data, 66
link phase, 64
load class phase, 64
monitoring, 147–150
phases, 64–65
reasons for, 64
safepoints, 66
type safety, 65–66

command line options, 58–59
developer command line options, 59
exception handling, 70–71
fatal error handling, 78–80
interpreter, 69–70
JNI (Java Native Interface), 77–78
memory footprint cost, reducing, 68
nonstandard command line options, 59
overview, 58
standard command line options, 59
synchronization

biased state, 72
concurrency, 71
contended operations, 71–72
entering a Java monitor, 71–72
exiting a Java monitor, 71–72
fast-path code, 72
inflated state, 72
Java monitors, 71–72
mark word, 72
mutual exclusion, 71
neutral state, 72
owning Java monitors, 71–72
races, avoiding, 71–72
slow-path code, 72
stack-loaded state, 72
states, 72
synchronized blocks, 71
uncontended operations, 71

thread management
blocked thread state, 74
CONDVAR_WAIT statement, 74
creating threads, 73–74
deadlocks, 80
debugging, 74–75
destroying threads, 73–74

ptg6882136

HotSpot VM Runtime (continued)
garbage collection threads, 75
internal VM threads, 75
JIT compiler threads, 75
MONITOR_WAIT statement, 74
new thread state, 74
OBJECT_WAIT statement, 75
overview, 72
periodic task threads, 75
safepoints, 75–76
signal dispatcher thread, 75
thread in Java state, 74
thread in Java vm state, 74
thread states, 74–75
threading model, 72–73
VM operations, 75–76
VM threads, 75

type inference, 67
type verification, 67
VM life cycle, 59–61

HTTP compression
best practices, 436–438
Web service performance, best practices, 501–502

HTTP connector, 406–407
HTTP listener, monitoring and tuning

acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

HTTP Server File Cache, best practices, 445–450
HTTP service, Web containers, 412
Hybrid scalability, 377
Hypothesis tests, 351–354

I
i keyword, 182
Identity transformation, 93
include file directive, 429
Inclusive time

definition, 158, 160
displaying, 160

Inflated state, synchronization, 72
Inheritance, JPA best practices, 550
init method, 427–429
Initial mark, 88
Initialization phase, 64
Injection rate, benchmarking, 365
Inlined methods

benchmarking, 335–339
maximum bytecode size, 567
printing, 566–567

Inlined of functions, 93
Instrumentation, definition, 159

Intermediate representation (IR), 93
Internal class loader data, 66
Internal VM threads, 75
Interpreter

adaptive optimization, 70
overview, 69
vs. switch statements, 69

Invocation counters, 95
Involuntary context switching, monitoring, 40–41
I/O, monitoring System CPU usage, 214–218,

221–222
iobar tool, Solaris, 46–47. See also cpubar tool.
iosnoop.d script, 47–48
iostat tool, 46–47
iotop tool, 46–47. See also prstat tool; top tool.
IPC (CPU instructions per clock cycle), 15
IR (intermediate representation), 93
Iteration splitting, 99–100

J
Java API for XML Binding (JAXB), 454, 469–470
Java API for XML Processing (JAXP), 454, 457
Java applications. See also Applications.

listing, 134
monitoring

GlassFish server, 150–151
jstack output, example, 151–153
overview, 150–151
quick lock contention, 151–153

Java collections
overview, 238–243
resizing, 238

Java heap. See Heap.
Java HotSpot VM. See HotSpot VM.
Java monitors, synchronization, 71–72
Java Native Interface (JNI), 77–78
Java Persistence API (JPA). See JPA (Java

Persistence API).
Java Virtual Machine (JVM). See JVM (Java

Virtual Machine), tuning.
JavaBean components, accessing with best

practices, 434–436
java.util.Random, lock contention

hottest methods, displaying, 228–229
replacing with ThreadLocal<Random>, 232
sample code, 593–603, 603–613, 613–624,

624–635
source code, 230

javaw command, 60
javaws command, 60
JAXB (Java API for XML Binding), 454, 469–470
JAXP (Java API for XML Processing), 454, 457
JAX-WS RI (JAX-WS Reference Implementation)

stack, 471–473
JConsole. See also VisualGC; VisualVM.

heap memory, 129
local monitoring, 127

678 Index

ptg6882136

Index 679

memory, monitoring, 128–130
memory metrics, 129–130
memory pools, mapping to HotSpot VM spaces,

129
monitoring server applications, 384–386
overview, 125–127
remote monitoring, 127–128
tabs, 128–130

JIT compiler reports
inlined methods, 566–567
optimization decisions, 567
optimized methods, 565–566

JIT compilers
backedge counters, 95–96
batch, 564–565
bytecode analysis, 96–97
class files, 93
Class Hierarchy Analysis, 94–95
Client JIT, 97
common subexpression elimination, 93
compilation, 93
compilation policy, 95–96
compiler structure, 93
constant folding, 93
control flow representation, 98–100
defaults for server-class machines, 101–102
deoptimization, 95, 96–97
future enhancements, 100
graph coloring, 94
in HotSpot VM, 70
identity transformation, 93
inline methods, maximum bytecode size, 567
inlining of functions, 93
invocation counters, 95
IR (intermediate representation), 93
linear scan register allocation, 94
loop optimization, 99–100
machine representation, 93–94
metadata for compiled code, 96–97
method counters, 95
Method Liveness, 96–97
methodDataOop object, 98
monitoring, 146–147
OopMaps tables, 97
optimizations, 93–94
OSRs (On Stack Replacements), 95
overridden methods, detecting, 94–95
overview, 92–94
program dependence graphs, 98–100
register allocation, 94
register tables, 97
running in background, 564–565
Server JIT, 97–98
SSA (single static assignment), 93, 98–100
stack location tables, 97
superword, 99–100
threads, 75
tiered compilation, 565
tuning Web containers, 410

uncommon traps, 96–97, 98–100
uninitialized classes, 98
unloaded classes, 98

JMeter tool, 363
JMX applications, configuring, 135–137
JNI (Java Native Interface), 77–78
JNI_CreateJavaVM method, 61–62
JOINED inheritance, 550
JPA (Java Persistence API)

best practices
bulk updates, 548–549
connection pooling, 546–548
database locking strategies, 549
data-fetching strategy, 544–546
dynamic queries, 541
inheritance, 550
JPA Query Language queries, 540–543
named native queries, 541
named queries, 541
native queries, 542
query results cache, 543–544
reads without transactions, 550

