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Foreword

Tuning a Java application can be challenging in today’s large-scale mission-critical
world. There are issues to be aware of in everything from the structure of your algo-
rithms, to their memory allocation patterns, to the way they do disk and file I/O.
Almost always, the hardest part is figuring out where the issues are. Even (perhaps
especially) seasoned practitioners find that their intuitions are wrong. Performance-
killing gremlins hide in the most unlikely places.

As Wikipedia says, “Science (from Latin: scientia meaning ‘knowledge’) is a sys-
tematic enterprise that builds and organizes knowledge in the form of testable expla-
nations and predictions about the world.” Performance tuning must be approached
as an experimental science: To do it properly, you have to construct experiments,
perform them, and from the result construct hypotheses.

Fortunately, the Java universe is awash in performance monitoring tools. From
standalone applications to profilers built into development environments to tools
provided by the operating system. They all need to be applied in a cohesive way to
tease out the truth from a sea of noise.

This book is the definitive masterclass in performance tuning Java applications.
It readably covers a wide variety of tools to monitor and measure performance on a
variety of hardware architectures and operating systems. And it covers how to con-
struct experiments, interpret their results, and act on them. If you love all the gory
details, this is the book for you.

—dJames Gosling

Xi
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Foreword

Today, Java is used at the heart of the world’s largest and most critical computing
systems. However, when I joined the Java team in 1997 the platform was young and
just gaining popularity. People loved the simplicity of the language, the portabil-
ity of bytecodes, and the safety of garbage collection (versus traditional malloc/free
memory management of other systems). However, there was a trade-off for these
great features. Java was slow, and this limited the kinds of environments where you
could use it.

Over the next few years, we set about trying to fix this. We believed that just
because Java applications were portable and safe they didn’t have to be slow. There
were two major areas where we focused our attention. The first was to simply make
the Java platform faster. Great strides were made in the core VM with advanced
Just In Time compilation techniques, parallel garbage collection, and advanced lock
management. At the same time the class libraries were tweaked and tuned to make
them more efficient. All this led to substantial improvements in the ability to use
Java for larger, more critical systems.

The second area of focus for us was to teach people how to write fast software in
Java. It turned out that although the syntax of the language looked similar to C, the
techniques you needed to write efficient programs were quite different. To that end,
Jeff Kessleman and I wrote one of the first books on Java performance, which was
published back in 2000. Since then, many books have covered this topic, and experi-
enced developers have learned to avoid some of the most common pitfalls that used
to befall Java developers.

xiii



Xiv Foreword

After the platform began to get faster, and developers learned some of the tricks
of writing faster applications, Java transformed into the enterprise-grade software
powerhouse it is today. It began to be used for the largest, most important systems
anywhere. However, as this started to happen, people began to realize one part was
still missing. This missing piece was observability. When these systems get larger
and larger, how do you know if you’re getting all the performance you can get?

In the early days of Java we had primitive profiling tools. While these were useful,
they had a huge impact on the runtime performance of the code. Now, modern JVMs
come with built-in observability tools that allow you to understand key elements of
your system’s performance with almost no performance penalty. This means these
tools can be left enabled all the time, and you can check on aspects of your application
while it’s running. This again changes the way people can approach performance.

The authors of Java™ Performance bring all these concepts together and update
them to account for all the work that’s happened in the last decade since Jeff and I
published our book. This book you are now reading is the most ambitious book on
the topic of Java performance that has ever been written. Inside are a great many
techniques for improving the performance of your Java applications. You'll also come
to understand the state of the art in JVM technology from the inside out. Curious
about how the latest GC algorithms work? It’s in here! You’ll also learn how to use
the latest and greatest observability tools, including those built into the JDK and
other important tools bundled into popular operating systems.

It’s exciting to see how all these recent advancements continue to push the plat-
form forward, and I can’t wait to see what comes next.

—Steve Wilson

VP Engineering, Oracle Corporation

Founding member of the Java Performance team

Coauthor of Java™ Platform Performance: Strategies and Tactics



Preface

Welcome to the definitive reference on Java performance tuning!

This book offers Java performance tuning advice for both Java SE and Java EE
applications. More specifically, it offers advice in each of the following areas: perfor-
mance monitoring, profiling, tuning the Java HotSpot VM (referred to as HotSpot
VM hereafter), writing effective benchmarks, and Java EE application performance
tuning. Although several Java performance books have been written over the years,
few have packed the breadth of information found in this book. For example, the
topics covered in this book include items such as an introduction into the inner work-
ings of a modern Java Virtual Machine, garbage collection tuning, tuning Java EE
applications, and writing effective benchmarks.

This book can be read from cover to cover to gain an in-depth understanding of
many Java performance topics. It can also be used as a task reference where you can
pick up the text, go to a specific chapter on a given topic of interest, and find answers.

Readers who are fairly new, or consider themselves a novice in the area of Java
performance tuning, will likely benefit the most by reading the first four chapters
and then proceeding to the topics or chapters that best address the particular Java
performance tuning task they are undertaking. More experienced readers, those who
have a fundamental understanding of performance tuning approaches and a basic
understanding of the internals of the HotSpot VM along with an understanding of
the tools to use for monitoring operating system performance and monitoring JVM
performance, will find jumping to the chapters that focus on the performance tuning
task at hand to be most useful. However, even those with advanced Java performance
skills may find the information in the first four chapters useful.

XV



xvi Preface

Reading this book cover to cover is not intended to provide an exact formula to
follow, or to provide the full and complete knowledge to turn you into an experienced
Java performance tuning expert. Some Java performance issues will require special-
ized expertise to resolve. Much of performance tuning is an art. The more you work
on Java performance issues, the better versed you become. Java performance tuning
also continues to evolve. For example, the most common Java performance issues
observed five years ago were different from the ones observed today. Modern JVMs
continue to evolve by integrating more sophisticated optimizations, runtimes, and
garbage collectors. So too do underlying hardware platforms and operating systems
evolve. This book provides up-to-date information as of the time of its writing. Read-
ing and understanding the material presented in this book should greatly enhance
your Java performance skills. It may also allow you to build a foundation of funda-
mentals needed to become fluent in the art of Java performance tuning. And once
you have a solid foundation of the fundamentals you will be able to evolve your per-
formance tuning skills as hardware platforms, operating systems, and JVMs evolve.

Here’s what you can expect to find in each chapter.

Chapter 1, “Strategies, Approaches, and Methodologies,” presents various different
approaches, strategies, and methodologies often used in Java performance tuning
efforts. It also proposes a proactive approach to meeting performance and scalability
goals for a software application under development through an enhancement to the
traditional software development process.

Chapter 2, “Operating System Performance Monitoring,” discusses performance
monitoring at the operating system level. It presents which operating system statistics
are of interest to monitor along with the tools to use to monitor those statistics. The
operating systems of Windows, Linux, and Oracle Solaris are covered in this chapter.
The performance statistics to monitor on other Unix-based systems, such as Mac OS
X, use similar commands, if not the same commands as Linux or Oracle Solaris.

Chapter 3, “JVM Overview,” provides a high level overview of the HotSpot VM.
It provides some of the fundamental concepts of the architecture and workings of a
modern Java Virtual Machine. It establishes a foundation for many of the chapters
that follow in the book. Not all the information presented in this chapter is required
to resolve every Java performance tuning task. Nor is it exhaustive in providing all
the necessary background to solve any Java performance issue. However, it does
provide sufficient background to address a large majority of Java performance issues
that may require some of the concepts of the internal workings and capabilities of
a modern Java Virtual Machine. The information in this chapter is applicable to
understanding how to tune the HotSpot VM along with understanding the subject
matter of Chapter 7 and how to write effective benchmarks, the topics covered in
Chapters 8 and 9.

Chapter 4, “JVM Performance Monitoring,” as the title suggests, covers JVM per-
formance monitoring. It presents which JVM statistics are of interest to monitor
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along with showing tools that can be used to monitor those statistics. It concludes
with suggesting tools that can be extended to integrate both JVM level monitoring
statistics along with Java application statistics of interest within the same monitor-
ing tool.

Chapter 5, “Java Application Profiling,” and Chapter 6, “Java Application Profiling
Tips and Tricks,” cover profiling. These two chapters can be seen as complementary
material to Chapter 2 and Chapter 4, which cover performance monitoring. Perfor-
mance monitoring is typically used to identify whether a performance issue exists,
or provides clues as to where the performance issue exists, that is, in the operating
system, JVM, Java application, and so on. Once a performance issue is identified and
further isolated with performance monitoring, a profiling activity usually follows.
Chapter 5 presents the basics of Java method profiling and Java heap (memory) pro-
filing. This profiling chapter presents free tools for illustrating the concepts behind
these types of profiling. The tools shown in this chapter are not intended to suggest
they are the only tools that can be used for profiling. Many profiling tools are avail-
able both commercially and for free that offer similar capabilities, and some tools
offer capabilities beyond what’s covered in Chapter 5. Chapter 6 offers several tips
and tricks to resolving some of the more commonly observed patterns in profiles
that tend to be indicative of particular types of performance problems. The tips and
tricks identified in this chapter are not necessarily an exhaustive list but are ones
that have been observed frequently by the authors over the course of years of Java
performance tuning activities. The source code in many of the examples illustrated
in this chapter can be found in Appendix B.

Chapter 7, “Tuning the JVM, Step by Step,” covers tuning the HotSpot VM. The
topics of tuning the HotSpot VM for startup, memory footprint, response time/
latency, and throughput are covered in the chapter. Chapter 7 presents a step-by-
step approach to tuning the HotSpot VM covering choices such as which JIT compiler
to use, which garbage collector to use, and how to size Java heaps, and also provides
an indication when the Java application itself may require some rework to meet the
performance goals set forth by application stakeholders. Most readers will likely find
Chapter 7 to be the most useful and most referenced chapter in this book.

Chapter 8, “Benchmarking Java Applications,” and Chapter 9, “Benchmarking
Multi-tiered Applications,” present information on how to write effective benchmarks.
Often benchmarks are used to help qualify the performance of a Java application by
implementing a smaller subset of a larger application’s functionality. These two chap-
ters also discuss the art of creating effective Java benchmarks. Chapter 8 covers the
more general topics associated with writing effective benchmarks such as exploring
some of the optimizations performed by a modern JVM. Chapter 8 also includes infor-
mation on how to incorporate the use of statistical methods to gain confidence in your
benchmarking experiments. Chapter 9 focuses more specifically on writing effective
Java EE benchmarks.
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For readers who have a specific interest in tuning Java EE applications, Chapter 10,
“Web Application Performance,” Chapter 11, “Web Services Performance,” and Chap-
ter 12, “Java Persistence and Enterprise Java Beans Performance,” focus specifically
on the areas of Web applications, Web services, persistence, and Enterprise Java Bean
performance, respectively. These three chapters present in-depth coverage of the
performance issues often observed in Java EE applications and provide suggested
advice and/or solutions to common Java EE performance issues.

This book also includes two appendixes. Appendix A, “HotSpot VM Command Line
Options of Interest,” lists HotSpot VM command line options that are referenced in
the book and additional ones that may be of interest when tuning the HotSpot VM.
For each command line option, a description of what the command line option does
is given along with suggestions on when it is applicable to use them. Appendix B,
“Profiling Tips and Tricks Example Source Code,” contains the source code used in
Chapter 6’s examples for reducing lock contention, resizing Java collections, and
increasing parallelism.
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Strategies, Approaches,
and Methodologies

With Java performance tuning, as with many other activities, you need a plan of
action, an approach, or strategy. And, like many other activities, a set of information
or background is required in a given domain to be successful. To be successful in a
Java performance tuning effort, you need to be beyond the stage of “I don’t know
what I don’t know” and into the “I know what I don’t know” stage or already be in the
“I already know what I need to know” stage.

If you find yourself a little lost in the definition of these three stages, they are
further clarified here:

I don’t know what I don’t know. Sometimes you are given a task that
involves understanding a new problem domain. The first challenge in under-
standing a new problem domain is to learn as much about the problem as you
can because you may know little if anything about the problem domain. In this
new problem domain there are many artifacts about the problem domain you
do not know, or do not know what is important to know. In other words, you do
not know what you need to know about the problem domain. Hence, the phrase,
“I don’t know what I don’t know.”

I know what I don’t know. Normally when you enter a new problem domain,
one that you know little about, you eventually reach a point where you have
discovered many different things about the problem domain that are important
to know. But you do not know the specific details about those things that are
important to know. When you have reached this stage it is called the “I know
what I don’t know” stage.
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= T already know what I need to know. At other times you are given a task
in a problem domain in which you are familiar or you have developed the nec-
essary skills and knowledge in the area to the point where you are considered
a subject matter expert. Or as you learn a new problem domain you reach a
point where you feel comfortable working within it, i.e., you have learned the
information necessary to be effective in the problem domain. When you have
reached this point, you are at the stage of “I already know what I need to know.”

Given you have either bought this book or are considering buying this book, you
probably are not in the “I already know what I need know” stage, unless you have
a need to keep a good reference close by. If you are in the “I don’t know what I don’t
know” stage, this chapter will likely help you identify what you don’t know and help
you with an approach or strategy to tackle your Java performance issue. Those in the
“I know what I don’t know” stage may also find the information in this chapter useful.

This chapter begins by looking at the traditional forces at play that typically result
in a performance tuning effort and suggests a high level process for integrating per-
formance tuning into the software development process. This chapter then looks at
two different performance tuning approaches, top down and bottom up.

Forces at Play

It is generally accepted at a high level that the traditional software development
process consists of four major phases: analysis, design, coding, and testing. How these
phases flow to together is illustrated in Figure 1-1.

Analysis is the first phase of the process where requirements are evaluated, archi-
tectural choices are weighed against their advantages and challenges, and high level
abstractions are conceived. Design is the phase where, given the high level archi-
tecture choices made in the analysis phase along with its high level abstractions,
finer grained abstractions are realized and concrete implementations begin their
conception. Coding, of course, is the phase where implementation of the design occurs.
Following coding is the testing phase where the implementation is tested against the
application requirements. It is worth noting that often the testing phase encompasses
only functional testing, i.e, does the application do what it is specified to do, does it
execute the actions it is specified to execute. Once the testing phase is completed the
application is shipped or released to its customer(s).

Many applications developed through these traditional software development
phases tend to give little attention to performance or scalability until the applica-
tion is released, or at the earliest in the testing phase. Wilson and Kesselman in their
popular Java Platform Performance book [Wilson & Kesselman 2000] introduced an
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Analysis
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Figure 1-1 Traditional Software Development Process

additional performance phase to complement the traditional software development
process. The proposed performance testing phase was added after the testing phase
and contained a decision branch of “performance acceptable.” If the performance
and scalability criteria are met in this phase, the application is deemed ready to be
shipped. Otherwise, the work flow results in profiling the application and branches
back into one or more of the previous phases. Which particular phase the work flow
branches back into depends on the results of the profiling activity. In other words,
the output of the profiling activity identifies where the performance issue was intro-
duced. A diagram illustrating Wilson and Kesselman’s additional performance phase
is shown in Figure 1-2.

To aid in the development of performance criteria to be evaluated in the perfor-
mance testing phase, Wilson and Kesselman proposed the notion of specifying use
cases to meet or address requirements specifically targeting performance in the anal-
ysis phase. However, it is often the case an application’s requirements document fails
to specify performance or scalability requirements. If an application you are work-
ing with, or developing, does not specify performance and scalability requirements
explicitly you should ask for specific performance and scalability requirements.
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Analysis
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Profile

Figure 1-2 Wilson & Kesselman’s Performance Process

For example, you should ask for throughput and latency requirements. The follow-
ing list is an example of the types of questions these requirements should answer:

= What is the expected throughput of the application?

= What is the expected latency between a stimulus and a response to that
stimulus?

* How many concurrent users or concurrent tasks shall the application support?

= What is the accepted throughput and latency at the maximum number of con-
current users or concurrent tasks?

= What is the maximum worst case latency?

= What is the frequency of garbage collection induced latencies that will be
tolerated?

The requirements and corresponding use cases documented to answer questions
such as those listed above should be used to drive the development of benchmarks
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and performance tests to ensure the application meets the expected performance and
scalability. These benchmarks and performance tests should be executed as part of
the performance testing phase. As you evaluate use cases, some may be considered
high risk, i.e., those that may be difficult to meet. High risk cases should be mitigated
well before completion of the analysis phase by implementing prototypes, bench-
marks, and micro-benchmarks. This approach allows you to catch painful decisions
that are expensive to change once the software development leaves the analysis
phase. It has been well documented that the later in the software development cycle
a defect, poor design, or poor implementation choice is detected, the more expensive
it is to fix it. Mitigating high risk use cases helps avoid those costly mistakes.

Today many applications under development utilize automated build and test
procedures. As a result, the enhanced software development process proposed by
Wilson and Kesselman can be further improved by integrating automated perfor-
mance testing as part of the automated build and test activity. The output of an
automated performance testing activity could emit notifications, such as sending
e-mail to the application stakeholders notifying them of performance results, such as
identified performance regressions, identified performance improvements, or status
on how well performance criteria is being met. The automated procedures could also
file defects in a tracking system and automatically include pertinent performance
statistics from the performance tests that fail to meet the application’s performance
criteria.

Integrating performance testing into automated build processes allows perfor-
mance regressions to be identified earlier in the software development process by
more easily tracking performance at each coding change committed to the source
code base.

Another practice worth consideration of integrating into the automated perfor-
mance testing system is the use of statistical methods and automated statistical
analysis. The use of statistical methods improves confidence in your performance
testing results. Guidance and advice on the use of statistical methods, which can
be challenging for many software developers (and mere mortals for that matter), is
presented in the latter part of Chapter 8, “Benchmarking Java Applications.”

Two Approaches, Top Down and Bottom Up

There are two commonly accepted approaches to performance analysis: top down or
bottom up. Top down, as the term implies, focuses at the top level of the application
and drills down the software stack looking for problem areas and optimization oppor-
tunities. In contrast, bottom up begins at the lowest level of the software stack, at
the CPU level looking at statistics such as CPU cache misses, inefficient use of CPU
instructions, and then working up the software stack at what constructs or idioms are



6 Chapter 1 = Strategies, Approaches, and Methodologies

used by the application. The top down approach is most commonly used by application
developers. The bottom up approach is commonly used by performance specialists
in situations where the performance task involves identifying performance differ-
ences in an application on differing platform architectures, operating systems, or in
the case of Java differing implementations of Java Virtual Machines. As you might
expect, each approach finds different types of performance issues.

In the following two subsections, these two approaches are looked at more closely
by presenting more specifics about the activities performed within each approach.

Top Down Approach

The top down approach, as mentioned earlier, is likely the most common approach
utilized for performance tuning. This approach is also commonly used when you have
the ability to change the code at the highest level of the application software stack.

In this approach, you begin by monitoring the application of interest under a load
at which a stakeholder observes a performance issue. There are also situations in
which an application is continuously monitored and as a result of a change in the
application’s configuration or a change in the typical load the application experiences
a degradation in performance. There may also be situations in which performance
and scalability requirements for the application change and the application in its
current state cannot meet those new requirements.

Whatever the cause that stimulates the performance tuning activity, monitoring
the application while it is running under a load of particular interest is the first step
in a top down approach. This monitoring activity may include observing operating
system level statistics, Java Virtual Machine (JVM) statistics, Java EE container
statistics, and/or application performance instrumentation statistics. Then based on
what the monitoring information suggests you begin the next step such as tuning
the JVM’s garbage collectors, tuning the JVM’s command line options, tuning the
operating system or profiling the application. Profiling the application may result in
making implementation changes to the application, identifying an inefficient imple-
mentation of a third-party library, or identifying an inefficient implementation of a
class or method in the Java SE class library.

For assistance in knowing what to monitor in a top down approach you can turn
to Chapters 2, “Operating System Performance Monitoring,” and Chapter 4, “JVM
Performance Monitoring.” These two chapters document the statistics of interest to
monitor and suggest clues as to what values of a given statistic should be cause for
further investigation. Then based on what the monitored statistics indicate as some-
thing worthy of further investigation, you can turn to other chapters for suggestions
on corrective actions. For example, if monitoring operating system statistics suggests
high sys CPU utilization, you should profile the application to determine what methods
are consuming the highest sys CPU cycles. Instructions on how to use the NetBeans
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Profiler and Oracle Solaris Studio Performance Analyzer (formerly known as Sun
Studio Performance Analyzer) can be found in Chapter 5, “Java Application Profiling,”
and Chapter 6, “Java Application Profiling Tips and Tricks.” If the monitoring activity
and monitored statistic suggests the JVM’s garbage collectors require tuning, turn
to Chapter 7, “Tuning the JVM, Step by Step.” If you are familiar with the general
operation and basic workings of the Java HotSpot VM’s garbage collectors, consider
reading the section on garbage collectors in Chapter 3, “JVM Overview,” before reading
the chapter on tuning the JVM. If you are monitoring application level statistics, such
as those provided by a Java EE container, read the chapters on Java EE performance
tuning: Chapter 10, “Web Application Performance”; Chapter 11, “Web Services Perfor-
mance”; and Chapter 12, “Java Persistence and Enterprise Java Beans Performance,”
to learn how to resolve performance issues in an enterprise application.

Bottom Up Approach

The bottom up approach is most commonly used by performance specialists when
wanting to improve the performance of an application on one platform relative to
another where differences exists in the underlying CPU, CPU architecture, or number
of CPUs. The bottom up approach is also often used when wanting to improve the per-
formance of an application when it is migrated to support a different operating system.
This approach is also frequently used when it is not possible to make a change to the
application’s source code such as when an application is currently deployed in produc-
tion environments or in competitive situations where computer systems vendors are
vying for the business opportunity to run an application at peak performance.

In the bottom up approach, the gathering of performance statistics and the moni-
toring activity begin at the lowest level, the CPU. Statistics that are monitored at the
CPU level may include the number of CPU instructions required to execute a given
workload on the CPU, often referred to as path length and the number of CPU cache
misses that occur while running the application under load. Other CPU statistics
may be of interest, but the number of CPU instructions and the number CPU caches
misses tend to be the most commonly observed statistics in a bottom up approach. If
an application can perform and scale well under load by executing a fewer number
of CPU instructions it will likely execute the application faster. Reducing CPU cache
misses also improves an application’s performance since a CPU cache miss results in
wasted CPU cycles waiting for requested data to be fetched from memory. By reduc-
ing CPU cache misses, the application performs better since the CPU spends less
time waiting for data to be fetched from memory.

The focus of the bottom up approach is usually to improve the utilization of the
CPU without making changes to the application. In cases where the application can
be modified, the bottom up approach may result in making changes to the applica-
tion. These modifications may include a change to the application source code such as
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moving frequently accessed data near each other so they can be accessed on the same
CPU cache line and thus not having to wait to fetch the data from memory. Such a
change could reduce CPU cache misses and thereby reduce the amount of time the
CPU waits for data to be fetched from memory.

In the context of a Java application executing in a modern Java Virtual Machine
that has a sophisticated JIT compiler there may be cause to implement optimiza-
tions that would, for example, emit more efficient generated machine code based
on memory access patterns exhibited by the application or the specific code paths
taken by the application. There may also be settings at the operating system level
that may be tuned or modified to allow for improved performance such as chang-
ing a CPU scheduling algorithm or the amount time the operating system waits
before it migrates an executing application thread to a different CPU hardware
thread.

If you find yourself in a situation where a bottom up approach would be useful,
you should begin by collecting operating system statistics and JVM statistics. Moni-
toring these statistics provides hints as to where to focus in the next step. Chapter 2
and Chapter 4 provide information as to what statistics to monitor. From there you
decide whether it makes sense to profile the application and the JVM. To profile both
the application and the JVM, use a profiling tool that can provide that information.
The Oracle Solaris Studio Performance Analyzer tool does this for Oracle Solaris
SPARC, Oracle Solaris x86/x64, and Linux x86/x64 operating systems. Other popular
tools such as Intel VTune or AMD’s CodeAnalyst Performance Analyzer can provide
similar information on Windows and Linux. All three tools also have the capability
to collect specific CPU counter information such as the number of CPU instruc-
tions executed and CPU cache misses along with being able to associate them with
specific methods or functions in a Java application of Java Virtual Machine. Using
a profiler with these capabilities is essential in a bottom up approach. You can find
additional information on how to use the Oracle Solaris Studio Performance Analyzer
in Chapter 5 and Chapter 6.

Choosing the Right Platform and Evaluating a System

At times a performance specialist is called upon to improve the performance of an
application only to find that the application is being run on an inappropriate CPU
architecture or system. CPU architectures and systems have evolved substantially
with the introduction of multiple cores per CPU and multiple hardware threads
per core (also known as CMT, chip multithreading). As a result, choosing the right
platform and CPU architecture for a given application has become more impor-
tant. In addition, the way in which the performance of a system is evaluated must
also be updated or revised as a result of the evolution of CPU architectures. This
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section looks at some of the differences in CPU architectures available on modern
systems and presents some considerations to keep in mind when choosing a system
on which to run an application. This section also describes why traditional methods
of evaluating a system’s performance are invalid when it comes to modern multiple
hardware thread per core CPU architectures such as the SPARC T-series family
of processors.

Choosing the Right CPU Architecture

The introduction of the SPARC T-series processor brought chip multiprocessing
and chip multithreading to Oracle’s offering of processors. One of the major design
points behind the SPARC T-series processors is to address CPU cache misses by
introducing multiple hardware threads per core. The first generation SPARC
T-series, UltraSPARC T1, has four hardware threads per core and comes in four,
six, or eight cores per CPU. An UltraSPARC T1 processor with eight cores looks like
a 32-processor system from an operating system viewpoint. That is, the operating
system views each of the four hardware threads per core as a processor. Hence, a
system configured with an UltraSPARC T1 having eight cores would be seen as
having 32 processors from an operating system.

An important distinction between an UltraSPARC T1 is it has four hardware
threads per core. Of the four hardware threads per core, only one of the four threads
per core executes on a given clock cycle. However, when a long latency event occurs,
such as a CPU cache miss, if there is another runnable hardware thread in the
same UltraSPARC T1 core, that hardware thread executes on the next clock cycle.
In contrast, other modern CPUs with a single hardware thread per core, or even
hyperthreaded cores, will block on long latency events such as CPU cache misses
and may waste clock cycles while waiting for a long latency event to be satisfied.
In other modern CPUs, if another runnable application thread is ready to run
and no other hardware threads are available, a thread context switch must occur
before another runnable application thread can execute. Thread context switches
generally take hundreds of clock cycles to complete. Hence, on a highly threaded
application with many threads ready to execute, the SPARC T-series processors
have the capability to execute the application faster as a result of their capability
to switch to another runnable thread within a core on the next clock cycle. The
capability to have multiple hardware threads per core and switch to a different
runnable hardware thread in the same core on the next clock cycle comes at the
expense of a CPU with a slower clock rate. In other words, CPUs such as the SPARC
T-series processor that have multiple hardware threads tend to execute at a slower
clock rate than other modern CPUs that have a single hardware thread per core
or do not offer the capability to switch to another runnable hardware thread on a
subsequent clock cycle.
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Tip

Sun Microsystems evolved the first generation SPARC T-series processor from the UltraSPARC T1 to
the UltraSPARC T2 and T3 by adding additional hardware threads per core and the capability for
multiple hardware threads per core to execute in a clock cycle. However, for the purposes of this
discussion, it is easier to talk about and understand how the UltraSPARC T1 processor differs from
other modern CPUs. Once the difference in CPU architecture is understood, it becomes easier
to extend the design points behind the UltraSPARC T1 to the UltraSPARC T2 and T3 processors.

When it comes to choosing a computing system, if the target application is expected
to have a large number of simultaneous application threads executing concurrently,
it is likely this type of application will perform and scale better on a SPARC T-series
processor than a smaller number of hardware threads per core type of processor.
In contrast, an application that is expected to have a small number of application
threads, especially if the number of simultaneous application threads is expected to
be less than the total number of hardware threads on a SPARC T-series processor,
this application will likely perform better on a higher clock rate, smaller number of
hardware threads per core type of processor than a slower clock rate SPARC T-series
processor. In short, for a SPARC T-series processor to perform well, it needs a large
number of simultaneous application threads to keep the larger number of hardware
threads busy to leverage its capability to switch to a different hardware thread on
subsequent clock cycles when events such as CPU cache misses occur. In the absence
of a large number of simultaneous application threads, the SPARC T-series gener-
ally performs like slower clock rate traditional processors. The artifact of requiring a
large number of simultaneous application threads to keep the many SPARC T-series
hardware threads busy also suggests the traditional manner in which a system’s
performance is qualified may not represent a system’s true performance. This is the
topic of the next subsection.

Evaluating a System’s Performance

To evaluate the performance of a SPARC T-series, since it has the capability to switch
to another runnable hardware thread within a core on the next clock cycle, it must be
loaded with a workload having a large number of simultaneous application threads.

A common approach used to qualify or evaluate the performance of a new system
has been to place a portion of the expected target load on the system, or execute one
or more micro-benchmarks and observe how the system performs or observe the
amount of work the application does per some unit of time. However, to evaluate the
performance of a SPARC T-series processor, it must be loaded with enough concurrent
application threads to keep the large number of hardware threads busy. The work-
load needs to be large enough for the SPARC T-series to reap the benefit of switching
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to a different runnable thread on the next clock cycle when long latency events such
as CPU cache misses occur. Blocking and waiting for a CPU cache miss to be satisfied
takes many CPU cycles, on the order of hundreds of clock cycles. Therefore, to take
full advantage of a SPARC T-series processor, the system needs to be loaded with
enough concurrent work to where its design point of switching to another runnable
hardware thread on the next clock cycle can be realized.

In situations where a subset of a targeted workload is executed by a SPARC
T-series processor, it may appear as though the system does not perform very well
since all its hardware threads may not be busy. Remember that one of the major
design points for the SPARC T-series processors is to address long latency CPU
events by allowing other runnable hardware threads to execute on the next clock
cycle. In a single hardware thread per core family of processors, long latency events
such as a CPU cache miss mean many CPU clock cycles are wasted waiting for data
to be fetched from memory. To switch to another runnable application thread, that
other runnable application thread and its state information must replace the exist-
ing thread and its state information. This not only requires clock cycles to make this
context switch, it may also require the CPU cache to fetch different state information
for the new runnable application thread.

Hence, when evaluating the performance of a SPARC T-series processor it is impor-
tant to put enough load on the system to take advantage of the additional hardware
threads and its capability to switch to another runnable hardware thread within the
same CPU core on the next clock cycle.
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Operating System
Performance
Monitoring

Knowing when an application is not performing as desired or expected is important
to an application’s capability to meet service level agreement(s) set forth by the appli-
cation’s stakeholders. Hence, knowing what to monitor, where in the software stack
to monitor, and what tools to use are critical. This chapter describes what should be
monitored at the operating system level and presents operating system tools that can
be used to observe an application’s performance. Additionally, general guidelines are
given to help identify potential performance issues. The operating systems covered
in this chapter are Windows, Linux, and Oracle Solaris, also referred to as Solaris
hereafter. The monitoring tools presented are not intended to be an exhaustive list of
tools or the only means to monitor an application’s or a system’s performance. Rather,
the principles of why and what attributes of a system are important to monitor is
the intention. Readers who are running a Java application on an operating system
other than those covered should be able to identify the operating system performance
statistics to monitor and be able to identify appropriate monitoring tools.

Tip
The first step in isolating a performance issue is to monitor the application’s behavior.
Monitoring offers clues as to the type or general category of performance issue.

This chapter begins by presenting definitions for performance monitoring, per-
formance profiling, and performance tuning. Then sections that describe operating
system statistics of interest to monitor are presented. Both command line and GUI
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tools that can be used to monitor the performance statistics are included. In addi-
tion, guidelines are offered as to what performance statistic values are indicators of
potential root causes, or a next step to take in your performance analysis.

Definitions

Three distinct activities are involved when engaging in performance improvement
activities: performance monitoring, performance profiling, and performance tuning.

= Performance monitoring is an act of nonintrusively collecting or observing per-
formance data from an operating or running application. Monitoring is usu-
ally a preventative or proactive type of action and is usually performed in a
production environment, qualification environment, or development environ-
ment. Monitoring is also usually the first step in a reactive situation where an
application stakeholder has reported a performance issue but has not provided
sufficient information or clues as to a potential root cause. In this situation,
performance profiling likely follows performance monitoring.

= Performance profiling in contrast to performance monitoring is an act of col-
lecting performance data from an operating or running application that may be
intrusive on application responsiveness or throughput. Performance profiling
tends to be a reactive type of activity, or an activity in response to a stakeholder
reporting a performance issue, and usually has a more narrow focus than per-
formance monitoring. Profiling is rarely done in production environments. It
is typically done in qualification, testing, or development environments and
is often an act that follows a monitoring activity that indicates some kind of
performance issue.

= Performance tuning, in contrast to performance monitoring and perfor-
mance profiling, is an act of changing tune-ables, source code, or configura-
tion attribute(s) for the purposes of improving application responsiveness
or throughput. Performance tuning often follows performance monitoring or
performance profiling activities.