L2 (level two) cache
configuring, 509–511
default type, 511
Full Identity Map option, 509
Hard Cache Weak Identity Map option, 510
No Identity Map option, 510
options, 509–511
overview, 508
size, vs. performance, 508
Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Weak Identity Map option, 509

overview, 507
JPA Query Language queries, best practices,

540–543
JSP best practices, 427–438
jsp:include page action, 429
jspInit method, 428–429
JspServlet servlet engine, 408
jsp:useBean action, 432–434
JSR-133, 234
jstack command

monitoring CPU utilization, 27–28
monitoring thread dumps, 390
output, example, 151–153

jstat command, 389
jstatd daemon, 133–134
jvisualvm program, 191
JVM (Java Virtual Machine), tuning. See also

HotSpot VM.
application systemic requirements

availability, 255–256
latency, 256
manageability, 256
memory footprint, 256–257
overview, 255
responsiveness, 256

ptg6882136

680 Index

testing infrastructure requirements, 255
Web containers, 410–412

K
Keep alive, monitoring and tuning, 414–417
Kernel CPU. See System CPU.
Kernel statistics, 49
Kernel thread queue depths, monitoring, 21–24
Kesselman, Jeff, 2–5
kstat tool, 49

L
L2 (level two) cache

configuring, 509–511
default type, 511
Full Identity Map option, 509
Hard Cache Weak Identity Map option, 510
No Identity Map option, 510
options, 509–511
overview, 508
size, vs. performance, 508
Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Weak Identity Map option, 509

Latency/responsiveness
tuning garbage collectors, 262
tuning the JVM

CMS (Concurrent Mark-Sweep GC),
287–289

CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
description, 256
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting,

278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

Lazy loading, EJB best practices, 530–532
limit command, 183–184
Linear scan register allocation, 94
Link phase, 64
Little’s Law verification, 372–374
Live bytes, profiling, 205
Live data size, HotSpot VM garbage collectors, 91
Live HTTP Headers, 363
Live objects, profiling, 205

JVM (Java Virtual Machine), tuning. See also
HotSpot VM. (continued)
startup time, 256–257
throughput, 256

application throughput
adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 308–311
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

assumptions, 254
command line options, latest optimizations, 317
deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

edge cases, 316
garbage collectors

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262
OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262
time stamp, printing, 264, 266

latency/responsiveness
CMS (Concurrent Mark-Sweep GC),

287–289
CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting, 278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

overview, 252–255
ranking systemic requirements, 257–258
runtime environment, choosing

32-bit vs. 64-bit, 260–261
client vs. server, 260
tiered, 260

ptg6882136

Index 681

Manageability, tuning the JVM, 256
Mark word, 72
Mark-compact garbage collectors, 86–87
Markov chains, benchmarking, 362–366
Marshal XML documents. See Parse/unmarshall;

Serialize/marshall.
max-connections-count property, 415–416
Maximum number of concurrent clients,

benchmarking, 372–374
maxthreads-count attribute, 414
Members, memory, 234
Memory

address limitations, 57
barriers, 234
fences, 234
footprint cost, reducing, 68
members, 234
metrics, 129–130
OutOfMemoryError, 78–80
scan rate, monitoring, 21–24
volatile usage, 234

Memory footprint
garbage collectors, 262
tuning the JVM, 256–257

Memory footprint, determining
application total memory, determining, 277
constraints, 268
heap

initial size, configuring, 275–277
layout, 268–272
live data size, calculating, 274–275
size, starting point, 272–274

old generation space, 269–272
overview, 268
permanent generation space, 269–272
young generation space, 269–272

Memory leaks
definition, 159
NetBeans Profiler, 206–207, 208

Memory pages
large, enabling, 570
touching, enabling, 570–571

Memory paging, monitoring, 21–24
Memory pools, mapping to HotSpot VM spaces,

129
Memory profiles, NetBeans Profiler, 202–205
Memory utilization. See also Monitoring memory

utilization.
freeing memory. See Garbage collection.
monitoring, 23–24
swap space, 32. See also Swapping memory.

Message driven beans, 505–506
Message size, effects on Web service performance,

477–479
Message Transmission Optimization Mechanism

(MTOM), best practices, 487–495
Metadata for compiled code, 96–97
Method counters, 95
Method level interceptor methods, 539

Live Results control, 199
Load class phase, 64
Local vs. remote interfaces, EJB best practices,

526–528
Lock contention

finding, 222–225
isolating, 222–225
overview, 222–225
reducing, 212
scaling symptoms, 224
User Lock metric, 176–177

Lock contention, monitoring
hot locks, isolating, 39–40
HotSpot VM, 37
Linux, 38–39
Solaris, 36–38
Windows, 39

Lock contention, sample code
ConcurrentHashMap, 583–593
java.util.Random, 593–603, 603–613,

613–624, 624–635
parallelism

multithreaded, 657–668
single-threaded, 647–657

partitioned database, 624–635
resizing variant, 624–635, 636–647
synchronized HashMap, 573–583, 603–613

lock keyword, 182
Locking, JVM-System

ConcurrentHashMap, 227–233
overview, 225–233
synchronized HashMap, 225–233

Log files
aggregation, best practices, 450
dumping, 79
garbage collection, specifying, 119
loading multiple, 124–125

Logging
best practices, 396
garbage collection results, 562
garbage collectors, 263–267
GlassFish server, 447

Long latency CPU events, SPARC T-series
processor, 11

Loops
iteration splitting, 99–100
optimizing, 99–100
range check elimination, 99–100
superword, 99–100
unrolling, 99–100
unswitching, 99–100

M
Machine mode, 178
Machine representation of code, 93–94
Major garbage collection, 81, 109–110. See also

Full garbage collection; Old generation
garbage collection.

ptg6882136

682 Index

reporting intervals, setting, 24–26
Linux tools

command line tools, 24–28
GNOME System Monitor, 20–21
mpstat tool, 25–26
top tool, 26
vmstat tool, 24–25
xosview tool, 21

overview, 14–16
Solaris

application threads, isolating, 25, 27
kernel thread queue depths, 21–24
memory paging, 21–24
memory scan rate, 21–24
memory utilization, 23–24
printing statistics, 26–27
process thread stack dumps, 27
reporting intervals, setting, 24–26
thread ids, converting to hexadecimal,

27–28
Solaris tools

command line tools, 24–28
cpubar, 21–24
GNOME System Monitor, 21
jstack, 27–28
mpstat, 25–26
prstat, 26–27
pstack, 27
vmstat, 24–25

SPARC T-series systems
overview, 50
stalls, 50–51

Windows
Performance Manager, 16–19
Task Manager, 16–19
typeperf tool, 19–20

Monitoring disk I/O
benchmarking, 395–398
disk cache, enabling, 48–49
Linux, 46
patterns, 48
process ids, 47–48
seek times, 48
service times, 48
servicing I/O events, 48
Solaris, 46
user ids, 47–48
Windows, 46

Monitoring EJB containers
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

Method Liveness, 96–97
Method profiles. See NetBeans Profiler, method

profiles.
methodDataOop object, 98
Methods

overridden, detecting, 94–95
showing/hiding, 168

Metric keywords, 182–184
Metrics, profiling, 175–176. See also Criteria

for performance; Performance Analyzer,
metrics.