CPU Utilization

For an application to reach its highest performance or scalability it needs to not only
take full advantage of the CPU cycles available to it but also to utilize them in a
manner that is not wasteful. Being able to make efficient use of CPU cycles can be
challenging for multithreaded applications running on multiprocessor and multicore
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systems. Additionally, it is important to note that an application that can saturate
CPU resources does not necessarily imply it has reached its maximum performance
or scalability. To identify how an application is utilizing CPU cycles, you monitor CPU
utilization at the operating system level. CPU utilization on most operating systems
is reported in both user CPU utilization and kernel or system (sys) CPU utilization.
User CPU utilization is the percent of time the application spends in application
code. In contrast, kernel or system CPU utilization is the percent of time the applica-
tion spends executing operating system kernel code on behalf of the application. High
kernel or system CPU utilization can be an indication of shared resource contention
or a large number of interactions between I/0 devices. The ideal situation for maxi-
mum application performance and scalability is to have 0% kernel or system CPU
utilization since CPU cycles spent executing in operating system kernel code are
CPU cycles that could be utilized by application code. Hence, one of the objectives to
achieving maximum application performance and scalability is to reduce kernel or
system CPU utilization as much as possible.

For applications that are compute intensive, performance monitoring may go much
deeper than observing user CPU utilization and kernel or system utilization. On
compute-intensive systems, further monitoring of the number of CPU instructions
per CPU clock cycle (also known as IPC, instructions per clock) or the number of CPU
clock cycles per CPU instruction (also known as CPI, cycles per instruction) may be
required. These two additional metrics are of interest to compute intensive appli-
cations because CPU utilization monitoring tools bundled with modern operating
systems report CPU utilization and do not report the percentage of CPU clock cycles
the CPU has been executing instructions. This means that the operating system tools
report a CPU as being utilized even though the CPU may be waiting for data to be
fetched from memory. This scenario is commonly referred to as a stall. Stalls occur
any time the CPU executes an instruction and the data being operated on by the
instruction is not readily available in a CPU register or cache. When this occurs, the
CPU wastes clock cycles because it must wait for the data to be loaded from memory
into a CPU register before the CPU instruction can execute on it. It is common for a
CPU to wait (waste) several hundred clock cycles during a stall. Thus the strategy
for increasing the performance of a compute intensive application is to reduce the
number of stalls or improve the CPU’s cache utilization so fewer CPU clock cycles are
wasted waiting for data to be fetched from memory. Performance monitoring activi-
ties of this kind go beyond the scope of this book and may require the assistance of
a performance expert. However, the profiler covered in Chapter 5, “Java Application
Profiling,” Oracle Solaris Studio Performance Analyzer, has the capability to capture
a profile of a Java application including this kind of data.

Each operating system presents user CPU utilization and kernel or system CPU
utilization differently. The next several sections describe tools to monitor CPU utili-
zation on Microsoft Windows, Linux, and Solaris operating systems.
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Figure 2-1 Windows Task Manager. The graph lines in the two CPU usage history
windows shows both user and kernel/system CPU utilization

Monitoring CPU Utilization on Windows

The commonly used CPU utilization monitoring tool on Windows is Task Manager
and Performance Monitor. Both Task Manager and Performance Monitor use a color-
ing scheme to distinguish between user CPU and kernel or system CPU utilization.
Figure 2-1 shows the Windows Task Manager performance monitoring window.

CPU utilization is shown in the upper half of the Windows Task Manager. CPU
utilization across all processors is shown in the CPU Usage panel on the upper left. A
running history of CPU utilization for each processor is displayed in the CPU Usage
History panel on the upper right. The upper line, a green colored line, indicates the
combined user and system or kernel CPU utilization. The lower line, a red colored
line, indicates the percentage of system or kernel CPU usage. The space between the
lower line and upper line represents the percentage of user CPU utilization. Note
that to view system or kernel CPU utilization in Window’s Task Manager, the Show
Kernel Utilization option must be enabled in the View > Show Kernel Utilization
menu.

On Windows systems that include the Performance Monitor (perfmon), the default
view of the Performance Monitor varies depending on the Windows operating system.
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This chapter describes the Performance Monitor view in Windows 7. Note that to
run the Windows Performance Monitor you must have membership in either the
Administrators, Performance Log Users, or equivalent group.

The Windows Performance Monitor uses a concept of performance objects. Per-
formance objects are categorized into areas such as network, memory, processor,
thread, process, network interface, logical disk, and many others. Within each of these
categories are specific performance attributes, or counters, that can be selected as
performance statistics to monitor. Covering all the performance counters available
to monitor is beyond the scope of this chapter. The focus in this chapter is to identify
the performance statistics of most interest to monitor and the tools to monitor them.

User CPU utilization and kernel or system CPU utilization can be added to the
Performance Monitor by right-clicking in the Performance Monitor’s display area and
selecting the Add Counters option from the context sensitive menu. User and kernel
or system CPU utilization can be monitored by selecting the Processor performance
object, and then selecting both % User Time and % Privileged Time counters and click-
ing the Add button. Windows uses the term “Privileged Time” to represent kernel or
system CPU utilization. See Figure 2-2 for an example of the Add Counters screen.

’ — — T 1
Add Counters | _EX_l
Available counters Added counters
coun fr omputer:
St ere Hom ¢ Ber r Counter Parent Inst... Computer
<Local computer > - Browse...
L Processor ~
Processor A a % User Time _Total
9% C1 Time % Privileged Time - _Total
% C2 Time
% C3 Time
% DPC Time
% Idie Time
% Interrupt Time
% Privileged Time
% Processor Time -
Instances of selected object:

<All instances>
0

1

S de S

u

Figure 2-2 Performance Monitor’s user time and privileged time
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Figure 2-3 Monitoring CPU utilization. The upper line represents % processor time.
The middle line is % user time. The bottom line is % privileged time

The Performance Monitor display is updated with the new counters after they
have been added. At the bottom of the Performance Monitor, you can see the coun-
ters that are currently being monitored (see Figure 2-3). Right-clicking on the list
of performance counters allows you to change the performance counters’ properties.
For example, you can change the color associated with a performance counter. This
is useful when the performance counters you have selected to monitor use the same
default color. You can also add and remove performance counters from the same
context sensitive menu.

By default the Performance Monitor uses a scrolling style window to show the last
60 seconds of performance statistics. The scrolling part of the window is identified by
a vertical bar. The values to the immediate left of the vertical bar are the most recent
performance statistics, see Figure 2-3.

You can choose a different type of data presentation by selecting the Properties option
from the context sensitive menu in the Performance Monitor and clicking the Graph tab.

In Figure 2-3, the upper line is the % user processor time, the total of % user time,
and % privileged time. In this example, the monitored application has higher % user
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time than % privileged time. That relationship is a desired relationship to observe. In
other words, it is desirable for an application to spend more time executing applica-
tion code than executing in operating system kernel code.

Many additional capabilities in the Performance Monitor can be leveraged such as
the ability to create a Data Collector Set and generate performance reports. Creat-
ing Data Collector Sets, generating performance reports, and other capabilities are
beyond the scope of this chapter but may be of interest to further explore as part of
your performance monitoring efforts.

Monitoring CPU Utilization with Windows typeperf

Windows typeperf is a command line tool that can be used to collect operating sys-
tem performance statistics. typeperf can be run in a Windows Command Prompt
window, or it can be scripted and run from a bat or cmd file. You specify the perfor-
mance statistics you want to collect using the Microsoft performance counter names.
The Microsoft performance counter names are the same as those used in the Perfor-
mance Monitor. For example, to collect user and kernel or system CPU utilization
you specify the User Time and Privileged Time performance counters. In a Command
Prompt window, or in a cmd file, the command looks like

typeperf "\Processor(_Total)\% Privileged Time" "\Processor(_Total)\% User
Time"

Each performance counter should be enclosed in quotation marks, and the syntax
of the performance counter follows the name as you would find it in the Performance
Monitor. You can also assemble a list of performance counters in a file and pass the
name of the file to the typeperf command. For example, you can enter the following
performance counters in a file named cpu-util.txt:

\Processor(_Total)\% Privileged Time
\Processor(_Total)\% User Time

Then, invoke the typeperf command with the option -cf followed by the file name.
typeperf -cf cpu-util.txt

The following output shows the result of executing the typeperf command using
three performance counters to capture the total, kernel, or system and user CPU
utilization.
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typeperf "\Processor(_Total)\% User Time" "\Processor(_Total)%
Privileged Time" "\Processor(_Total)% Processor Time”

"(PDH-CSV 4.0)","\\PICCOLO\Processor(_Total)% User
Time","\\PICCOLO\Processor(_Total)% Privileged
Time","\\PICCOLO\Processor(_Total)% Processor Time"
"02/15/2011 11:33:54.079","77.343750","21.875000","99.218750"
"02/15/2011 11:33:55.079","75.000000","21.875000","96.875000"
"02/15/2011 11:33:56.079","58.593750","21.875000","80.468750"
"02/15/2011 11:33:57.079","62.500000","21.093750","83.593750"
"02/15/2011 11:33:58.079","64.062500","15.625000","79.687500"

In the preceding output, the first row is a header describing the data to be col-
lected. That is followed by rows of reported data. In each row, there is a date and
time stamp indicating when the data was collected along with the values of the
performance counters. By default, the typeperf reporting interval is one second.
The reporting interval can be changed using the -si option. The -si option accepts
a form of [mm: ] ss where mm: is optional minutes and ss is the number of seconds.
You may consider specifying a larger interval than the default if you intend to moni-
tor over an extended period of time to reduce the amount of data you need to process.

Additional details on the typeperf command and its options can be found at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/
nt_command_typeperf.mspx?mfr=true.

Monitoring CPU Utilization on Linux

On Linux, CPU utilization can be monitored graphically with the GNOME System
Monitor tool, which is launched with the gnome-system-monitor command. The
GNOME System Monitor tool displays CPU utilization is the upper portion of the
display of the Resource tab, as shown in Figure 2-4.

The GNOME System Monitor shown in Figure 2-4 is running on a system with two
virtual processors. The number of virtual processors matches the number returned
by the Java API Runtime.availableProcessors (). A system with a single CPU
socket with a quad core processor with hyperthreading disabled will show four CPUs
in the GNOME System Monitor and report four virtual processors using the Java
API Runtime.availableProcessors ().

In the GNOME System Monitor, there is a CPU history area where a line for
each virtual processor’s CPU utilization is drawn illustrating its CPU utilization
over a period of time. The GNOME System Monitor also displays the current CPU
utilization for each virtual processor found on the system in a table below the CPU
history.


http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/nt_command_typeperf.mspx?mfr=true
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Figure 2-4 GNOME System Monitor on Linux

Another popular graphical tool to monitor CPU utilization on Linux is xosview.
Some Linux distributions may not include xosview in their default distribution. But
a search of their distribution’s software package management facility for xosview
will likely find it. One of the additional features of xosview in CPU utilization is
further broken down into user CPU, kernel or system CPU, and idle CPU.

Monitoring CPU Utilization on Solaris

On Solaris, CPU utilization can be monitored graphically with the GNOME System
Monitor tool. It is launched with the gnome - system-monitor command. An exam-
ple of the GNOME System Monitor monitoring a system with 32 virtual processors
is shown in Figure 2-5.

Another way to graphically observe CPU utilization on Solaris is using an optional
tool called cpubar found on the Solaris Performance Tools CD 3.0 (also download-
able at http://www.schneider4me.de/ToolsCD-v3.0.is0.zip). In addition to monitor-
ing CPU utilization, other system attributes can be monitored with cpubar such
as kernel thread queue depths, memory paging, and memory scan rate. Figure 2-6
shows cpubar.
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Figure 2-6 Solaris cpubar uses color to indicate system status. In 0 bar, 1 bar, and avg
bar, green represents user CPU utilization, red represents system or kernel CPU utilization,
and a blue color is idle. For the r bar, b bar, and w bar, red indicates occupancy, and blue
represents emptiness. For the p/s bar, red represents activity; blue represents idle. For the
ram bar, red represents the amount of memory committed, yellow represents allocated,
and blue represents free/available memory. The sr bar is similar to the p/s bar: red indicates
activity; blue represents idle. In the vm bar, red represents committed virtual memory,
green represents allocated memory, and blue represents free/available virtual memory.
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On multicore and multiprocessor systems the bar with the avg label shows the
overall CPU utilization. To the left of the overall CPU utilization bar there is an indi-
vidual bar for each virtual processor’s CPU utilization. The combined colors of green
and red show overall CPU utilization. The blue color indicates idle CPU utilization.
The green color shows the percentage of user CPU utilization, and a red color shows
the percentage of system or kernel CPU utilization. The hyphenated/dashed horizon-
tal bar embedded within the CPU utilization bars represents a running historical
average CPU utilization since the system was last booted.

Also shown in Solaris cpubar are additional performance statistics such as kernel
thread queue depths, memory paging, amount of memory utilized, page scan rate,
and amount of memory utilized by the Solaris VM. The kernel threads’ queue depths
are found to the right of the CPU utilization bars and have an “r” label, “b” label,
and “w” label. Each of the vertical bars above those three labels represents a queue
depth. The vertical bar for the “r” label represents the run queue depth. Entries show
up in the run queue when there are kernel threads that are ready to run but do not
have an available processor to run. In Figure 2-6, the vertical bar above the “r” label
indicates there are two kernel threads ready to run and waiting for a CPU to execute.
Monitoring the kernel thread’s run queue is an important statistic to monitor. How
you monitor the kernel thread’s run queue is presented in the “CPU Scheduler Run
Queue” section later in this chapter. The vertical bar for the “b” label represents the
blocked queue. Entries show up in the blocked queue when kernel threads are wait-
ing on resources such as I/O, memory pages, and so on. The vertical bar for the “w”
label represents the waiting queue. Entries show up in the waiting queue when a
swapped out lightweight process is waiting for resources to finish. The number above
the three kernel thread queue vertical bars is the number of kernel threads currently
running on the system. In Figure 2-6, 93 kernel threads were running at the time
the screenshot was taken.

To the right of the kernel thread queue depths is a vertical bar illustrating the
page in/page out activity, that is, the number of memory pages paged in or paged out.
This vertical bar has the “p/s” label below it. In Figure 2-6, there was little paging
activity at the time the screenshot was taken. Monitoring paging activity is covered
in the “Memory Utilization” section later in this chapter.

To the right of the memory paging activity (p/s) vertical bar is a vertical bar
illustrating the amount of physical RAM currently being utilized by the system. This
vertical bar has the “ram” label below it. A red color shows the amount of memory
utilized by the kernel. A yellow color shows the amount of memory utilized by user
processes, and blue is the amount of free or available memory. Figure 2-6 shows there
was little free memory available at the time the screenshot was taken.

To the right of the physical memory utilization (ram) vertical bar is a vertical bar
illustrating the page scanning rate. This vertical bar has an “sr” label below it. As
the amount of free physical memory reduces, the system attempts to free up memory
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by locating pages that have not been used in a long time. It then pages these out
to disk. This page scanning activity is reported as scan rate. A high scan rate is an
indicator of low physical memory. Monitoring the page scan rate is essential to iden-
tifying when a system is swapping. This is presented in more detail in the “Memory
Utilization” section of this chapter.

To the right of the page scanning (sr) vertical bar is a bar representing vir-
tual memory usage, or swap usage. This vertical bar has the “vm” label below it.
The amount of virtual memory used is colored red. The amount of virtual memory
reserved is colored yellow, and the amount of free memory is colored blue. The total
amount of virtual memory is displayed at the top of the vertical bar. Figure 2-6 shows
1.33 gigabytes of virtual memory on the system.

Monitoring CPU Utilization on Linux and Solaris
with Command Line Tools

Linux and Solaris also provide command line tools to monitor CPU utilization. These
command line tools are useful when you want to keep a running textual history of
CPU utilization or keep a log of CPU utilization. Linux and Solaris have vmstat,
which shows combined CPU utilization across all virtual processors. Both versions
of vimstat optionally take a reporting interval, in seconds, as a command line argu-
ment. If no reporting interval is given to vmstat, the reported output is a summary
of all CPU utilization data collected since the system has last been booted. When a
reporting interval is specified, the first row of statistics is a summary of all data col-
lected since the system was last booted. As a result, the first row of data from vmstat
is most often ignored.

The display format of vmstat for Linux and Solaris is similar. For example, the
following shows vmstat from Linux. The columns of interest for monitoring CPU
utilization are shown in bold.

procs ----------- memory---------- --- swap-- ----- io---- -- system-- ---- cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
4 0 0 959476 340784 1387176 0 0 0 0 1030 8977 63 35 1 O
3 0 0 959444 340784 1387176 0 0 0 0 1014 79816236 2 O
6 0 0 959460 340784 1387176 0 0 0 16 1019 9380 63 36 1 O
10 0 958820 340784 1387176 0 0 0 0 1036 9157 63 35 2 0
4 0 0 958500 340784 1387176 0 0 0 29 1012 8582 62 37 1 0

The “us” column shows the percentage of user CPU utilization. The “sy” column
shows the percentage of kernel or system CPU utilization. The “id” column shows
the percentage of idle or available CPU. The sum of the “us” column and “sy” col-
umn should be equal to 100 minus the value in the “1d” column, that is, 100 — (“1d”
column value).
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The vmstat output from Solaris, shown in the following example, has three col-
umns of CPU utilization interest and has column headings of “us,” “sy,” and “id”
that show user, kernel or system, and idle CPU utilization, respectively.

kthr memory page disk faults cpu

rbw swap free re mf pi po fr de sr fO sO sl s2 in sy cs us sy id
0 0 0 672604 141500 10 40 36 6 10 020 O 3 O 2 425 1043 491 4 3 93
110 888460 632992 7 3297 0 0O 0O O 021 0 12 462 1099 429 32 19 49
0 1 0 8387848 631772 4 35128 0 0 O O O 30 O 13 325 575 314 38 13 49
0 10 887592 630844 6 2679 0 0O O O 040 O 11 324 501 287 36 10 54
100 887304 630160 5 331120 0O O O 050 0 16 369 899 367 37 11 52
0 1 0 886920 629092 4 30 101 0 0 O O 026 0 18 354 707 260 39 14 46

Solaris and Linux also offer a tabular view of CPU utilization for each virtual
processor using the command line tool mpstat.