Micro-benchmarks. See also Benchmarking.
creating, 345–346
developing, 361–362

Minor garbage collection. See also Young
generation garbage collection.

definition, 81
monitoring, 109–110
process flow, 84–85
reducing runtime, 82–83
sample output, 113–114

Modes, experiment data
Expert, 178
Machine, 178
User, 177–178

Modify Profiling control, 199
Modifying XML documents

attributes, checking for and retrieving, 459
definition, 455
description, 459–460
DOM APIs, 459–460
error checking, 460
node expansion, deferring, 460
nodes, creating, renaming and moving, 459

Monitor contention, 177
Monitoring. See also Experiments; Profiling;

Tuning.
application servers. See Application server

monitoring.
definition, 14, 108
JIT compilers, 146–147
JVM, 388–389
local applications, 127
memory, 128–130
network I/O, 390–392
remote applications, 127–128, 133–137
resource pools, 398–399
thread dumps, 389–390

Monitoring CPU scheduler’s run queue
Linux, 31–32
overview, 28–29
Solaris, 31
Windows, 29–31

Monitoring CPU utilization. See also CPU,
utilization.

Linux
application threads, isolating, 25, 27
memory utilization, 26–27
printing statistics, 26–27

ptg6882136

Index 683

request processing, 418–420
request response codes, 419
thread pools, 412–414

Monitoring Java applications
GlassFish server, 150–151
jstack output, example, 151–153
overview, 150–151
quick lock contention, 151–153

Monitoring memory utilization. See also Memory
utilization.

involuntary context switching, 40–41
Linux, 35–36
lock contention

hot locks, isolating, 39–40
HotSpot VM, 37
Linux, 38–39
Solaris, 36–38
Windows, 39

Solaris, 34–35
Windows, 33–34

Monitoring network I/O. See also Network I/O
utilization.

Linux, 43
Solaris, 42–43
Windows, 44–45

Monitoring Web containers
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

MONITOR_WAIT statement, 74
Mostly-Concurrent GC

concurrent marking phase, 88
concurrent sweeping phase, 89
definition, 88
disadvantages of, 89–90
fragmentation issues, 90
initial mark, 88
phases of, 88–89
pre-cleaning phase, 89
remark pause, 88–89

mpstat tool, Linux
lock contention, 37–38
monitoring CPU utilization, 25–26

mpstat tool, Solaris
monitoring context switching, 37–38
monitoring CPU utilization, 25–26
monitoring involuntary context switching,

40–41
monitoring lock contention, 37–38
monitoring thread migrations, 41
reporting CPU utilization for SPARC T-series,

51–52

Monitoring garbage collection
CPU usage, 114–115
data of interest, 109
enabling/disabling, 110
full collections, 109–110
GCHisto tool, 121–125
graphical tools, 125. See also specific tools.
major collections, 109–110
minor collections, 109–110
offline analysis, 121–125
overhead, 122–123
overview, 108–109
pause times, 122–124
stop-the-world pauses, 122
types of collections, 109–110
young generation collections, 109–110

Monitoring garbage collection, reporting
concurrent mode failure, 117
CPU usage, 114–115
date and time stamps, 117–119
elapsed time, 114
explicit collection, 121
full garbage collection, 112–113
Java heap utilization, 111–113, 114
log files, specifying, 119
offline analysis, 119
old generation space

calculating, 112–113, 114
reducing, 116–117

permanent generation space, 113
premature promotion, 117
recommended command line options, 121
runtime between safepoint operations,

119–120
sample output

call to System.gc, 121
CMS (Concurrent Mark-Sweep GC),

113–114
concurrent garbage collection, 115–117
full garbage collection, 112
minor garbage collection, 113–114
runtime between safepoint operations,

119–120
from -XX:+PrintGCApplicationConcur

rentTime option, 120
from -XX:+PrintGCApplicationStoppe

dTime option, 120
from -XX:+PrintGCDetails option,

110–111
from -XX:+PrintGCTimeStamps option,

118–119
tenuring distribution, 117
-verbose option, 110

Monitoring HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417

ptg6882136

684 Index

Neutral state, synchronization, 72
nicstat tool, 42–43
NIO nonblocking data structures, 221–222
No Identity Map option, 510
Nodes, XML documents

creating, 459
expansion, deferring, 460
moving, 459
renaming, 459

Nonstandard command line options, 59
Null hypothesis, 351–353
NUMA (Non-Uniform Memory Architecture)

systems
deploying applications on, 315
heap space, 571

numberofavailablethreads-count attribute,
513–514

numberofworkitemsinqueue-current
attribute, 513–514

O
-o option, collect tool, 163
Object size vs. cost, best practices, 444
OBJECT_WAIT statement, 75
Offline analysis, garbage collection, 119,

121–125
Old generation garbage collection, enabling, 558
Old generation space

calculating, 112–113, 114
definition, 81
memory footprint, 269–272
size, refining, 283–287
triggering CMS garbage collection, 559–560
utilization, monitoring, 144–145

On Stack Replacements (OSRs), 95
oops (ordinary object pointers), 57, 554
Optimistic locking, 521, 532–533
Optimization decisions, printing, 567
Optimizations, JIT compilers, 93–94
Optimized methods, printing, 565–566
Optimizing away dead code, 329–335
Optimizing loops, 99–100
Oracle Solaris. See Solaris.
Oracle Solaris Studio Performance Analyzer. See

Performance Analyzer.
Ordinary object pointers (oops), 57, 554
OSRs (On Stack Replacements), 95
outfile command, 187
OutOfMemoryError

error handling, 78–80
heap dumps, enabling, 567
running commands on error, 568
tuning garbage collectors, 273–274

Overhead
definition, 157
reducing, 91–92

Owning Java monitors, 71–72

MTOM (Message Transmission Optimization
Mechanism), best practices, 487–495

Multithreaded reference processing, enabling,
561

Multithreaded young generation garbage
collection, 111, 559

N
Named native queries, JPA best practices, 541
Named queries, JPA best practices, 541
Native queries, JPA best practices, 542
NetBeans Profiler

allocations tracked, specifying, 204
downloading, 190–191
features, 190
generations, 206–207
heap dumps, analyzing, 209
installing, 190–191
memory leaks, 206–207, 208
memory profiles, 202–205
overview, 189–190
results

allocated objects, 205
average age, 206
discarding, 199
displaying, 199
generations, 206
live bytes, 205
live objects, 205
taking snapshots, 199, 207–208

supported platforms, 190
terminology, 159
vs. VisualVM, 189

NetBeans Profiler, method profiles. See also
Profilers.