Tip

Most Linux distributions require an installation of the sysstat package to use mpstat.

Using mpstat to observe per virtual processor CPU utilization can be useful in
identifying whether an application has threads that tend to consume larger percent-
ages of CPU cycles than other threads or whether application threads tend to utilize
the same percentage of CPU cycles. The latter observed behavior usually suggests
an application that may scale better. CPU utilization in Solaris mpstat, as shown in
the following example, is reported in the columns “usr,”“sys,” “wt,” and “1d1,” where
usr is the percentage of CPU time spent executing user code, sys is the percentage of
CPU time spent executing kernel code, wt is the percentage of I/O wait time (no lon-

ger calculated and always reports 0), and 1d1 is percentage of time the CPU was idle.

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt 1idl
0 28 2 0 192 83 92 32 14 2 0O 185 78 15 0 7
1 49 1 0 37 1 80 28 16 2 0 139 80 16 0 4
2 28 1 0 20 7 94 34 17 1 0O 283 83 12 0 5
3 39 1 2 52 1 99 36 16 3 0 219 74 19 o0 7

CPU minf mjf xcal dintr ithr csw icsw migr smtx srw syscl usr sys wt 1idl

0 34 0 2 171 75 78 32 12 1 0o 173 9 9 o0 2
1 38 1 0 39 1 84 29 13 2 0 153 66 12 0 23
2 28 8 0 21 9 97 31 20 2 0 167 67 13 0 20
3 35 3 1 43 1 98 29 20 3 0 19 52 25 0 23

If no reporting interval is given to mpstat, the reported output is a summary of all
mpstat data collected since the system was last booted. When a reporting interval
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is given, the first row of statistics is a summary of all data collected since the system
was last booted.

Other popular alternatives to vmstat on Solaris and Linux can be used to moni-
tor CPU utilization. A couple of the more common ones are prstat for Solaris and
top for Linux.

Linux top reports not only CPU utilization but also process statistics and memory
utilization. Its display, shown in the following example, has two major parts. The
upper section of the display reports overall system statistics, while the lower section
reports process level statistics that, by default, are ordered in highest to lowest CPU
utilization.

top - 14:43:56 up 194 days, 2:53, 4 users, Tload average: 8.96, 6.23, 3.96
Tasks: 127 total, 2 running, 125 sleeping, 0 stopped, 0 zombie

Cpu(s): 62.1% us, 26.2% sy, 0.8% ni, 1.7% id, 0.0% wa, 0.0% hi, 9.1% si
Mem: 4090648k total, 3141940k used, 948708k free, 340816k buffers

Swap: 4192956k total, Ok used, 4192956k free, 1387144k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
30156 root 25 10 32168 18m 10m R 2.3 0.5 20:41.96 rhn-applet-gui
30072 root 15 0 16344 12m 2964 S 0.7 0.3 13:08.52 Xvnc
5830 huntch 16 0 3652 1084 840 R 0.7 0.0 0:00.16 top
1 root 16 0 3516 560 480 S 0.0 0.0 0:01.62 init
2 root RT 0 0 0 0S 0.0 0.0 0:07.38 migration/0
3 root 34 19 0 0 0S 0.0 0.0 0:00.27 ksoftirqd/0
4 root RT 0 0 0 0S 0.0 0.0 0:08.03 migration/1

Solaris prstat shows similar information to Linux top. The following example
is the default output for prstat.

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
1807 huntch 356M 269M cpul 45 0 0:00:37 46% java/40
1254 huntch 375M 161M run 29 0 0:06:51 2.9% firefox-bin/13
987 huntch 151M 123M sleep 59 0 0:06:25 2.7% Xorg/1
0 0:03:52 0.5% soffice.bin/7

1234 huntch 257M  132M sleep 49

Solaris prstat does not show an overall system summary section like top. But,
like top, it does report per process level statistics that are ordered, by default, from
highest to lowest CPU utilization.

Both prstat and top are good tools for providing a high level view of CPU utili-
zation at a per process level. But as the need arises to focus more on per process and
per lightweight process CPU utilization, Solaris prstat has additional capabilities
such as reporting both user and kernel or system CPU utilization along with other
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microstate information using the prstat -m and -L options. The -m option prints
microstate information, and -1 prints statistics on per lightweight process.

Using the -m and -L options can be useful when you want to isolate CPU utili-
zation per lightweight process and Java thread. A Java process showing high CPU
utilization with prstat -mL can be mapped to a Java process and Java thread(s)
on Solaris through a sequence of steps using prstat, pstack, and Java 6’s jstack
command line tool. The following example illustrates how to do this.

The output in the following example, gathered with prstat -mL 5, shows process
id 3897 has three lightweight process ids consuming about 5% of kernel or system
CPU. LWPID 2 is consuming the most at 5.7%.

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROC/LWPID
3897 huntch 6.0 5.7 0.1 0.0 0.0 2.6 8.2 78 9K 8K 64K 0 java/2
3897 huntch 4.9 4.8 0.0 0.0 0.0 59 0.0 31 6K 6K 76K 0 java/13
3897 huntch 4.7 4.6 0.0 0.0 0.0 56 0.0 35 5K 6K 72K 0 java/14
7.4 1.5 0.0 0.0 0.0 3.8 53 34 5K 887 16K 0 java/28

3917 huntch

In the absence of using a profiler, which is covered in detail in Chapter 5, there is a
quick way to isolate which Java thread, along with which Java method, is consuming
large amounts of CPU as reported by prstat, either USR or SYS. A Java, or JVM,
process thread stack dump at the Solaris level can be generated using the Solaris
command line tool pstack and the process id 3897. The pstack output in the follow-
ing example, produced using the command pstack 3897/2, shows the lightweight
process (Iwp) id and thread id that matches LWPID 2 from prstat.

————————————————— lwp# 2 / thread# 22 @ ---- - - - —————————————

fef085c7 _Twp_cond_signal (81f4200) + 7

feb45f04 _ 1cNObjectMonitorKExitEpilog6MpnGThread pnMObjectWaiter_ v_
(829f2d4, 8061800, €990d710) + 64

fe6e7e26 _ 1cNObjectMonitorEexitbMpnGThread v_ (829f2d4, 806f800) + 4fe
febcabcb _ 1cSObjectSynchronizer]fast_exit6FpnHoopDesc_pnlBasiclLock_
pnGThread__v_ (ee802108, fe45bb10, 806f800) + 6b

If you convert the thread id value to hexadecimal and use the JDK’s jstack
command you can find the Java thread that corresponds to Solaris thread# 2 by
searching for a “nid” label. The thread number, 2 in decimal, is also 2 in hexadeci-
mal. The following output from the JDK’s jstack command is trimmed but shows
that a Java thread with a 0x2 is the “main” Java thread. According to the stack
trace produced by jstack, the Java thread corresponding to Solaris pstack’s
LWPID 2 and prstat’s LWPID 2 is executing a Java NIO Selector.select ()
method.
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"main” prio=3 tid=0x0806f800 nid=0x2 runnable [0xfe45b000..0xfe45bd38]
java.lang.Thread.State: RUNNABLE
at sun.nio.ch.DevPollArrayWrapper.poll0(Native Method)
at sun.nio.ch.DevPol1ArrayWrapper.poll(DevPollArrayWrapper.java:164)
at sun.nio.ch.DevPoll1SelectorImpl.doSelect(DevPoll1SelectorImpl.java:68)
at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69)
- Tocked <0xee809778> (a sun.nio.ch.Util$1)
- locked <0xee809768> (a java.util.Collections$UnmodifiableSet)
- locked <0Oxee802440> (a sun.nio.ch.DevPoll1SelectorImpl)
at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80)
at com.sun.grizzly.SelectorThread.doSelect(SelectorThread.java:1276)

Once a Java thread has been identified and with the stack trace readily available,
you can begin to investigate in more detail the methods shown in the stack trace for
possible candidates of high kernel or system CPU utilization through a more thor-
ough profiling activity.

CPU Scheduler Run Queue

In addition to CPU utilization, monitoring the CPU scheduler’s run queue is impor-
tant to tell if the system is being saturated with work. The run queue is where light-
weight processes are held that are ready to run but are waiting for a CPU where it
can execute. When there are more lightweight processes ready to execute than the
system’s processors can handle, the run queue builds up with entries. A high run
queue depth can be an indication a system is saturated with work. A system operat-
ing at a run queue depth equal to the number of virtual processors may not experi-
ence much user visible performance degradation. The number of virtual processors is
the number of hardware threads on the system. It is also the value returned by the
Java API, Runtime.availableProcessors (). In the event the run queue depth
reaches four times the number of virtual processors or greater, the system will have
observable sluggish responsiveness.

A general guideline to follow is observing run queue depths over an extended
period of time greater than 1 times the number of virtual processors is something to
be concerned about but may not require urgent action. Run queue depths at 3 to 4
times, or greater, than the number of virtual processors over an extended time period
should be considered an observation that requires immediate attention or action.

There are generally two alternative resolutions to observing high run queue depth.
One is to acquire additional CPUs and spread the load across those additional CPUs,
or reduce the amount of load put on the processors available. This approach essen-
tially reduces the number of active threads per virtual processor and as a result
fewer lightweight processes build up in the run queue.
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The other alternative is to profile the applications being run on the system and
improve the CPU utilization of those applications. In other words, explore alterna-
tive approaches that will result in fewer CPU cycles necessary to run the applica-
tion such as reducing garbage collection frequency or alternative algorithms that
result in fewer CPU instructions to execute the same work. Performance experts
often refer to this latter alternative as reducing code path length and better CPU
instruction selection. A Java programmer can realize better performance through
choosing more efficient algorithms and data structures. The JVM, through a mod-
ern JIT compiler, can improve an application’s performance by generating code that
includes sophisticated optimizations. Since there is little a Java application pro-
grammer can do to manipulate a JVM’s JIT compiler, the focus for Java developers
should be on more efficient alternative algorithms and data structures. Where to
focus with alternative algorithms and data structures is identified through profil-
ing activities.

Monitoring Windows CPU Scheduler Run Queue

The run queue depth on Windows is monitored using the \System \ Processor Queue
Length performance counter. This performance counter can be added to the Per-
formance Monitor by selecting the System > Processor Queue Length performance
counter from the Add Counters dialog. Recall from the “Monitoring CPU Utilization
on Windows” section earlier in the chapter, the Add Counters dialog is displayed
by right-clicking in the Performance Monitor’s main window and selecting the Add
Counters option from the context sensitive menu.

Figure 2-7 shows the Performance Monitor monitoring a system’s run queue
depth.

It is important to notice the scale factor in Performance Monitor. In Figure 2-7,
the scale factor is 10. This means a run queue depth of 1 is displayed on the chart
as 10, 2 as 20, 3 as 30, and so on. Based on a scale factor of 10, the actual run queue
depth in Figure 2-7 ranges from 3 to at least 10. The reported run queue depth should
be evaluated against the number of virtual processors on the system to determine
whether further action is required such as monitoring over a longer period of time
or initiating profiling activities.

Windows typeperf can also be used to monitor run queue depth. As mentioned
in earlier sections, the typeperf command accepts Windows performance counter
names and prints the collected performance data in a tabular form. The following
typeperf command monitors run queue depth:

typeperf ”\System\Processor Queue Length”
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Figure 2-7 Processor queue length

What follows is example output using typeperf and the \System \ Processor Queue
Length performance counter reporting at a 5 second interval rather than a default

1 second.

typeperf -si 5 ”\System\Processor Queue Length”

” (PDH-CSV 4.

”02/26/2011
”02/26/2011
”02/26/2011
”02/26/2011
”02/26/2011
”02/26/2011
”02/26/2011
”02/26/2011

0)”,”\\PICCOLO\System\Processor Queue Length”
18:20:53.329”,”3.000000”
18:20:58.344”,”7.000000”
18:21:03.391”,79.000000”
18:21:08.485”,76.000000”
18:21:13.516”,”3.000000”
18:21:18.563”,73.000000”
18:21:23.547”,”3.000000”
18:22:28.610”,”3.000000”

The run queue depth reported by typeperft is its actual value. There is no scale
factor involved as there is with the Performance Monitor. In the above data, the run
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Figure 2-8 Solaris cpubar showing run queue depth

queue depth over the reported 35 second interval ranges from 3 to 9. The run queue
data suggests the peak of 9 may be short lived. If further monitoring confirms this
is the case, no corrective action is needed since this data is from a system that has
four virtual processors.

Monitoring Solaris CPU Scheduler Run Queue

On Solaris, a system’s run queue depth can be monitored graphically using cpubar
and via command line using vmstat. Solaris cpubar, shown in Figure 2-8, shows
run queue depth to the right of the CPU utilization bars with the vertical bar above
the “r” label. The height of the bar is scaled based on the actual number of entries in
the run queue, not a percentage of queue fullness.

The run queue can also be monitored with the vimstat command. The first column
in vimstat reports the run queue depth. The value reported is the number of light-
weight processes in the run queue. The following is an example with the run queue
column in bold.

kthr memory page disk faults cpu

rbw swap free re mf pi po fr de sr cd sO - - n sy c¢s us sy id
2 0 0 333273 177562 99 2650 0 0O O O 97 0 0 0 1737 14347 1225 28 4 68
4 0 0 330234 174274 69977 0 0 0 O O 70 0O O O 1487 13715 1293 68 3 29
2 0 0 326140 169259 48 303 0 0O O O O 85 0 0 0 1746 29014 2394 48 5 47
6 0 0 323751 164876 92 730 0 0 O O O 58 0 0 O 1662 48860 3029 67 5 28
50 0 321284 160069 38 206 0 O O O O 48 0 0 O 1635 50938 2714 83 5 12

Monitoring Linux CPU Scheduler Run Queue

On Linux a system’s run queue depth can be monitored using the vmstat command.
The first column in vimstat reports the run queue depth. The number reported is the
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actual number of lightweight processes in the run queue. The following is an example
with the run queue column in bold.

procs ---------- memory---------- --- swap-- ----- io---- -- system-- ---- cpu----

b swpd free buff cache si o) i bo in cs us sy id wa
4 0 0 959476 340784 1387176 0 0 0 0 1030 8977 63 35 1 O
3 0 0 959444 340784 1387176 0 0 0 0 1014 7981 62 36 2 O
6 0 0 959460 340784 1387176 0 0 0 16 1019 9380 63 36 1 O
1 0 0 958820 340784 1387176 0 0 0 0 1036 9157 63 35 2 O
4 0 0 958500 340784 1387176 0 0 0 29 1012 8582 62 37 1 O

Memory Utilization

In addition to CPU utilization there are attributes of a system’s memory that should
be monitored, such as paging or swapping activity, locking, and voluntary and invol-
untary context switching along with thread migration activity.

A Java application or JVM that is swapping or utilizing virtual memory experi-
ences pronounced performance issues. Swapping occurs when there is more memory
being consumed by applications running on the system than there is physical memory
available. To deal with this potential situation, a system is usually configured with
an area called swap space. Swap space is typically allocated on a disk in a distinct
disk partition. When the amount of physical memory is exhausted by the applications
running on the system, the operating system swaps out a portion of an application
to swap space on disk. Usually the operating system swaps out a portion of an appli-
cation that is executing the least frequently so as to not impact the applications or
the portions of applications that are the busiest. When a portion of an application is
accessed that has been swapped out, that portion of the application must be paged in
from the swap space on disk to memory. Swapping in from disk to memory can have
a significant impact on an application’s responsiveness and throughput.

A JVM’s garbage collector performs poorly on systems that are swapping because
a large portion of memory is traversed by the garbage collector to reclaim space from
objects that are unreachable. If part of the Java heap has been swapped out it must
be paged into memory so its contents can be scanned for live objects by the garbage
collector. The time it takes to page in any portion of the Java heap into memory can
dramatically increase the duration of a garbage collection. If the garbage collection
is a “stop the world” type of operation, one that stops all application threads from
executing, a system that is swapping during a garbage collection is likely to experi-
ence lengthy JVM induced pause times.

If you observe lengthy garbage collections, it is a possibility that the system is
swapping. To prove whether the lengthy garbage collection pauses are caused by
swapping, you must monitor the system for swapping activity.
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Monitoring Memory Utilization on Windows

On Windows systems that include the Performance Monitor, monitoring memory
pages per second (\Memory\Pages / second) and available memory bytes (\Memory\
Available MBytes), can identify whether the system is swapping. When the avail-
able memory, as reported by the \Memory\ Available MBytes counter, is low and you
observe paging activity, as reported by the \Memory\Pages / Second counter, the
system is likely swapping.

It is easiest to illustrate a Windows system that is swapping using the output from
the typeperf command. The following is a typeperf command to report available
memory and paging activity at 5 second intervals (the -si specifies the reporting
interval).

typeperf -si 5 ”\Memory\Available Mbytes” ”\Memory\Pages/sec”

The following output from typeperf is taken from a system that is swapping. The
first column of data is the date and time stamp. The second column is the available
memory, and the third column is the pages per second.

”02/15/2011 15:28:11.737”,7150.000000”,”0.941208”
”02/15/2011 15:28:16.799”,7149.000000”,”1.857361”
”02/15/2011 15:28:21.815”,7149.000000”,”2.996049”
”02/15/2011 15:28:26.831”,7149.000000”,”17.687691”
”02/15/2011 15:28:31.909”,7149.000000”,”0.929074”
”02/15/2011 15:28:36.940”,7149.000000”,71.919541”
”02/15/2011 15:28:41.956”,7149.000000”,”0.991037”
”02/15/2011 15:28:46.971”,7149.000000”,71.977258”
”02/15/2011 15:28:51.002”,7149.000000”,”0.969558”
”02/15/2011 15:28:56.065”,7149.000000”,714.120284”
”02/15/2011 15:29:01.127”,7150.000000”,”8.470692”
”02/15/2011 15:29:06.174”,7152.000000”,”9.552139”
”02/15/2011 15:29:11.174”,7151.000000”,”2.000104”
”02/15/2011 15:29:16.174”,7152.000000”,”1.999969”
”02/15/2011 15:29:21.174”,7153.000000”,70.999945”

Notice the amount of memory available is staying fairly constant around 150
megabytes yet there is consistent paging activity. Since the amount of available
memory is staying fairly constant, it is reasonable to assume no new applications are
being launched. When an application launches, the amount of available memory is
expected to drop, and it is expected to see paging activity since the application must
be paged into memory. Therefore, if the system is using a fairly consistent amount
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of memory and no new applications are launching, yet there is paging activity, it is
likely the system is swapping.

It is important to note that a system can report little available memory and report
no paging activity. In such a situation, the system is not swapping. It just simply
is utilizing most of the physical RAM available on the system. Likewise, a system
may be experiencing paging activity, yet have sufficient memory available and as
a result not be swapping. The paging activity could be the result of an application
being launched.

Monitoring Memory Utilization on Solaris

On Solaris, when available memory becomes low, the kernel’s page scanner begins
looking for memory pages no longer in use by an application so they can be made
available for other applications and processes. If the page scanner is unable to find
the memory demanded by the applications and no additional physical memory is
available, it begins to swap out the least recently used memory pages to a swap space
on disk. The lower the amount of available memory, the higher the page scan rate.
In other words, as lower memory is available, the page scanner gets more aggressive
with trying to find available memory pages it can reclaim.

Since the page scanner becomes more aggressive as available memory becomes
low, identifying a Solaris system that is experiencing swapping requires monitoring
a combination of the amount of free memory and page scanner activity. Both avail-
able free memory and page scanner activity are reported in Solaris vimstat columns
labeled “free” and “sr.”

When vmstat, cpubar, or any other Solaris monitoring tool reports a scan rate of
0, regardless of the reported available free memory, no swapping is occurring. How-
ever, if the scan rate is nonzero and the trend of reported free memory is decreasing,
then swapping is likely occurring. The following example output from Solaris vmstat
illustrates a system currently using most of its available physical memory; about 100
megabytes are free, as shown in the “free” column, but it is not swapping since its
scan rate, the “sr” column, is 0.

kthr memory page disk faults cpu

rbw swap free re mf pi po fr de sr cd fO sO - 1in sy cs us sy id
0 0 0 1641936 861222 106 25910 3 3 0 0 O O O 0 4930 24959 10371 60 10 30
0 0 0 1594944 116940 37 1718 8 0 0 O 0 8 O 0O O 4169 17820 10111 52 5 43
0 0 0 1579952 103208 24 5210 0 O O O 1 O O O 2948 14274 6814 67 4 29
0 0 0 1556244 107408 97 1116 3 0 0 O 011 O O 0 1336 7662 1576 45 3 52

In contrast, the following example illustrates a system that is experiencing a short-
age of available physical memory, dropping pretty rapidly from about 150 Mbytes
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to 44 Mbytes, and by the time it reaches 17 Mbytes, the scan rate, the “sr” column,
is reporting significant activity. Observing this kind of pattern with vmstat is an
indication the system may be swapping and its performance will begin to become
sluggish if it is not already.

kthr memory page disk faults cpu
rbw swap free re mf pi po fr de sr cd f0 sO -- in sy c¢s us sy id
1 0 0 499792 154720 1 1697 O 0 0 0 0 0 0O 012 811 612 1761 90 7 4
1 0 0 498856 44052 1 3214 O 0 0 0 0 0 O 0 12 1290 2185 3078 66 18 15
3 0 0 501188 17212 1 1400 2 2092 4911 0 37694 0 53 0 12 5262 3387 1485 52 27 21
1 0 0 500696 20344 26 2562 13 4265 7553 0 9220 0 66 O 12 1192 3007 2733 71 17 12
1 0 0 499976 20108 3 3146 24 3032 10009 0 10971 0 63 O 6 1346 1317 3358 78 15 7
10 0 743664 25908 61 1706 70 8882 10017 O 19866 O 78 O 52 1213 595 688 70 12 18

Notice in the example, paying attention only to either the “free” or “swap” col-
umns can be misleading and alone do not provide obvious clues that a system may
be swapping.

Monitoring Memory Utilization on Linux

On Linux, monitoring for swapping activity can be done using vinstat and observing
the free column. There are other ways to monitor for swap activity on Linux such
as using the top command or observing the contents of the file /proc/meminfo.
Monitoring for swapping activity using Linux vmstat is shown here. The columns in
Linux vmstat to monitor are the “si” and “so” columns, which represent the amount
of memory paged-in and the amount of memory paged-out. In addition, the “free”
column reports the amount of available free memory. The actual units are not as
important as observing whether the amount of free memory is low and high paging
activity is occurring at the same time. Observing the pattern just described in these
statistics is an indication that the system maybe experiencing swapping activity. The
following is an example of a system that is experiencing no swapping activity; since
there is no paging activity as shown in the “si” and “so” columns and the amount of
free memory is not very low.

procs ----------- memory---------—- --- swap-- ----- io---- -- system-- ----- cpu------
r b swpd free buff cache si so bi bo in  cs us sy id wa st
2 0 0 9383948 265684 1879740 O 0 0 0 1 1 0 0100 0 O
3 0 0 9383948 265684 1879740 0 0 0 11 1012 52914 0 8 0 O
3 0 0 9383916 265684 1879740 O 0 0 0 1021 510520 0O 8 O O
3 0 0 9383932 265684 1879740 O 0 0 13 1014 25919 0 81 0 O
3 0 0 9383932 265684 1879740 O 0 0 7 1018 4952 20 0 8 O O
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However, the following vimstat output from a Linux system illustrates a system that
is experiencing swapping.

procs -----------—- memory----------- -—-—- swap--- ----- io---- -- system-- ----- cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
10 0 9500784 265744 1879752 0 0 0 0 1015 228 0 694 0 O
10 0 8750540 265744 1879752 0 0 0 2 1011 216 0 694 0 O
10 0 2999792 265744 1879752 0 0 0 2 1012 218 0 694 0 O
2 0 0 155964 185204 1370300 0 0 0 0 1009 215 0 99 O O
2 0 9816 155636 24160 815332 0 1963 0 2000 1040 238 01387 0 O
0 2 218420 165152 384 18964 0 41490 0 41498 1247 286 0 688 5 0
0 6 494504 157028 396 18280 45 55217 67 55219 1363 278 0 17921 O
0 7 799972 159508 408 18356 70 61094 145 61095 1585 337 0 17227 O
0 8 1084136 155592 416 18512 65 56833 90 56836 1359 292 0 17524 0
0 3 1248428 174292 500 23420 563 32858 1689 32869 1391 550 O 0 83 17 O
1 1 1287616 163312 624 28800 13901 7838 15010 7838 2710 6765 1 093 6 O
1 0 1407744 163508 648 29688 18218 24026 18358 24054 3154 2465 1 192 6 O
0 2 1467764 159484 648 28380 19386 12053 19395 12118 2893 2746 2 191 5 0

Notice the pattern in this example. Where free memory initially decreases, there
is little paging activity shown in either the “si” column or “so” column. But as free
memory reaches values in the 155,000 — 175, 000 range, page-out activity picks
up as shown in the “so” column. Once the page-out activity begins to plateau, the
page-in activity begins and increases rather quickly as shown in the “si” column. In
general what is happening is the system has an application, or set of applications,
that placed significant memory allocation and/or memory access pressure on the
system. As the amount of physical memory started to become exhausted, the system
began to page-out to virtual memory the least recently used pages in memory. As the
applications on the system began to demand pages from memory, page-in activity
began to occur. As the paging activity increased, the amount of free memory remained
about the same. In other words, the system is swapping in pages nearly as quickly as
it is paging them out while the amount of free memory remained rather small. This
is a typical pattern that can be observed in Linux vmstat when a Linux system is
experiencing swapping.

Monitoring Lock Contention on Solaris

Many Java applications that do not scale suffer from lock contention. Identifying
that lock contention in Java applications can be difficult and the tools to identify
lock contention are limited.

In addition, optimizations have been made in modern JVMs to improve the per-
formance of applications that experience lock contention. For example, in Java 5,
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optimizations were integrated into the Java HotSpot VM (also referred to HotSpot
VM hereafter) to implement much of the locking logic, the artifact resulting from
Java synchronized methods and synchronized blocks, in user code rather than rely-
ing immediately on operating system lock primitives. Prior to Java 5, the HotSpot
VM delegated almost all of the locking logic to operating system locking primitives.
This allowed for operating system tools such as Solaris mpstat to easily monitor a
Java application for lock contention by observing the “smtx” (spin on mutex) column
along with observing system or kernel CPU utilization.

As a result of the Java 5 HotSpot VM optimizations to implement much of locking
logic in user code, using Solaris mpstat and observing the “smtx” column and “sys”
CPU utilization columns no longer work as well. Instead, an alternative approach
is needed.

A high level simplistic description of the lock optimization added to Java 5 Hot-
Spot VMs and later is given as follows; spin in a tight loop trying to acquire a lock,
if not successful after a number of tight loop spins, park the thread and wait to be
notified when to try acquiring the lock again. The act of parking a thread along
with awaking a thread results in an operating system voluntary context switch.
Hence, an application experiencing heavy lock contention exhibits a high number
of voluntary context switches. The cost of a voluntary context switch at a proces-
sor clock cycle level is an expensive operation, generally upwards of about 80,000
clock cycles.

Context switching can be monitored on Solaris with mpstat by observing the
“csw” column. The value reported by the “csw” column in mpstat is the total num-
ber of context switches including involuntary context switches. Involuntary context
switching is also reported in mpstat in the “icsw” column. Hence, the number of
voluntary context switches is the “csw” minus “icsw.”

A general rule to follow is that any Java application experiencing 5% or more of its
available clock cycles in voluntary context switches is likely to be suffering from lock
contention. Even a 3% to 5% level is worthy of further investigation. An estimate of
the number of clock cycles spent in voluntary context switching can be calculated by
taking the number of thread context switches (csw) observed in an mpstat interval,
minus the involuntary context switches observed in an mpstat interval, (icsw),
multiplying that number by 80,000 (the general cost of a context switch in number
clock cycles), and dividing it by the total number of clock cycles available in the
mpstat interval.

To illustrate with an example, the following Solaris mpstat output captured at a 5
second interval from a 3.0GHz dual core Intel Xeon CPU executing a Java application
shows context switches (csw) at about 8100 per 5 second interval and involuntary
context switches (icsw) at about 100 per 5 second interval.
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$ mpstat 5

CPU minf mjf xcal 1intr ithr csw icsw migr smtx srw syscl usr sys wt id]l
0 4 0 1 479 357 8201 87 658 304 6376 86 4 0 10
1 3 0 1 107 3 8258 97 768 294 5526 85 4 0 10

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 0 O 0 551 379 8179 91 717 284 6225 85 5 0 10
1 2 0 0 2292 2 8247 120 715 428 7062 84 5 0 10

CPU minf mjf xcal 1intr ithr csw icsw migr smtx srw syscl usr sys wt id]l
0 0 0 0 562 377 8007 98 700 276 6493 85 5 0 10
1 0 O 0 2550 4 8133 137 689 417 6627 86 4 0 11

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 0 O 0 544 378 7931 90 707 258 0 6609 8 5 0 8
1 0 0 0 2428 1 8061 125 704 409 O 6045 88 3 0 9

©© oo

oo

An estimate of the number of clock cycles wasted due to voluntary context switches
is roughly (8100 — 100) X 80,000 = 640,000,000 clock cycles. The number of clock
cycles available in a 5 second interval is 3,000,000,000! X 5 =15,000,000,000. Hence,
640,000,000 / 15,000,000,000 = 4.27%. About 4.27% of the available clock cycles are
consumed in voluntary context switches. Based on the general rule of a Java appli-
cation spending 3% to 5% or more of available clock cycles in voluntary clock cycles
implies this Java application is suffering from lock contention. This lock contention
is likely coming from areas where multiple threads are trying to access the same
synchronized method or synchronized block of code, or a block of code that is guarded
by a Java locking construct such as a java.util.concurrent.locks.Lock.

Tip
Profiling a Java application with Oracle Solaris Studio Performance Analyzer is a strategy to
employ when more concrete information on lock contention and whether lock contention

may be a performance concern is required. Profiling with Oracle Solaris Studio Performance
Analyzer is covered in detail in Chapter 5 of this book.

Monitoring Lock Contention on Linux

It is possible to monitor lock contention by observing thread context switches in
Linux with the pidstat command from the sysstat package. However, for pidstat
to report context switching activity, a Linux kernel version of 2.6.23 or later is
required. The use of pidstat -wreports voluntary context switches in a “cswch/s”
column. It is important to notice that Linux pidstat -w reports voluntary con-
text switches, not a sum of all context switches that Solaris mpstat reports. Addi-
tionally, Linux pidstat -w reports the number of voluntary context switches per

1. A 3.0 GHz processor executes 3 billion clock cycles per second.
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second, not per measurement interval like Solaris mpstat. Therefore, the estimate
of the percentage of clock cycles wasted on voluntary context switching is calculated
as the number of pidstat -w voluntary context switches divided by the number of
virtual processors. Remember that pidstat -w reports voluntary context switches
for all virtual processors. As a result, the number of voluntary context switches
times 80,000 divided by the number of clock cycles per second of the CPU provides
the percentage of CPU clock cycles spent in voluntary context switches. The follow-
ing is an example from pidstat -w monitoring a Java application having a process
id of 9391 reporting results every 5 seconds.

$ pidstat -w -I -p 9391 5
Linux 2.6.24-server (payton) 07/10/2008

08:57:19 AM PID cswch/s nvcswch/s Command

08:57:26 AM 9391 3645 322 java
08:57:31 AM 9391 3512 292 java
08:57:36 AM 9391 3499 310 java

To estimate the percentage of clock cycles wasted on context switching, there are
about 3500 context switches per second occurring on the system being monitored
with pidstat -w,a 3.0GHz dual core Intel CPU. Hence, 3500 divided by 2, the num-
ber of virtual processors = 1750. 1750 X 80,000 = 140,000,000. The number of clock
cycles in 1 second on a 3.0GHz processor is 3,000,000,000. Thus, the percentage of
clock cycles wasted on context switches is 140,000,000/3,000,000,000 = 4.7%. Again
applying the general guideline of 3% to 5% of clock cycles spent in voluntary context
switches implies a Java application that may be suffering from lock contention.

Monitoring Lock Contention on Windows

On Windows, in contrast to Solaris and Linux, observing Java lock contention using
built-in operating system tools is more difficult. Windows operating systems that
include the Performance Monitor and typeperf have the capability to monitor context
switches. But the capability to distinguish between voluntary and involuntary context
switching is not available via a performance counter. To monitor Java lock contention
on Windows, tools outside the operating system are often used, such as Intel VTune or
AMD CodeAnalyst. Both of these tools have Java lock profiling capabilities along with
capabilities to monitor other performance statistics and CPU performance counters.

Isolating Hot Locks

Tracing down the location in Java source code of contended locks has historically
been a challenge. A common practice to find contended locks in a Java application
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has been to periodically take thread dumps and look for threads that tend to be
blocked on the same lock across several thread dumps. An example of this procedure
is presented in Chapter 4, “JVM Performance Monitoring.”