Attach Mode, specifying, 193–194
calibrating the target JVM, 196–197
configuring the remote system, 196–197
controls, 198–199
local vs. remote, specifying, 193–195
remote profiling pack, generating, 194, 196
results

displaying, 201
taking a snapshot, 201–202

sample rate, reducing, 193
starting a session, 191–198
status, 198–199
telemetry, 200–201
views, 200

Network I/O
monitoring, 390–392
System CPU usage, monitoring, 221–222

Network I/O utilization. See also Monitoring
network I/O.

bandwidth, 44
blocking vs. nonblocking sockets, 45
improving application performance, 45
overview, 41–42

ptg6882136

Index 685

er_print tool, 158, 180–189
exiting, 168
experiment files

creating, 163
opening, 168
specifying a directory for, 163

filters, definition, 158
installing, 161–162
modes

Expert, 178
Machine, 178
User, 177–178

new windows, creating, 168
overview, 156–157
printing data, 168
product Web page, 159
supported platforms, 160–161
System CPU time, printing, 182
tabs

Call Tree, 169–171, 246
Callers-Callee, 172–174
Callers-Callees, 169–170
Disassembly, 169–170
Event, 168–169
Experiments, 170
Functions, 169–170, 171–174
Source, 169–170
Summary, 168–169
Timeline, 170, 246–248

terminology, 158
toolbar, 168
User CPU time, printing, 182
viewing mode, switching, 168

Performance Analyzer, experiments. See also
Experiments.

archiving artifacts, 163
call stacks, attributed time, 174–175
collecting data, 162–166, 168
combining, 168
CPU counters, collecting, 163–164
data presentation

APIs, showing/hiding, 168
filtering data, 168, 179–180, 248–249
by function name, 178
lock contention, 176–177
by method name, 177–178
methods, showing/hiding, 168
metrics, 175–176
monitor contention, 177

definition, 158
dropping results from, 168
metrics of interest, 176
printing, 180–189
printing experiment profiles. See also er_

print tool.
Callers-Callees tables, 184–185
directory output to a file, 187
filtering, 186–187
limiting methods printed, 183–184

P
-p option, collect tool, 163
Page view, performance metrics, 366–367
Parallel GC

defaults for server-class machines, 101–102
overview, 87–88
threads, throughput tuning, 314–315

Parallel Old GC, 87–88
Parallelism, increasing

multithreaded applications, 243–246
overview, 243–246
sample code

multithreaded, 657–668
single-threaded, 647–657

single-threaded applications, 243–246
ParNew garbage collector

description, 111
enabling, 292, 559

Parse/unmarshall XML documents
definition, 455
description, 455–458
DocumentBuilder, creating, 455–456
factory lookup, 456–457
Factory objects, reusing, 457
parser, creating, 455–456
SAXParser, creating, 455–456
thread safety, 457
XMLStreamReader, creating, 455–456

Parsing XML documents, performance
comparisons, 469–470

Path length
vs. CPI, 211–212
definition, 7

Patterns, garbage collection time line, 124
Pause times, garbage collection, 122–124
Payload sizes, benchmarking, 359
Percent sign (%) keyword, 182
perfmon. See Performance Manager.
Performance

attributes of, 262–263
monitoring. See Monitoring.
principles of, 263
profiling. See Profiling.
statistics, plotting, 144–145
tuning. See Tuning.

Performance Analyzer. See also Profilers.
analyzers, definition, 158
attributed time, 158
caller-callee relationships

attributed metrics, 172–174
definition, 158
displaying, 158

Callers-Callees tables, printing, 184–185
closing, 168
collect tool

definition, 158
options, 162–164

downloading, 161–162

ptg6882136

686 Index

limiting methods printed, 183–184
metrics, specifying, 182–184
scripting, 180, 187–189
sorting, 183
splitting commands, 181
System CPU time, 182
User CPU time, 182
view mode, specifying, 187

optimized methods, 325, 565–566
Process thread stack dumps, monitoring, 27
Product Web page, 159
Production mode, Web containers, 408–409
Profilers, 157. See also NetBeans Profiler;

Performance Analyzer.
Profiles, 157. See also Experiments.
Profiling. See also Experiments; Monitoring;

Tuning.
definition, 14, 108
enterprise applications, 399–400
memory, 156
method, 156
with VisualVM

capabilities, 131, 138
pausing, 138–139
remote, 138–139

Program dependence graphs, 98–100
Programs, developing. See Software development.
Promotion

garbage collection
definition, 81
failure, 85

premature, 117
tuning latency/responsiveness, 291–293

Provider interface, 495–498
prstat tool, Solaris. See also iotop tool.

involuntary context switching, 40–41
monitoring CPU utilization, 26–27

pstack tool, 27
p-value, 353

Q
Query results cache, JPA best practices, 543–544
Quick lock contention, monitoring, 151–153

R
Races, avoiding, 71–72. See also Synchronization.
Ramp down time, 380
Ramp up time, 380
Range check elimination, 99–100
READ_COMMITTED isolation level, 521
Read-only entity beans, EJB best practices,

535–536
Reads without transactions, 550
READ_UNCOMMITTED isolation level, 521
Ready Cache, 516–517
Reference updates in old generation, 91

Performance Analyzer, experiments. See also
Experiments. (continued)
metrics, specifying, 182–184
scripting, 180, 187–189
sorting, 183
splitting commands, 181
System CPU time, 182
User CPU time, 182
view mode, specifying, 187

profiling interval, specifying, 163
toggling data collection on/off, 163
viewing, 166–175

Performance Analyzer, metrics
adding/removing, 175
exclusive time

definition, 158, 160
displaying, 176

inclusive time
definition, 158, 160
displaying, 160

System CPU, 158, 176
User CPU, 158, 176
User Lock, 176

Performance counters, CPU, 49–50
Performance Manager, monitoring

CPU utilization, 16–19
lock contention, 39
memory utilization, 33–34
run queue depth, 29–31

Period (.) keyword, 182
Periodic task threads, 75
Permanent generation garbage collection, 560
Permanent generation space

definition, 81
memory footprint, 269–272
monitoring, 113
size

specifying, 556
triggering CMS garbage collection, 560

utilization, monitoring, 145
Persistent entities, 505–506
Pessimistic locking, EJB best practices, 532–533
pidstat tool, Linux

monitoring involuntary context switching, 41
monitoring lock contention, 38–39

ping utility, 390–391
Platforms, choosing, 9–10
Plus sign (+) keyword, 182
Pre-cleaning phase, 89
Prefetching, EJB best practices, 530–532
Premature promotion, garbage collection, 85
Printing

Callers-Callees tables, 184–185
CPU utilization statistics, 26–27
data, 168
experiment profiles. See also er_print tool.