Oracle Solaris Studio Performance Analyzer, which is available for Linux and
Solaris, is one of the best tools the authors have used to isolate and report on Java
lock contention. Using Performance Analyzer to find contended locks in a Java appli-
cation is covered in detail in Chapter 5, and an example is presented in Chapter 6,
“Java Application Profiling Tips and Tricks.”

Other profilers can identify contended locks on Windows. Profilers that are similar
in functionality to the Oracle Solaris Studio Performance Analyzer are Intel VTune
and AMD CodeAnalyst.

Monitoring Involuntary Context Switches

Involuntary context switching was mentioned earlier but not explained in any detail,
or how it differs from voluntary context switching. In contrast to voluntary context
switching where an executing thread voluntarily takes itself off the CPU, involun-
tary thread context switches occur when a thread is taken off the CPU as a result
of an expiring time quantum or has been preempted by a higher priority thread.
Involuntary context switches can be monitored with Solaris mpstat by observing
the “icsw” column.

CPU minf mjf xcal dntr ithr csw dicsw migr smtx srw syscl usr sys wt idl
11 13 558 760 212 265 1 3 1 0 525 9 1 0 9
9 11 479 467 0 251 1 3 1 0 474 9 1 0 89
7 4 226 884 383 147 0 4 2 0 192 4 1 0 96
7 4 234 495 0 146 0 3 0 0 215 5 1 0 95

wWN RO

Involuntary context switching can also be observed using Solaris prstat -m.
High involuntary context switches are an indication there are more threads ready
to run than there are virtual processors available to run them. As a result it is com-
mon to observe a high run queue depth in vmstat, high CPU utilization, and a high
number of migrations (migrations are the next topic in this section) in conjunction
with a large number of involuntary context switches. Strategies to reduce involun-
tary context switches include using the Solaris command psrset to create processor
sets for systems running multiple applications and assigning applications to specific
processor sets, or reducing the number of application threads being run on the sys-
tem. An alternative strategy, and usually less effective, is profiling the application to
identify areas of the application where you can reduce CPU usage by using improved
algorithms so they consume fewer CPU cycles.
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Involuntary context switches can also be monitored on Linux using pidstat -w.
But as mentioned earlier, pidstat -w reporting of involuntary context switch-
ing requires Linux kernel 2.6.23 or later. On Linux, creation of processor sets and
assigning applications to those processor sets can be accomplished using the Linux
taskset command. See your Linux distribution’s documentation for details on how
to use Linux taskset.

On Windows systems, applications can be assigned to a processor or set of proces-
sors by using Task Manager’s Process tab. Select a target process, right-click, and
select Set Affinity. Then choose the processors the selected process should execute on.
On Windows Server operating systems, Windows Vista and Windows 7, an applica-
tion can be launched from the command line with start /affinity <affinity
mask>, where <affinity mask> is the processor affinity mask in hexadecimal. See
the Windows operating system’s documentation for the use of start command and
affinity mask.

Monitoring Thread Migrations

Migration of ready-to-run threads between processors can also be a source of observed
performance degradation. Most operating systems’ CPU schedulers attempt to keep
a ready-to-run thread on the same virtual processor it last executed. If that same
virtual processor is busy, the scheduler may migrate that ready-to-run thread to
some other available virtual processor. Migration of threads can impact an applica-
tion’s performance since data, or state information, used by a ready-to-run thread
may not be readily available in a virtual processor’s cache. On Solaris you can use
mpstat and observe the “migr” column to monitor whether thread migrations are an
issue to a Java application’s performance. If you are running a Java application on
a multicore system and observing a high number of migrations, a strategy to reduce
thread migrations is creating processor sets and assigning Java applications to those
processor sets. As a general guideline, Java applications scaling across multiple cores
or virtual processors and observing migrations greater than 500 per second could
benefit from binding Java applications to processor sets. In extreme cases, the Solaris
kernel tunable rechoose interval can be increased as a means to reduce thread
migrations. The former, creating processor sets, is the preferred strategy, and the
latter, tuning the kernel, should be considered only as a secondary approach.

Network 1/0 Utilization

Distributed Java applications may find performance and scalability limited to either
network bandwidth or network I/O performance. For instance, if a system’s network
interface hardware is sent more traffic than it can handle, messages can be queued
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in operating system buffers, which may cause application delays. Additionally, other
things may be occurring on the network that cause delays as well.

Identifying and monitoring a single network utilization statistic can be hard to find
in bundled operating system utilities. For example, even though Linux has netstat
with its optional sysstat package and Solaris bundles netstat, neither the Linux nor
Solaris implementation of net stat reports network utilization. Both provide statistics
such as packets sent and packets received per second along with errors and collisions.
Collisions in a small amount are a normal occurrence of Ethernet. Large numbers of
errors usually are the result of a faulty network interface card, poor wiring or auto-
negotiation problems. Also, for a given number of packets received or transmitted per
interval as reported by netstat, it is difficult to know whether the interface is being
fully utilized. For example, if anetstat -i command reports 2500 packets per second
passing through the network interface card, you do not know whether the network is
at 100% utilization or 1% utilization. One conclusion you can make is network traffic
is occurring. But that is about the only conclusion you can make without knowing the
rated throughput of the underlying network cards and the packet sizes being trans-
mitted. In short, it is difficult to tell from the output of netstat on Linux or Solaris
to determine whether network utilization is limiting an application’s performance.
Regardless of the operating system running your Java application, there is a need for
a tool that can show network utilization on the network interfaces your application is
using. The next two subsections present tools that can be used on Solaris, Linux, and
Windows to monitor network utilization.

Monitoring Network I/O Utilization on Solaris

On Solaris, a tool called nicstat from the freeware K9Toolkit reports network uti-
lization and saturation by network interface. The K9Toolkit is also included in the
Solaris Performance Tools CD 3.0 package mentioned earlier in the “Monitoring CPU
Utilization on Solaris” section of this chapter. The K9Toolkit can also be downloaded
from http://www.brendangregg.com/k9toolkit.html.

nicstat has the following command line syntax:

nicstat [-hnsz] [-i interface[,...]] | [interval [count]]

where -h displays a help message, -n shows nonlocal interfaces only, -s shows a
summary output, - z skips reporting of zero values, - i interface is the network inter-
face device name, interval is the frequency at which output is to be reported in sec-
onds, and count is the number of samples to report.

The following is example output from nicstat -i yukonx0 1, which samples
the network interface device yukonx0 at a 1 second interval.


http://www.brendangregg.com/k9toolkit.html
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Time Int rkB/s  wKB/s rPk/s  wPk/s rAvs wAvs %Util Sat
19:24:16 yukonx0 0.75 4.68 2.72 3.80 281.3 1261.9 0.00 0.00
19:24:17 yukonx0 54.14 1924.9 724.1 1377.2 76.56 1431.2 1.58 0.00
19:24:18 yukonx0 44.64 1588.4 598.0 1138.0 76.45 1429.3 1.30 0.00
19:24:19 yukonx0  98.89 3501.8 1320.0 2502.0 76.72 1433.2 2.87 0.00
19:24:20 yukonx0 0.43 0.27 2.00 3.00 222.0 91.33 0.00 0.00
19:24:21 yukonxO0  44.53 1587.2 598.0 1134.0 76.26 1433.2 1.30 0.00
19:24:22 yukonx0 101.9 3610.1 1362.0 2580.0 76.64 1432.8 2.96 0.00
19:24:23 yukonx0  139.9 4958.1 1866.7 3541.4 76.73 1433.6 4.06 0.00
19:24:24 yukonx0 77.23 2736.4 1035.1 1956.2 76.40 1432.4 2.24 0.00
19:24:25 yukonx0 48.12 1704.1 642.0 1220.0 76.75 1430.3 1.40 0.00
19:24:26 yukonx0  59.80 2110.8 800.0 1517.0 76.54 1424.8 1.73 0.00

The column headings are

= Int is the network interface device name.

= rKb/s is the number of kilobytes read per second.

* wKb/s is the number of kilobytes written per second.
= rPk/s is the number of packets read per second.

= wPk/s is the number of packets written per second.
= rAvs is average bytes read per read.

= wAvs is the average bytes written per write.

= 3Util is the network interface utilization.

= Sat is the saturation value.

As you can see a wealth of meaningful data is presented with nicstat to help
you identify whether your distributed Java application is saturating the network.
You can see there is activity occurring at the yukonx0 network interface as shown
in the number of bytes read and written yet the network utilization never reaches
much above 4% utilization. As a result, you can conclude the applications running
on this system are not experiencing a performance issue as a result of a saturated
network.

Monitoring Network 1/O Utilization on Linux

A port of the Solaris nicstat monitoring tool for Linux is available. The source
code can be downloaded from http://blogs.sun.com/roller/resources/timc/nicstat/
nicstat-1.22.tar.gz. It requires compilation before being able to use it. It reports net-
work utilization in the same way as described in the previous section on monitoring
network utilization on Solaris.


http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz
http://blogs.sun.com/roller/resources/timc/nicstat/nicstat-1.22.tar.gz
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Monitoring Network 1/O Utilization on Windows

Monitoring network utilization on Windows is not as simple as adding performance
counters to Performance Monitor and observing their values. It requires knowing the
possible bandwidth of the network interface you are interested in monitoring and
some measure of the amount of data passing through the network interface.

The number of bytes transmitted across a network interface can be obtained
using the “\Network Interface(*)\Bytes Total/sec” performance counter. The “*” wild-
card reports the bandwidth for all network interfaces on the system. You can use
the typeperf \Network Interface(*)\Bytes Total/sec command to see
the names of the network interfaces. Then, you can replace the wildcard “*” with
the network interface you are interested in monitoring. For example, suppose the
output from typeperf \Network Interface (*)\Bytes Total/sec shows the
network interfaces as Intel[R] 82566DM-2 Gigabit Network Connection, isatap.
gateway.2wire.net, Local Area Connection® 11 and you know the network interface
card installed in your system is an Intel network card. You can substitute “Intel[R]
82566DM-2 Gigabit Network Connection” for the “*” wildcard when adding the per-
formance counter to Performance Monitor or when using the typeperf command.

In addition to the bytes transmitted across the interface, the bandwidth of the net-
work interface must also be obtained. It can be obtained using the “\Network Inter-
face(*)\ Current Bandwidth” performance counter. Again, the “*” wildcard should be
replaced with the network interface you are interested in monitoring.

It is important to note that the Current Bandwidth performance counter reports
bandwidth in bits per second. In contrast, the Bytes Total/sec reports in units of bytes
per second. Therefore, the formula to calculate network utilization must compen-
sate for the proper units, bits per second, or bytes per second. The following are two
formulas that compute network utilization: the first one by adjusting the Current
Bandwidth into bytes per second by dividing the Current Bandwidth by 8, and the
second one by adjusting the Bytes Total/sec into bits per second by multiplying it by
8 (8 bits per byte).

network utilization % = Bytes Total/sec/(Current Bandwidth / 8) x 100
Or, alternatively as
network utilization % = (Bytes Total/sec * 8) / Current Bandwidth x 100

Network utilization can also be monitored in Windows using Task Manager and
clicking on the Networking tab. An example is shown in Figure 2-9.
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Figure 2-9 Task Manager showing network utilization

Application Performance Improvement Considerations

An application executing a large number of reads and writes to a network with small
amounts of data in each individual read or write call consumes large amounts of
system or kernel CPU and may also report a high number of system calls. A strat-
egy to reduce system or kernel CPU in such an application is to reduce the number
network read or write system calls. Additionally, the use of nonblocking Java NIO
instead of blocking java.net.Socket may also improve an application’s perfor-
mance by reducing the number of threads required to process incoming requests or
send outbound replies.

A strategy to follow when reading from a nonblocking socket is to design and
implement your application to read as much data as there is available per read call.
Also, when writing data to a socket, write as much data as possible per write call.
There are Java NIO frameworks that incorporate such practices, such as Project
Grizzly (https://grizzly.dev.java.net). Java NIO frameworks also tend to simplify the
programming of client-server type applications. Java NIO, as offered in the JDK,
tends to be a “bare metal” type of implementation, and there is plenty of room to
make poor use of its Java APIs that can lead to disappointing application perfor-
mance, and hence the suggestion of using a Java NIO framework.


https://grizzly.dev.java.net
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Disk 1/0 Utilization

If an application performs disk operations, disk I/O should be monitored for possible
performance issues. Some applications make heavy use of disk as a major part of its
core functionality such as databases, and almost all applications utilize an application
log to write important information about the state or behavior of the application as
events occur. Disk I/O utilization is the most useful monitoring statistic for under-
standing application disk usage since it is a measure of active disk I/O time. Disk
I/O utilization along with system or kernel CPU utilization can be monitored using
iostat on Linux and Solaris.

To use iostat on Linux, the optional sysstat package must be installed.

To monitor disk utilization on Windows Server systems, the Performance Monitor
has several performance counters available under its Logical Disk performance object.

On Solaris, iostat -xc shows disk utilization for each disk device on the system
along with reporting CPU utilization. This command is useful for showing both disk
utilization and system or kernel CPU utilization together. The following example
shows a system that has three disks, sd0, sd2, and sd4, with disk I/O utilization of
22%, 13%, and 36%, respectively, along with 73% system or kernel CPU utilization.
The other statistics from iostat are not as important for application performance
monitoring since they do not report a “busy-ness” indicator.

$ iostat -xc 5
extended disk statistics cpu
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b us sy wt id
sd0 3.4 1.1 17.1 9.8 0.1 0.2 16.2 1 22 373 8 16
sd2 2.1 0.5 16.7 4.0 0.0 0.1 23.6 1 13
sd4 5.2 6.0 41.4 45.2 0.2 0.4 59.2 8 36

To monitor disk I/O utilization and system or kernel CPU utilization on Linux
you can use iostat -xm. The following is an example of iostat -xm from a
Linux system showing 97% and 69% for disks hda and hdb, respectively, along
with 16% system or kernel CPU utilization. Columns reporting 0 values were
removed from the output for ease of reading.

$ dostat -xm 5

avg-cpu: %user  %nice %system %iowait
0.20 0.40 16.37 83.03

Device: rrgm/s r/s rsec/s rMB/s avgqu-sz await svctm %util
hda 9662.87 305.59 87798.80 42.87 1.64 5.39 3.17 97.01
hdb 7751.30 225.15 63861.08 31.18 1.18 5.24 3.11 69.94
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Tip
The Solaris Performance Tools CD 3.0, presented in the “CPU Utilization” section earlier in
this chapter contains a graphical tool called iobar that displays disk I/O in a cpubar like

manner. The Solaris Performance Tools CD 3.0, also contains a command line tool called
iotop that displays Solaris iostat -x information in a prstat or top manner.

One of the challenges with monitoring disk I/O utilization is identifying which
files are being read or written to and which application is the source of the disk
activity. Recent versions of Solaris 10 and Solaris 11 Express include several DTrace
scripts in the /usr/demo/dtrace directory that can help monitor disk activity. The
iosnoop.d DTrace script provides details such as which user id is accessing the
disk, what process is accessing the disk, the size of the disk access, and the name
of the file being accessed. The iosnoop.d script is also included in the Solaris
DTraceToolKit downloadable at http://www.solarisinternals.com/wiki/index.php/
DTraceToolkit. The following is example output from executing iosnoop.d while
launching NetBeans IDE. The entire output is not displayed since there are many
files accessed during a NetBeans IDE launch. Hence, for brevity the output is
trimmed.

$ iosnoop.d

UID PID D BLOCK SIZE COMM PATHNAME
97734 1617 R 4140430 1024 netbeans /huntch/tmp/netbeans
97734 1617 R 4141518 1024 bash /huntch/tmp/netbeans/modules
97734 1617 R 4150956 1024 bash /huntch/tmp/netbeans/update
97734 1697 R 4143242 1024 java /huntch/tmp/netbeans/var
97734 1697 R 4141516 1024 java /huntch/tmp/netbeans/config
97734 1697 R 4143244 1024 java /huntch/tmp/netbeans/var/log
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 4153884 1024 java /huntch/tmp/netbeans/docs
97734 1697 R 12830464 8192 java /usr/jdk1.6.0/jre/1ib/rt.jar
97734 1697 R 12830480 20480 java /usr/jdk1.6.0/jre/1ib/rt.jar
97734 1697 R 12830448 8192 java /usr/jdk1.6.0/jre/lib/rt.jar
97734 1697 R 12830416 8192 java /usr/jdk1.6.0/jre/1ib/rt.jar
97734 1697 R 12830432 4096 java /usr/jdkl.6.0/jre/1ib/rt.jar
97734 1697 R 12828264 8192 java /usr/jdk1.6.0/jre/1ib/rt.jar

[... additional output removed ...]


http://www.solarisinternals.com/wiki/index.php/DTraceToolkit
http://www.solarisinternals.com/wiki/index.php/DTraceToolkit
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The “UID” column reports the user id responsible for performing the disk access.
The “PID” column is the process id of the process performing the disk access. The “D”
column indicates whether the disk access is the result of a read or write, “R” = read,
“W” = write. The “BLOCK” column is the disk block. The “SIZE” column is the amount
of data accessed in bytes. The “COMM” column is the name of the command performing
the disk access, and the “PATHNAME” column is the name of the file being accessed.

Patterns to look for in the output of iosnoop.d is repeated accesses to the same
file, same disk block, by the same command, process id, and user id. For example, in the
preceding output there are many disk accesses of 1024 bytes on the same disk block
4153884, which may indicate a possible optimization opportunity. It may be that the same
information is being accessed multiple times. Rather than re-reading the data from disk
each time, the application may be able to keep the data in memory, reuse it, and avoid re-
reading and experiencing an expensive disk read. If the same data is not being accessed,
it may be possible to read a larger block of data and reduce the number of disk accesses.

At alarger scale, if high disk I/O utilization is observed with an application, it may
be worthwhile to further analyze the performance of your system’s disk I/O subsys-
tem by looking more closely at its expected workload, disk service times, seek times,
and the time spent servicing I/O events. If improved disk utilization is required,
several strategies may help. At the hardware and operating system level any of the
following may improve disk I/O utilization:

= A faster storage device
= Spreading file systems across multiple disks

= Tuning the operating system to cache larger amounts of file system data
structures

At the application level any strategy to minimize disk activity will help such as
reducing the number of read and write operations using buffered input and output
streams or integrating a caching data structure into the application to reduce or
eliminate disk interaction. The use of buffered streams reduces the number of sys-
tem calls to the operating system and consequently reduces system or kernel CPU
utilization. It may not improve disk I/O performance, but it will make more CPU
cycles available for other parts of the application or other applications running on the
system. Buffered data structures are available in the JDK that can easily be utilized,
such as java.io.BufferedOutputStreamand java.io.BufferedInputStream.

An often overlooked item with disk performance is checking whether the disk
cache is enabled. Some systems are configured and installed with the disk cache
disabled. An enabled disk cache improves an application’s performance that heavily
relies on disk I/O. However, you should use caution if you discover the default set-
ting of a system has the disk cache disabled. Enabling the disk cache may result in
corrupted data in the event of an unexpected power failure.
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Tip

On Solaris and Solaris 11 Express, the disk cache can be enabled when the disk is formatted
using the format -e command. However, do not run the format -e command on a disk or
partition where it is desirable to preserve the data. The format -e command destroys all data
on the disk or partition where the format command is executed. Disk performance on Solaris
can also be improved by configuring and using Oracle Solaris ZFS file systems. See the Solaris
man pages for tips on how to configure and use Oracle Solaris ZFS file systems.

Additional Command Line Tools

When monitoring applications for an extended period of time such as several hours
or several days, or in a production environment, many performance engineers and
system administrators of Solaris or Linux systems use sar to collect performance
statistics. With sar, you can select which data to collect such as user CPU utilization,
system or kernel CPU utilization, number of system calls, memory paging, and disk
I/0O statistics. Data collected from sar is usually looked at after-the-fact, as opposed
to while it is being collected. Observing data collected over a longer period of time
can help identify trends that may provide early indications of pending performance
concerns. Additional information on what performance data can be collected and
reported with sar can be found in the Solaris and Linux sar man pages.

Another tool that can be useful on Solaris is kstat, which reports kernel statistics.
Its use can be powerful for applications in need of every bit of performance they can
get. There are many kernel statistics kstat can report on. A kstat -1 command
lists all the possible kernel statistics that can be monitored with kstat. The most
important thing to understand about using kstat is that it reports the number of
events since the system was last powered on. So, to monitor an application with
kstat, running kstat before and after some interval of interest and then taking
the difference between reported values is required. In addition, the application of
monitoring interest should be the only application running when using kstat since
kstat does not report on which application is correlated to the statistics, or the
values reported. If more than one application is running on the system when using
kstat, you will have no way of identifying which application is producing the values
reported by kstat.

On Solaris, processor specific CPU performance counters can be monitored using
Solaris bundled commands cpustat or cputrack. Use of these specific CPU perfor-
mance counters is usually left to performance specialists looking for specific tuning
optimizations but are mentioned in this section since there may be some performance
specialists among the readers of this chapter.

Both cpustat and cputrack commands require a set of event counters that are
specific to a processor such as AMD, Intel, or SPARC. The set of CPU performance
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counters may also vary within a processor family. To obtain a list of available perfor-
mance counters, you can use the -h option. Additionally, CPU performance counters
can also be found in the processor manufacturer’s documentation. In contrast to
cpustat, which gathers information from CPU performance counters for all appli-
cations on the system and tends to be more intrusive, cputrack collects CPU per-
formance counter statistics for individual applications with little or no interference
to other activities on the system. Additional details on the usage of cpustat and
cputrack can be found in the Solaris man pages.

Monitoring CPU Utilization on SPARC T-Series Systems

The SPARC T-series processor from Oracle combines both chip multiprocessing and
chip multithreading. Its architecture differs enough from traditional chip architec-
tures that monitoring its CPU utilization deserves its own section. To understand
CPU utilization of a SPARC T-series based system it is important to understand some
of the basics of the SPARC T-series chip architecture, how it differs from traditional
processor architectures, and why conventional Unix monitoring tools such as vmstat
and mpstat do not truly show SPARC T-series CPU utilization.

The SPARC T-series processors have not only multiple cores, but also multiple hard-
ware threads per core. It is easiest to explain the first generation SPARC T-series first
and then extend it to its later generations. The UltraSPARC T1 is the first generation
SPARC T-series processor. It has eight cores with four hardware threads per core and
one pipeline per core. The UltraSPARC T2, the second generation SPARC T-series pro-
cessor, consists of eight cores with eight hardware threads per core and two pipelines
per core. On an UltraSPARC T1, only one hardware thread per core executes in a given
clock cycle. On an UltraSPARC T2, since there are two pipelines per core, two hardware
threads per core execute per clock cycle. However, what makes the SPARC T-series
processors unique is the capability to switch to a different hardware thread within a
core when the one that had been executing becomes stalled. Stalled is defined as a CPU
state such as a CPU cache miss where the processor must wait for a memory data fetch.

Applications with a large number of concurrent software threads that tend to
experience stalls tend to perform very well on a SPARC T-series processor since the
amount of time spent on CPU stalls tends to be much longer than the time it takes for
a SPARC T-series processor core to switch to a different runnable hardware thread.
In contrast, applications with a small number of concurrent threads, especially ones
that do not experience many CPU stalls, tend not to perform as well as they would
on a faster clock rate traditional processor. For example, consider an application that
has eight concurrent software threads that are runnable at all times with few or a
very small number of CPU stalls. Such an application would utilize one hardware
thread per core on an UltraSPARC T1 since there are eight cores on an UltraSPARC
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T1 and only one of those four hardware threads per core can execute per clock cycle.
Additionally, since only one of those four hardware threads per core can execute per
clock cycle, those eight concurrent software threads will execute at a clock rate of
one-fourth the clock frequency. For example, a 1.2GHz UltraSPARC T1 on such a
workload would be executing each of those eight concurrent software threads at an
effective clock rate of 300MHz, 1.2GHz/4 = 300MHz. In contrast, a dual CPU socket
quad core Intel or AMD based system, a system with eight cores, which has a clock
rate of 2.33GHz, for example, would execute each of those eight concurrent software
threads at 2.33GHz since each concurrent software thread can execute on a single
core and each core is a single hardware thread executing at 2.33GHz. However, in
practice, few workloads operate with few memory stalls. On workloads with a much
larger number of runnable threads, especially threads that experience CPU stalls,
the SPARC T-series will likely perform better than an x86/x64 quad core processor
since the time it takes to switch between hardware threads on a SPARC T-series is
faster than the time it takes for a thread context switch on a single hardware thread
per core architecture because the thread context switch may require CPU caches to
be primed with data, which means the switched-to-thread will waste clock cycles
waiting for data to be loaded from memory.

With a better understanding of SPARC T-series architecture and its differences
from traditional single hardware thread per core processor architecture, it becomes
easier to understand how to monitor a SPARC T-series based system. It is also impor-
tant to realize that the Solaris operating system treats each hardware thread of a
SPARC T-series as a virtual processor. This means monitoring tools such as mpstat
report 32 virtual processors for an UltraSPARC T1 (8 cores X 4 hardware threads per
core) and 64 processors for an UltraSPARC T2 (8 cores X 8 hardware threads per core).
Remember that not all virtual processors in a SPARC T-series can execute on the same
clock cycle. When reporting CPU utilization for a virtual processor, both mpstat
and vmstat commands assume a virtual processor that is not idle, is a busy virtual
processor that is making progress on processing a workload. In other words, both
mpstat and vmstat will report a virtual processor as busy, or as being utilized,
even when that virtual processor is stalled. Recall that on a SPARC T-series proces-
sor, a stalled software thread, which is running on a virtual processor (hardware
thread), does not necessarily mean the pipeline is stalled or the entire processor core
is stalled. Since the SPARC T-series processors have hardware threads reported as
virtual processors, vmstat and mpstat actually report the percentage of pipeline
occupancy of software threads.

Tip
More detailed information about the SPARC T-series processors can be found on the Solaris
Internals wiki at http://www.solarisinternals.com/wiki/index.php/CMT_Utilization.
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On systems running processors that do not have multiple hardware threads per
core, idle time reported by mpstat or vmstat can be used to decide whether the sys-
tem can take on additional load. On a SPARC T-series, a hardware thread being idle,
which is reported as a virtual processor by mpstat, and a SPARC T-series processor
core being idle are two different things. Remember that mpstat reports statistics on
each hardware thread since each hardware thread is seen as a virtual processor. To
understand CPU utilization of a SPARC T-series processor, both processor core utili-
zation and core hardware thread utilization need to be observed. Processor core utili-
zation of a SPARC T-series can be observed by monitoring the number of instructions
executed by a given processor core. The Solaris cpustat command can monitor the
number of instructions executed per hardware thread within a core. But it does
not have the capability to report on the number of instructions executed per core.
However, the cpustat data reporting the number of instructions executed per
hardware thread could be aggregated to show the number of instructions executed
per core. A utility called corestat aggregates the instruction count per hardware
thread reported by cpustat to derive a SPARC T-series core CPU utilization. The
corestat command is not included in Solaris distributions. But, corestat can be
downloaded from Oracle’s cool tools Web site, http:/cooltools.sunsource.net/corestat/
index.html. Additional information and instructions on how to use corestat can
also be found on Oracle’s cool tools Web site.

Looking at vmstat, mpstat, and corestat data collected on a SPARC T-series
based system provides information about how the system is performing. For example,
suppose vimstat or mpstat is reporting the system is 35% busy and corestat is
reporting core utilization is 50%. Since core utilization is higher than the CPU utili-
zation reported by vmstat or mpstat, if the system continues to take on additional
similar load by adding more application threads, the system may reach core satura-
tion before it reaches CPU saturation. As a result, this application may reach peak
scalability prior to vimstat or mpstat reporting the system is 100% busy. Consider
a different scenario: vimstat and mpstat are reporting the system is 100% busy
and corestat is reporting core utilization is 40%. This indicates the system will
not be able to take on additional work unless you are able to improve core utiliza-
tion. Improving core utilization requires improving pipeline performance. To realize
improved pipeline performance you have to focus on reducing CPU stalls. Reducing
CPU stalls can be difficult and requires an in-depth understanding of the application
being run on the system so that the application can better utilize the CPU caches.
This usually means improving memory locality for the application. The skill nec-
essary to reduce CPU stalls usually requires special assistance from performance
engineers. These two example scenarios illustrate how important it is to monitor
both CPU utilization with vmstat or mpstat and also monitor core utilization on
SPARC T-series systems.


http://cooltools.sunsource.net/corestat/index.html
http://cooltools.sunsource.net/corestat/index.html
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JVM Overview

Since its introduction in 1995, Java has evolved substantially. So too have Java
Virtual Machines, (JVMs). In Java’s early days, Java performance was a challenge
for many applications despite its advantages of developer productivity and memory
management. The integration of JIT compilers, more sophisticated garbage collectors,
and improvements in the JVM runtime environment have allowed many Java appli-
cations to meet their performance requirements. Even with the many enhancements
added to modern JVMs, performance and scalability remain important to applica-
tion stakeholders. For example, many applications have increased their performance
requirements and performance service level agreements. Additionally, new families
or classes of applications are able to utilize Java technologies as a result of the per-
formance and scalability improvements available in modern JVMs.

One of challenges introduced by modern JVMs is many users of Java technology see
a JVM as a black box, which can make it a difficult task to improve the performance or
scalability of a Java application. Thus, having a basic, fundamental understanding of
a modern JVM is essential to the ability to improve a Java application’s performance.

This chapter provides an overview of the HotSpot Java Virtual Machine, (also
referred to as the HotSpot VM hereafter), architecture. Not all the information in this
chapter is required to tackle the task of improving all Java application performance
issues running in a HotSpot VM. Nor is this chapter an exhaustive description of the
Java HotSpot VM (also referred to as the HotSpot VM hereafter). But it does present
its major components and its architecture.

There are three major components of the HotSpot VM: VM Runtime, JIT compiler,
and a memory manager. This chapter begins with a high level architecture view of
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the HotSpot VM followed by an overview of each of the three major components. In
addition, information on ergonomic decisions the HotSpot VM makes automatically
is included at the end of the chapter.

HotSpot VM High Level Architecture

The HotSpot VM possesses an architecture that supports a strong foundation of fea-
tures and capabilities. Its architecture supports the ability to realize high performance
and massive scalability. For example, the HotSpot VM JIT compilers generate dynamic
optimizations; in other words, it makes optimization decisions while the Java applica-
tion is running and generates high performing native machine instructions targeted
for the underlying system architecture. In addition, through its maturing evolution and
continuous engineering of its runtime environment and multithreaded garbage collector,
the HotSpot VM yields high scalability on even the largest computer systems available.
A high level view of the HotSpot VM architecture is shown in Figure 3-1.

HotSpot Java Virtual Machine

Garbage Collector
[ Serial | Throughput | Concurrent | G1 ]

-

__

HotSpot VM Runtime

Figure 3-1 HotSpot VM high level architecture.
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As shown in Figure 3-1, the JIT compiler, client or server, is pluggable as is the
choice of garbage collector: Serial GC, Throughput, Concurrent, or G1. At the time
of this writing, the G1 garbage collector is under development and expected to be
available in Java 7 HotSpot VMs. The HotSpot VM Runtime provides services and
common APIs to the HotSpot JIT compilers and HotSpot garbage collector. In addi-
tion the HotSpot VM Runtime provides basic functionality to the VM such as a
launcher, thread management, Java Native Interface, and so on. Further details on
VM Runtime’s components and their responsibilities are described in the next sec-
tion, “HotSpot VM Runtime.”

Early releases of the HotSpot VM were limited to 32-bit JVMs, which have a
memory address limitation of four gigabytes. It is important to note that the actual
Java heap space available for a 32-bit HotSpot VM may be further limited depending
on the underlying operating system. For instance, on Microsoft Windows operating
systems the maximum Java heap available to a HotSpot VM is around 1.5 gigabytes.
For Linux operating systems, the maximum Java heap available to the HotSpot VM
is around 2.5 to 3.0 gigabytes for very recent Linux kernels and about 2 gigabytes
for less recent Linux kernels. On Oracle Solaris, also referred to as Solaris hereafter,
operating systems the maximum Java heap available to the HotSpot VM is around
3.3 gigabytes. The actual maximums vary due to the memory address space con-
sumed by both a given Java application and a JVM version.

As server systems were introduced with much larger amounts of memory, a 64-bit
version of the HotSpot VM was introduced. A 64-bit HotSpot VM allows these sys-
tems to utilize additional memory through the use of increased Java heaps. There
are several classes of applications where using 64-bit addressing can be useful. How-
ever, with 64-bit VMs come a performance penalty due to an increase in size of the
internal HotSpot VM’s representation of Java objects, called ordinary object point-
ers, or oops, which have an increase in width from 32 bits to 64 bits. This increase
in width results in fewer oops being available on a CPU cache line and as a result
decreases CPU cache efficiency. The decrease in CPU cache efficiency on 64-bit JVMs
often results in about a 8% to 15% performance degradation compared to a 32-bit
JVM. However, beginning with more recent Java 6 HotSpot VMs, along with those
found in OpendDK, a new feature called compressed oops, which is enabled with the
-XX: +UseCompressedOops VM command line option, can yield 32-bit JVM perfor-
mance with the benefit of larger 64-bit Java heaps. In fact, some Java applications
realize better performance with a 64-bit HotSpot VM using compressed oops than
they achieve with a 32-bit VM. The performance improvement realized from com-
pressed oops arises from being able to pack a 64-bit pointer into 32 bits by relying on
alignment and possibly having an offset. In other words, the increase in performance
comes from using smaller, more space efficient compressed pointers rather than full
width 64-bit pointers, which improves CPU cache utilization. An application expe-
riencing improved CPU cache utilization is one that executes faster. In addition, on
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some platforms such as Intel or AMD x64, 64-bit JVMs can make use of additional
CPU registers, which can also improve application performance. Having additional
registers available helps avoid what is known as register spilling. Register spilling
occurs where there is more live state (i.e. variables) in the application than the CPU
has registers. When register spilling occurs, some of the live state must be “spilled”
from CPU registers to memory. Therefore, avoiding register spilling can result in a
faster executing application.