Callers-Callees tables, 184–185
directory output to a file, 187
filtering, 186–187

ptg6882136

Index 687

SAXParser, creating, 455–456
SAXParserFactory class, 456
Scalability

analysism, 377–378
ideal CPU utilization, 15

Scaling
benchmarks, 370–372
user, 358
vertical and horizontal, 358, 377

Scavenging young generation space, 110, 306, 561
Schema caching, 461–462
Schema types, effects on Web service performance,

479–483
-script option, 181
Scripting, er_print tools, 180, 187–189
Secure interactions, benchmarking, 359
Security manager, 409–410
Security policies, VisualVM, 133
Self time, 159
Serial GC, 86–87, 92
SERIALIZABLE isolation level, 521
Serialization, best practices, 440–443
Serialize/marshall XML documents. See also

Parse/unmarshall XML documents.
definition, 455
description, 460

Server JIT, 97–98
-server option, 553
Server runtime environment vs. client, 260
Server-class machines, JIT defaults for, 101–102
Servers, monitoring. See Application server

monitoring.
Service availability, benchmarking, 359
Service Oriented Architecture (SOA). See Web

services; XML documents.
Servlet engines, 407–408
Servlets, best practices, 427–438
Session beans, 505–506
Session Façade pattern, 529–530
Session maintenance, benchmarking, 359
Session persistence, best practices, 443–445
setStrictErrorChecking attribute, 460
Single static assignment (SSA), 93, 98–100
SINGLE_TABLE inheritance, 550
Single-threaded young generation garbage

collection, 111
SJSXP performance, 469–470
Sliding compacting mark-sweep garbage

collection, 86–87
Slow-path code, synchronization, 72
Snapshots. See also Thread dumps.

NetBeans Profiler, 199, 201–202, 207–208
NetBeans Profiler results, 199, 207–208
Take Snapshot control, 199
VisualVM applications, 132, 139–140

Snapshots of applications
saving, 139–140
taking, 132
viewing, 139–140

Register allocation, 94
Register tables, 97
Rejecting a true null hypothesis, 353
Remark pause, 88–89
Remote profiling pack, generating, 194, 196
Repeatability, benchmarking, 380–381
REPEATABLE_READ isolation level, 521
Reporting intervals, setting, 24–26
Request processing, monitoring and tuning,

418–420
Request response codes, monitoring and tuning,

419
Requests, calculating performance metrics, 366
ReRun Last Profiling control, 199
Reset Collected Results control, 199
Resource monitoring, benchmarking, 379–380
Resource pools, monitoring and tuning, 398–399
Response time

calculating performance metrics, 368–369
Web services metric, 476

Responsiveness, tuning the JVM, 256. See also
Latency/responsiveness.

Results of profiling
displaying, 201
method profiles, 201–202
NetBeans Profiler

allocated objects, 205
average age, 206
discarding, 199
displaying, 199
generations, 206
live bytes, 205
live objects, 205
taking snapshots, 199, 201–202, 207–208

RMI server, 411–412
Root method, definition, 159
Round-trip time, calculating performance metrics,

366
Run GC control, 199
Run queue. See CPU, scheduler’s run queue.
Runtime. See HotSpot VM Runtime.
Runtime environment, choosing, 260–261

S
Safepoints

class loaders, 66
HotSpot VM Runtime

class loading, 66
initiating, 76
thread management, 75–76

operations, monitoring runtime between,
119–120

pauses, tuning garbage collectors, 267
statistics, printing, 564
VM operations, 75–76

Sample rate, reducing, 193
sar tool, 49
SAX performance, XML documents, 469–470

ptg6882136

688 Index

tuning garbage collectors, 264
p-value, 353
rejecting a true null hypothesis, 353
safepoint, garbage collection reports, 564
sar tool, 49
standard deviations, calculating, 349
tenuring, garbage collection reports, 563
t-statistics, 351–353
Type I Errors, 353

Steady state time, benchmarking, 380
Stop control, 199
Stop-the-world garbage collection, 76, 558
Stop-the-world pauses, monitoring, 122
StringBuffer, resizing, 235–238
StringBuilder, resizing, 235–238
Studio Performance Analyzer. See Performance

Analyzer.
Summary tab, 168–169
Sun Microsystems. See Solaris; SPARC T-series

processor.
Superword, 99–100
Supported platforms, 160–161
Survivor spaces

description, 84–85
occupancy, 298
overflows, 145
size

after garbage collection, 557–558
changing, 294–303
compared to eden space, 290–291, 556
initial ratio, specifying, 557

sizing, 294–303
throughput, tuning, 311–314
tuning latency/responsiveness, 289–291
utilization, monitoring, 143, 144

SUT (System Under Test), isolating, 360–361,
378–379

Swapping memory, 32–36
Sweeping, enabling, 560
Synchronization

biased state, 72
concurrency, 71
contended operations, 71–72
entering a Java monitor, 71–72
exiting a Java monitor, 71–72
fast-path code, 72
inflated state, 72
Java monitors, 71–72
mark word, 72
mutual exclusion, 71
neutral state, 72
owning Java monitors, 71–72
races, avoiding, 71–72
slow-path code, 72
stack-loaded state, 72
states, 72
synchronized blocks, 71
uncontended operations, 71

Synchronized blocks, 71

SOA (Service Oriented Architecture). See Web
services; XML documents.

SOAP messages, Web service performance best
practices, 499–501

Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Software development

bottom up approach, 7–8
phases of, 2–5. See also specific phases.
process overview, 3
top down approach, 6–7

Solaris Performance Analyzer. See Performance
Analyzer.

Solaris Performance Tools CD 3.0, 47
Solaris Studio Performance Analyzer. See

Performance Analyzer.
sort command, 183
Source tab, 169–170
Space utilization, monitoring, 142–143
Spaces panel, 142–143
SPARC T-series processor

evaluating performance, 10–11
hardware threads, 9–10
long latency CPU events, 11
monitoring CPU utilization, 52
multiprocessing, 9–10
multithreading, 9–10
Solaris Internals wiki, 51
thread context switches, 9–10

SSA (single static assignment), 93, 98–100
Stack-loaded state. synchronization, 72
Stalls

CPU cycles, 15
SPARC T-series systems, 50–51

Standard command line options, 59
Standard deviations, calculating, 349
Startup time, tuning the JVM, 256–257
Stateful session bean caches, monitoring and

tuning, 516
Stateful session beans, 506
Stateless session beans, 506
States, synchronization, 72
Statistics. See also Benchmarking; Experiments.

α (alpha), 351–353
aging, 145–146
averages, calculating, 349
benchmarking, 381–382
confidence intervals, calculating, 350–351
degrees of freedom, 351–353
guidelines for using, 354–355
hypothesis tests, 351–354
kstat tool, 49
null hypothesis, 351–353
performance, collecting, 49
plotting performance, 144–145
printing

CPU utilization, 26–27
monitoring CPU utilization, 26–27
safepoint, 564

ptg6882136

Index 689

Thread in vm state, 74
Thread management

blocked thread state, 74
CONDVAR_WAIT statement, 74
creating threads, 73–74
deadlocks, 80
debugging, 74–75
destroying threads, 73–74
garbage collection threads, 75
internal VM threads, 75
JIT compiler threads, 75
MONITOR_WAIT statement, 74
new thread state, 74
OBJECT_WAIT statement, 75
overview, 72
periodic task threads, 75
safepoints, 75–76
signal dispatcher thread, 75
thread in Java state, 74
thread in Java vm state, 74
thread states, 74–75
threading model, 72–73
VM operations, 75–76
VM threads, 75

Thread pools, monitoring and tuning, 412–414,
512–514

Thread safety, parsing/unmarshalling XML
documents, 457

Thread states, 74–75
Threading model, 72–73
Threads control, 200
Throughput

metric, Web services, 476
performance metrics, calculating, 369–370
tuning

adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 262, 308–311
JVM, 256
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

Throughput GC. See Parallel GC.
Throwing exceptions, 70–71
Tiered runtime environment, 260
Time and date stamp, printing, 264, 266
Time stamps. See Date and time stamps.
Timeline tab, 170, 246–248
TLABs (Thread-Local Allocation Buffers), 85
Toolbar, 168
Top down software development, 6–7
top tool, 26. See also iotop tool.
Train GC, 92
Transactional Cache, 516–517
Transactions

attributes, choosing, 523
container managed vs. bean managed, 522–523
isolation levels, 521–522

Synchronized HashMap
lock contention, sample code, 573–583,

603–613
locking, JVM-System, 225–233

System boundaries, defining for benchmarking,
360–361

System CPU. See also CPU, utilization.
definition, 15
profiling, 158, 176
time, printing, 182
usage, monitoring

callers-callees, 218–221
I/O, 214–218
network I/O, 221–222
NIO nonblocking data structures, 221–222
overview, 212–222

system keyword, 182
System Under Test (SUT), isolating, 360–361,

378–379
System.currentTimeMillis API, 328–329
System.gc

full garbage collection, disabling, 110, 561
invoking CMS cycle vs. stop-the-world, 561
sample output, 121
unloading classes, 561

System.nanoTime API, 328–329

T
Take Snapshot control, 199
Task Manager

monitoring CPU utilization, 16–19
monitoring involuntary context switching, 41

Telemetry, 200–201
TemplateTable data structure, 69
Tenure, 81
Tenuring

distribution, monitoring, 117
maximum threshold, setting, 559
monitoring, 145–146
statistics, printing, 563
threshold, 291–294

Terminology, 158
Thick clients, Web services, 474–476
Thin clients, Web services, 475–476
Think time

benchmarking, 364, 374–377
calculating, 366
definition, 366
enterprise considerations, 364
performance metrics, calculating, 366

32-bit runtime environment vs. 64-bit, 260–261
Thread dump analysis, unanticipated file

interactions, 397
Thread dumps. See also Snapshots.

monitoring, 389–390
VisualVM, 138

Thread ids, converting to hexadecimal, 27–28
Thread in Java state, 74

ptg6882136

690 Index

OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262
time stamp, printing, 264, 266

latency/responsiveness
CMS (Concurrent Mark-Sweep GC),

287–289
CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting,

278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

overview, 252–255
ranking systemic requirements, 257–258
runtime environment, choosing

32-bit vs. 64-bit, 260–261
client vs. server, 260
tiered, 260

testing infrastructure requirements, 255
work flow, 253

Tuning the JVM, command line options
biased locking, 318–319
escape analysis, 317–318
garbage collection read/write barriers,

eliminating, 318
large pages

Linux, 320–321
Solaris, 319–320
window, 321

object explosion, 317
scalar replacement, 318
synchronization, eliminating, 318
thread stack allocation, 318

Tuning the JVM, determining memory footprint
application total memory, determining, 277
constraints, 268
heap

initial size, configuring, 275–277
layout, 268–272
live data size, calculating, 274–275
size, starting point, 272–274

old generation space, 269–272
overview, 268
permanent generation space, 269–272

Trimming whitespaces, best practices, 430–431
t-statistics, 351–353
Tuning. See also Experiments.

definition, 14, 108. See also Monitoring;
Profiling.

the file cache, best practices, 446
resource pools, 398–399

Tuning EJB container
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

Tuning HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Tuning the JVM
application systemic requirements

availability, 255–256
latency, 256
manageability, 256
memory footprint, 256–257
overview, 255
responsiveness, 256
startup time, 256–257
throughput, 256

application throughput
adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 308–311
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

assumptions, 254
deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

edge cases, 316
garbage collectors

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262

ptg6882136

Index 691

GC time, 144
Graphs panel, 144–145
Histogram panel, 145–146
old generation space utilization, 144–145
overview, 141
performance statistics, plotting, 144–145
permanent generation space utilization, 145
space utilization, 142–143
Spaces panel, 142–143
survivor space overflows, 145
survivor space utilization, 143, 144
tenuring, 145–146

VisualVM. See also JConsole; VisualGC.
application snapshots

saving, 139–140
taking, 132
viewing, 139–140

binary heap dumps, 140
JMX applications, configuring, 135–137
jstatd daemon, 133–134
jvisualvm program, 191
launching, 131
listing Java applications, 134
monitoring remote applications, 133–137
monitoring server applications, 384–386
vs. NetBeans Profiler, 189
obtaining, 191
overview, 130–131
profiling

capabilities, 131, 138
pausing, 138–139
remote, 138–139

security policy, 133
table of features, 131
thread dumps, 138

VM life cycle, 59–61
VM operations, threads, 75–76
VM Telemetry control, 199, 200
VM threads, 75
vmstat tool

Linux
monitoring CPU utilization, 24–25
monitoring memory utilization, 35–36
monitoring run queue depth, 31–32

monitoring CPU utilization, 24–25
Solaris

monitoring CPU utilization, 24–25
monitoring memory utilization, 34–35
monitoring run queue depth, 31
reporting CPU utilization for SPARC

T-series, 51–52
volatile keyword, 234
Volatile memory usage, 234

W
Waiting for data. See Stalls.
Warm-ups, benchmarking, 324–327, 333–334
Weak generational hypothesis, 81

young generation space, 269–272
Tuning Web containers

configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

Type I Errors, 353
Type safety, class loaders, 65–66
typeperf tool, monitoring

CPU utilization, 19–20
lock contention, 39
memory utilization, 33–34
run queue depth, 29–31

U
Uncommon traps, 96–97, 98–100
Uncontended operations, 71
Uninitialized classes, 98
Unloaded classes, 98
Unloading classes, System.gc, 561
Unrolling loops, 99–100
Unswitching loops, 99–100
User CPU. See also CPU, utilization.

description, 15
profiling, 158, 176
time, printing, 182

User interaction modeling, benchmarking,
362–366

user keyword, 182
User Lock, 176
User mode, 177–178
User scaling, 358. See also Scaling.
User transactions, calculating performance

metrics, 366, 367–368

V
-V option, 181
Validating XML documents, 460–462
-verbose option, 110, 389
-verbose:gc, 562
Vertical scaling, 358, 377. See also Scaling.
Viewing mode, switching, 168
viewmode command, 187
Virtual processors, monitoring CPU utilization, 51
VisualGC. See also JConsole; VisualVM.

aging statistics, 145–146
class loader time, 144
compile time, 144
downloading, 141
eden space utilization, 143, 144

ptg6882136

692 Index

X
-Xbatch, 564–565
-Xcheck:jni, 568
-Xcheck:jni method, 78
-Xloggc, 264, 267, 562
-Xloggc option, 119
XML documents. See also Web services.

APIs, selecting, 468–471
catalog resolvers, 463–464
DOM performance, 469–470
encoding in binary format, 499–501
entity resolvers, 462–464
external DTD subsets, 462–464
JAXB (Java API for XML Binding), 454,

469–470
JAXP (Java API for XML Processing), 454, 457
JAX-WS RI (JAX-WS Reference

Implementation) stack, 471–473
parsing performance, comparisons, 469–470
partial processing, 465–468
resolving external entities, 462–464
SAX performance, 469–470
schema caching, 461–462
sending as attachments, 492–495
SJSXP performance, 469–470
validation, 460–462
Web service performance, best practices,

492–495
Woodstox performance, 469–470

XML documents, processing life cycle
access

definition, 455
description, 458–459

modify
attributes, checking for and retrieving, 459
definition, 455
description, 459–460
DOM APIs, 459–460
error checking, 460
node expansion, deferring, 460
nodes, creating, renaming and moving, 459

overview, 454–455
parse/unmarshall

definition, 455
description, 455–458
DocumentBuilder, creating, 455–456
factory lookup, 456–457
Factory objects, reusing, 457
parser, creating, 455–456
SAXParser, creating, 455–456
thread safety, 457
XMLStreamReader, creating, 455–456

serialize/marshall
definition, 455
description, 460

XMLInputFactory class, 456
XMLStreamReader, creating, 455–456
-Xmn, 270, 555

Weak Identity Map option, 509
Web containers

components, GlassFish
Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
servlet engines, 407–408

monitoring and tuning
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

monitoring and tuning HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Web pages, checking freshness, 409
Web service performance

best practices
binary payload, 486–495
catalog file locations, 502–503
client performance, 502–503
Fast Infoset, 499–501
HTTP compression, 501–502
MTOM (Message Transmission

Optimization Mechanism), 487–495
overview, 486
Provider interface, 495–498
SOAP messages, 499–501
XML documents, 492
XML documents as attachments, 492–495

factors affecting
dateTime schema, 481–482
endpoint implementation, 483–484
handler performance, 484–486
message size, 477–479
schema types, 479–483

Web services. See also XML documents.
benchmark metrics, 476
benchmarking, 473–476
response time metric, 476
thick clients, 474–476
thin clients, 475–476
throughput metric, 476

Whitespaces, trimming, 430–431
Woodstox performance, 469–470
Write barriers, 83

ptg6882136

Index 693

-XX:+PrintGCApplicationStoppedTime, 120,
563

-XX:PrintGCDateStamps, 267
-XX:+PrintGCDateStamps, 562
-XX:+PrintGCDetails, 110–111, 267, 389, 562
-XX:+PrintGCTimeStamps

date and time stamps, 118–119
description, 562
garbage collection logging, 267
garbage collection reporting, 117–119
monitoring the JVM, 389

-XX:+PrintInlining, 566–567
-XX:+PrintOptoAssembly, 567
-XX:+PrintSafepointStatistics, 267, 564
-XX:+PrintTenuringDistribution, 293–294,

563
-XX:+ScavengeBeforeFullGC, 561
-XX:+ShowMessageBoxOnError, 568
-XX:SurvivorRatio, 290–291, 556
-XX:TargetSurvivorRatio, 298, 557–558
-XX:+TieredCompilation, 565
-XX:+UseBiasedLocking, 318–319, 569
-XX:+UseCMSInitiatingOccupancyOnly, 300,

560
-XX:+UseCompressedOops, 554
-XX:+UseConcMarkSweepGC, 559
-XX:+UseLargePages, 319–321, 570
-XX:+UseNUMA, 571
-XX:+UseParallelGC, 272, 558
-XX:+UseParallelOldGC, 272, 558
-XX:+UseParNewGC, 292, 559
-XX:+UseSerialGC, 558

Y
-y option, collect tool, 163
Young generation garbage collection. See also

Minor garbage collection.
definition, 81
DefNew collector, 111
eden space, 83–85
layout, 83–85
monitoring, 109–110
multithreaded, 111
ParNew collector, 111, 559
single-threaded, 111
survivor spaces, 84–85

Young generation space
memory footprint, 269–272
size

compared to old generation space, 555
refining, 280–283
specifying, 555

-Xms, 269, 276, 554
-Xmx, 269, 276, 554
xosview tool, 21
-XX:+PrintCommandLineFlags, 102–103
-XX:+PrintGCDateStamps, 264
-XX:+PrintGCDetails, 264
-XX:+PrintGCTimeStamps, 264
-XX:-ScavengeBeforeFullGC, 110
-XX:-UseAdaptiveSizePolicy, 309–311, 558
-XX:+AggressiveHeap, 569
-XX:+AggressiveOpts, 317, 568
-XX:+AlwaysPreTouch, 570–571
-XX:+BackgroundCompilation, 564
-XX:+CMSClassUnloadingEnabled, 560
-XX:+CMSIncrementalMode, 561
-XX:+CMSIncrementalPacing, 562
-XX:CMSInitiatingOccupancyFraction,

299–300, 559–560
-XX:CMSInitiatingPermOccupancyFraction,

305, 560
-XX:+CMSPermGenSweepingEnabled, 560
-XX:+CMSScavengeBeforeRemark, 306, 560
-XX:+DisableExplicitGC, 412, 561
-XX:+DoEscapeAnalysis, 317–318, 569
-XX:ErrorFile, 79
-XX:+ExplicitGCInvokesConcurrent, 561
-XX:+ExplicitGCInvokesConcurrentAndUnl

oadsClasses, 561
-XX:+HeapDumpOnOutOfMemoryError, 567
-XX:HeapDumpPath, 567
-XX:InitialHeapSize, 272
-XX:InitialSurvivorRatio, 557
-XX:LargePageSizeInBytes, 570
-XX:MaxHeapSize, 272
-XX:MaxInlineSize, 567
-XX:MaxNewSize, 270, 555
-XX:MaxPermSize, 270–271, 276, 556
-XX:MaxTenuringThreshold, 292–293, 559
-XX:NewRatio, 555
-XX:NewSize, 269–270, 555
-XX:OnError, 79, 568
-XX:OnOutOfMemoryError, 568
-XX:ParallelGCThreads, 305–306, 559
-XX:+ParallelRefProcEnabled, 561
-XX:PermSize, 270, 276, 556
-XX:+PrintAdaptiveSizePolicy, 310, 563
-XX:+PrintCommandLineFlags, 272, 571
-XX:+PrintCompilation, 325, 565–566
-XX:+PrintFlagsFinal, 572
-XX:+PrintGC, 562
-XX:+PrintGCApplicationConcurrentTime,

120, 267, 564
-XX+PrintGCApplicationStoppedTime, 267

ptg6882136

This page intentionally left blank

ptg6882136

REGISTER

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product

Registering your products can unlock

the following benefits:
• Access to supplemental content,

including bonus chapters,

source code, or project files.
• A coupon to be used on your

next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

About InformIT —THE TRUSTED TECHNOLOGY LEARNING SOURCE
INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Addison
Wesley

THIS PRODUCT

informit.com/register

ptg6882136

inform .com

InformIT is a brand of Pearson and the online presence
for the world 's leading technology publishers. It's your source
for reliable and qualif ied content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

AAddison-Wesley Cisco Press EXAMvttRAM J™ QUE' H PRENTICE
HALL SAMS Safari*

LearnIT at Inform IT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visi t informit.com/newsletters

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author art ic les and sample chapters at
informit.com/articles

• Access thousands of books and videos in the Safari Books
Online digital l ibrary at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! V is i t informit.com/socialconnect

THE TRUSTED TECHNOLOGY LEARNING SOURCE

PEARSON

ptg6882136

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

FREE TRIAL—GET STARTED TODAY!
www.informit.com/safaritrial

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O'Reilly, Prentice Hall, Que, and Sarns.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books.
Safari's extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE'S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

Safari.
Honks Online

www.informit.com/safaritrial

ptg6882136

Your purchase of Java™ Performance includes access to a free online edition for
45 days through the Safari Books Online subscription service. Nearly every Addison-
Wesley Professional book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: XDXYQZG.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

SFOE_Hunt_7x9.125.indd 1

www.informit.com/safarifree

ptg6882136

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Strategies, Approaches, and Methodologies
	Forces at Play
	Two Approaches, Top Down and Bottom Up
	Choosing the Right Platform and Evaluating a System
	Bibliography

	Chapter 2 Operating System Performance Monitoring
	Definitions
	CPU Utilization
	CPU Scheduler Run Queue
	Memory Utilization
	Network I/O Utilization
	Disk I/O Utilization
	Additional Command Line Tools
	Monitoring CPU Utilization on SPARC T-Series Systems
	Bibliography

	Chapter 3 JVM Overview
	HotSpot VM High Level Architecture
	HotSpot VM Runtime
	HotSpot VM Garbage Collectors
	HotSpot VM JIT Compilers
	HotSpot VM Adaptive Tuning
	References

	Chapter 4 JVM Performance Monitoring
	Definitions
	Garbage Collection
	JIT Compiler
	Class Loading
	Java Application Monitoring
	Bibliography

	Chapter 5 Java Application Profiling
	Terminology
	Oracle Solaris Studio Performance Analyzer
	NetBeans Profiler
	References

	Chapter 6 Java Application Profiling Tips and Tricks
	Performance Opportunities
	System or Kernel CPU Usage
	Lock Contention
	Volatile Usage
	Data Structure Resizing
	Increasing Parallelism
	High CPU Utilization
	Other Useful Analyzer Tips
	Bibliography

	Chapter 7 Tuning the JVM, Step by Step
	Methodology
	Application Systemic Requirements
	Rank Systemic Requirements
	Choose JVM Deployment Model
	Choose JVM Runtime
	GC Tuning Fundamentals
	Determine Memory Footprint
	Tune Latency/Responsiveness
	Tune Application Throughput
	Edge Cases
	Additional Performance Command Line Options
	Bibliography

	Chapter 8 Benchmarking Java Applications
	Challenges with Benchmarks
	Design of Experiments
	Use of Statistical Methods
	Reference
	Bibliography

	Chapter 9 Benchmarking Multitiered Applications
	Benchmarking Challenges
	Enterprise Benchmark Considerations
	Application Server Monitoring
	Profiling Enterprise Applications
	Bibliography

	Chapter 10 Web Application Performance
	Benchmarking Web Applications
	Web Container Components
	Web Container Monitoring and Performance Tunings
	Best Practices
	Bibliography

	Chapter 11 Web Services Performance
	XML Performance
	Validation
	Resolving External Entities
	Partial Processing of XML Documents
	Selecting the Right API
	JAX-WS Reference Implementation Stack
	Web Services Benchmarking
	Factors That Affect Web Service Performance
	Performance Best Practices
	Bibliography

	Chapter 12 Java Persistence and Enterprise Java Beans Performance
	EJB Programming Model
	The Java Persistence API and Its Reference Implementation
	Monitoring and Tuning the EJB Container
	Transaction Isolation Level
	Best Practices in Enterprise Java Beans
	Best Practices in Java Persistence
	Bibliography

	Appendix A: HotSpot VM Command Line Options of Interest
	Appendix B: Profiling Tips and Tricks Example Source Code
	Lock Contention First Implementation
	Lock Contention Second Implementation
	Lock Contention Third Implementation
	Lock Contention Fourth Implementation
	Lock Contention Fifth Implementation
	First Resizing Variant
	Second Resizing Variant
	Increasing Parallelism Single-Threaded Implementation
	Increasing Parallelism Multithreaded Implementation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