Today 32-bit and 64-bit HotSpot VMs are available for the following hardware plat-
forms and operating systems: Solaris SPARC, Solaris x86, Linux x86, and Windows
x86 for both Intel Xeon and AMD along with Solaris x64, Linux x64, and Windows
x64 for both Intel Xeon and AMD. Various ports of the HotSpot VM also exist for other
platforms, such as Apple x64, Apple PPC, Intel Itanium, HP-UX, MIPS, and ARM.

HotSpot VM Runtime

The VM Runtime is an often overlooked part of the HotSpot VM. The VM’s garbage
collectors and JIT compilers tend to get more attention than the VM Runtime. How-
ever, the VM Runtime provides the core functionality of the HotSpot VM. This section
provides an introduction to the HotSpot VM Runtime environment. The objective of
this section is to provide a better understanding of the responsibilities and roles the
Runtime plays in the VM. Having this understanding allows readers to take full per-
formance advantage of the services provided by the VM Runtime. Not all the details
presented in this section are necessary to realize a high performance Java applica-
tion. However, it can be beneficial to have a basic understanding of the HotSpot VM
Runtime since there may be cases where tuning a property of service provided by the
VM Runtime may yield significant improvement in Java application performance.

The HotSpot VM Runtime encompasses many responsibilities, including parsing
of command line arguments, VM life cycle, class loading, byte code interpreter, excep-
tion handling, synchronization, thread management, Java Native Interface, VM fatal
error handling, and C++ (non-Java) heap management. In the following subsections,
each of these areas of the VM Runtime is described in more detail.

Command Line Options

The HotSpot VM Runtime parses the many command line options and configures the
HotSpot VM based on those options. A number of command line options and environ-
ment variables can affect the performance characteristics of the HotSpot VM. Some
of these options are consumed by the HotSpot VM launcher such as the choice of JIT
compiler and choice of garbage collector; some are processed by the launcher and
passed to the launched HotSpot VM where they are consumed such as Java heap sizes.
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There are three main categories of command line options: standard options,
nonstandard options, and developer options. Standard command line options are
expected to be accepted by all Java Virtual Machine implementations as required by
the Java Virtual Machine Specification. [1] Standard command line options are sta-
ble between releases. However, it is possible for standard command line options to be
deprecated in subsequent releases after the release in which it was first introduced.
Nonstandard command line options begin with a -X prefix. Nonstandard command
line options are not guaranteed to be supported in all JVM implementations, nor are
they required to be supported in all JVM implementations. Nonstandard command
line options are also subject to change without notice between subsequent releases of
the Java SDK. Developer command line options in the HotSpot VM begin with a -XX
prefix. Developer command line options often have specific system requirements for
correct operation and may require privileged access to system configuration param-
eters. Like nonstandard command line options, developer command line options are
also subject to change between releases without notice.

Command line options control the values of internal variables in the HotSpot
VM, all of which have a type and a default value. For boolean values, the mere
presence or lack of presence of an option on the HotSpot VM command line can con-
trol the value of these variables. For developer command line options (-XX options)
with boolean flags, a + or - before the name of the options indicates a true or false
value, respectively, to enable or disable a given HotSpot VM feature or option. For
example, -XX : +AggressiveOpts sets a HotSpot internal boolean variable to true to
enable additional performance optimizations. In contrast, -XX: -AggressiveOpts
sets the same internal variable to false to disable additional performance optimiza-
tions. Developer command line options (the -XX options) that take an additional
argument, those that are nonboolean, tend to be of the form, -XX : Opt ionName=<N>
where <N> is some numeric value. Almost all developer command line options that
take an additional argument, accept an integer value along with a suffix of k, m, or
g, which are used as kilo-, mega-, or giga- multipliers for the integer value specified.
There is also a small set of developer command line options that accept data passed
in directly after the name of the flag without any delineation. The approach depends
on the particular command line option and its parsing mechanism.

VM Life Cycle

The HotSpot VM Runtime is responsible for launching the HotSpot VM and the shut-
down of the HotSpot VM. This section provides an overview of what occurs within the
HotSpot VM prior to it executing a Java program and what it does when a Java pro-
gram terminates or exits. A large amount of detail is presented in this section, perhaps
more than necessary for purposes of performance tuning. But it is included to give you
sense of the complexity involved in the starting and stopping of a Java application.
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The component that starts the HotSpot VM is called the launcher. There are
several HotSpot VM launchers. The most commonly used launcher is the java
command on Unix/Linux and on Windows the java and javaw commands. It is
also possible to launch an embedded JVM through the JNI interface, INI Cre-
ateJavaVM. In addition, there is also a network-based launcher called javaws,
which is used by Web browsers to launch applets. The trailing “ws” on the javaws
is often referred to as “web start.” Hence the term “Java web start” for the javaws
launcher.

The launcher executes a sequence of operations to start the HotSpot VM. These
steps are summarized here:

1. Parse command line options.
Some of the command line options are consumed immediately by the launcher
such as -client or - server, which determines the JIT compiler to load.
Other command line options are passed to the launched HotSpot VM.

2. Establish the Java heap sizes and the JIT compiler type (client or server) if
these options are not explicitly specified on the command line.

If Java heap sizes and JIT compiler are not explicitly specified as a com-
mand line option, these are ergonomically established by the launcher. Ergo-
nomic defaults vary depending on the underlying system configuration and
operating system. Ergonomic choices made by the HotSpot VM are described
in more detail in the “HotSpot VM Adaptive Tuning” section later in this
chapter.

3. Establish environment variables such as LD LIBRARY PATH and CLASSPATH.

4. If the Java Main-Class is not specified on the command line, the launcher
fetches the Main-Class name from the JAR’s manifest.

5. Create the HotSpot VM using the standard Java Native Interface method JNI
CreateJavaVM in a newly created nonprimordial thread.

In contrast to a nonprimordial thread, a primordial thread is the first thread
allocated by an operating system kernel when a new process is launched. Hence,
when a HotSpot VM is launched, the primordial thread is the first thread allocated
by the operating system kernel running in the newly created HotSpot VM process.
Creating the HotSpot VM in a nonprimordial thread provides the ability to cus-
tomize the HotSpot VM such as changing the stack size on Windows. More details
of what happens in the HotSpot VM’s implementation of INI CreateJavaVM are
provided in the “JNI_CreateJavaVM Details” sidebar.

6. Once the HotSpot VM is created and initialized, the Java Main-Class is
loaded and the launcher gets the Java main method’s attributes from the Java
Main-Class.
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7. The Java main method is invoked in the HotSpot VM using the Java Native
Interface method CallStaticVoidMethod passing it the marshaled arguments
from the command line.

At this point the HotSpot VM is executing the Java program specified on the com-
mand line.

Once a Java program, or Java main method completes its execution, the HotSpot
VM must check and clear any pending exceptions that may have occurred during
the program’s or method’s execution. Additionally, both the method’s exit status
and program’s exit status must be passed back to their caller’s. The Java main
method is detached from the HotSpot VM using the Java Native Interface method
DetachCurrentThread. When the HotSpot VM calls DetachCurrentThread, it
decrements the thread count so the Java Native Interface knows when to safely
shut down the HotSpot VM and to ensure a thread is not performing operations in
the HotSpot VM along with there being no active Java frames on its stack. Specific
details of the operations performed by the HotSpot VM’s Java Native Interface
method implementation of DestroyJavaVM is described in the “DestroyJavaVM
Details” sidebar.

JNI_CreateJavaVM Details

The HotSpot VM’s implementation of the JNI CreatedavaVvM method performs the
following sequence of operations when it is called during the launch of the HotSpot VM.

1. Ensure no two threads call this method at the same time and only one HotSpot VM
instance is created in the process.

Because the HotSpot VM creates static data structures that cannot be reinitialized,
only one HotSpot VM can be created in a process space once a certain point in
initialization is reached. To the engineers who develop the HotSpot VM this stage
of launching a HotSpot VM is referred to as the “point of no return.”

2. Check to make sure the Java Native Interface version is supported, and the output
stream is initialized for garbage collection logging.

3. The OS modules are initialized such as the random number generator, the current
process id, high-resolution timer, memory page sizes, and guard pages. Guard pages
are no-access memory pages used to bound memory region accesses. For example,
often operating systems put a guard page at the top of each thread stack to ensure
references off the end of the stack region are trapped.

4. The command line arguments and properties passed in to the INI_CreateJavaVM
method are parsed and stored for later use.

5. The standard Java system properties are initialized, such as java.version, java.vendor,
os.name, and so on.
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13.

14.

15.
16.

17.

18.

19.

20.

. The modules for supporting synchronization, stack, memory, and safepoint pages

are initialized.

. Libraries such as 1ibzip, 1ibhpi, 1ibjava, and libthread are loaded.
. Signal handlers are initialized and set.

. The thread library is initialized.

10.
11.
12.

The output stream logger is initialized.
Agent libraries (hprof, jdi), if any are being used, are initialized and started.

The thread states and the thread local storage, which holds thread specific data
required for the operation of threads, are initialized.

A portion of the HotSpot VM global data is initialized such as the event log, OS
synchronization primitives, perfMemory (performance statistics memory), and
chunkPool (memory allocator).

At this point, the HotSpot VM can create threads. The Java version of the main
thread is created and attached to the current operating system thread. However,
this thread is not yet added to the known list of threads.

Java level synchronization is initialized and enabled.

bootclassloader, code cache, interpreter, |IT compiler, Java Native Interface, system
dictionary, and universe are initialized.

The Java main thread is now added to the known list of threads. The universe, a
set of required global data structures, is sanity checked. The HotSpot VMThread,
which performs all the HotSpot VM’s critical functions, is created. At this point
the appropriate JVMTI events are posted to notify the current state of the
HotSpot VM.

The following Java classes java.lang.String, java.lang.System, java.
lang.Thread, java.lang.ThreadGroup, java.lang.reflect.Method,
java.lang.ref.Finalizer, java.lang.Class, and the rest of the Java
System classes are loaded and initialized. At this point, the HotSpot VM is initialized
and operational, but not quite fully functional.

The HotSpot VM's signal handler thread is started, the JIT compiler is initialized, and
the HotSpot’s compile broker thread is started. Other HotSpot VM helper threads
such as watcher threads and stat sampler are started. At this time the HotSpot VM
is fully functional.

Finally, the INIEnv is populated and returned to the caller and the HotSpot VM is
ready to service new |NI requests.

DestroyJavaVM Details

The DestroyJavaVM method can be called from the HotSpot launcher to shut down
the HotSpot VM when errors occur during the HotSpot VM launch sequence. The
DestroyJavaVM method can also be called by the HotSpot VM during execution, after
the HotSpot VM has been launched, when a very serious error occurs.
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The shutdown of the HotSpot VM takes the following steps through the DestroyJavavm
method:

1. Wait until there is only one nondaemon thread executing noting that the HotSpot
VM is still functional.

2. Call the Java method java.lang.Shutdown.shutdown (), which invokes the
Java level shutdown hooks and runs Java object finalizers if finalization-on-exit is
true.

3. Prepare for HotSpot VM exit by running HotSpot VM level shutdown hooks (those
that were registered through JvM_oOnExit ()), stop the following HotSpot VM
threads: profiler, stat sampler, watcher, and garbage collector threads. Post status
events to JVMTI, disable JVMTI, and stop the Signal thread.

4. Call the HotSpot method JavaThread: :exit () to release Java Native
Interface handle blocks, remove guard pages, and remove the current thread
from known threads list. From this point on the HotSpot VM cannot execute
any Java code.

5. Stop the HotSpot VM thread. This causes the HotSpot VM to bring the remaining
HotSpot VM threads to a safepoint and stop the |IT compiler threads.

Disable tracing at the Java Native Interface, HotSpot VM, and JVMTI barriers.
Set HotSpot “vm exited” flag for threads that may be running in native code.
Delete the current thread.

v ® N

Delete or remove any input/output streams and release PerfMemory (performance
statistics memory) resources.

10. Finally return to the caller.

VM Class Loading

The Hotspot VM supports class loading as defined by the Java Language Speci-
fication, Third Edition, [2] the Java Virtual Machine Specification, Second Edi-
tion, [1] and as amended by the updated Java Virtual Machine Specification,
Chapter 5, Loading, Linking and Initializing. [3] The HotSpot VM and Java SE
class loading libraries share the responsibility for class loading. The HotSpot VM
is responsible for resolving constant pool symbols, that require loading, linking,
and then initializing Java classes and Java interfaces. The term class loading
is used to describe the overall process of mapping a class or interface name to a
class object, and the more specific terms loading, linking, and initializing for the
phases of class loading as defined by the Java Virtual Machine Specification. The
most common reason for class loading is during bytecode resolution, when a con-
stant pool symbol in a Java classfile requires resolution. Java APIs such as Class.
forName (), ClassLoader.loadClass (), reflection APIs, and JNI FindClass
can initiate class loading. The HotSpot VM itself can also initiate class loading.
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The HotSpot VM loads core classes such as java.lang.Object and java.lang.
Thread along with many others at HotSpot VM startup time. Loading a class
requires loading all Java superclasses and all Java superinterfaces. And classfile
verification, which is part of the linking phase, can require loading additional
classes. The loading phase is a cooperative effort between the HotSpot VM and
specific class loaders such as java.lang.ClassLoader.

Class Loading Phases

For a given Java class or Java interface, the load class phase takes its name, finds
the binary in Java classfile format, defines the Java class, and creates a java.lang.
Class object to represent that given Java class or Java interface. The load class
phase can throw a NoClassDefFound error if a binary representation of a Java
class or Java interface cannot be found. In addition, the load class phase does format
checking on the syntax of the classfile, which can throw a ClassFormatError or
UnsupportedClassVersionError. Before completing the load of a Java class, the
HotSpot VM must load all its superclasses and superinterfaces. If the class hierarchy
has a problem such that a Java class is its own superclass or superinterface (recur-
sively), then the HotSpot VM throws a ClassCircularityError. The HotSpot VM
also throws an IncompatibleClassChangeError if the direct superinterface is not
an interface, or the direct superclass is an interface.

The link phase first does verification, which checks the classfile semantics,
checks the constant pool symbols, and does type checking. These checks can throw a
VerifyError. Linking then does what is called preparation, which creates and
initializes static fields to standard defaults and allocates method tables. It is
worth noting at this point of execution no Java code has yet been run. The link
class phase then optionally does resolution of symbolic references. Next, class
initialization runs the class static initializers, and initializers for static fields.
This is the first Java code that runs for this class. It is important to note that
class initialization requires superclass initialization, although not superinterface
initialization.

The Java Virtual Machine Specification specifies that class initialization occurs on
the first active use of a class. However, the Java Language Specification allows flex-
ibility in when the symbolic resolution step of linking occurs as long as the seman-
tics of the language are held; the JVM finishes each step of loading, linking, and
initializing before performing the next step; and throws errors when Java programs
would expect them to be thrown. As a performance optimization, the HotSpot VM
generally waits until class initialization to load and link a class. This means if class
A references class B, loading class A will not necessarily cause loading of class B
(unless class B is required for verification). Execution of the first instruction that
references class B causes the class initialization of B, which requires loading and
linking of class B.
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Class Loader Delegation

When a class loader is asked to find and load a class, it can ask another class loader
to do the loading. This is called class loader delegation. The first class loader is an
initiating class loader, and the class loading that ultimately defines the class is
called the defining class loader. In the case of bytecode resolution, the initiating
class loader is the class loader for the class whose constant pool symbol is being
resolved.

Class loaders are defined hierarchically and each class loader has a delegation
parent. The delegation defines a search order for binary class representations. The
Java SE class loader hierarchy searches the bootstrap class loader, the extension
class loader, and the system class loader in that order. The system class loader is
the default application class loader, which loads the main Java method and loads
classes from the classpath. The application class loader can be a class loader
from the Java SE class loader libraries, or it can be provided by an applica-
tion developer. The Java SE class loader libraries implement the extension class
loader, which loads classes from the lib/ext directory of the JRE (Java Runtime
Environment).

Bootstrap Class Loader

The HotSpot VM implements the bootstrap class loader. The bootstrap class loader
loads classes from the HotSpot VM’s BOOTCLASSPATH, including for example
rt.jar, which contains the Java SE class libraries. For faster startup, the Client
HotSpot VM can also process preloaded classes via a feature called class data shar-
ing, which is enabled by default. It can be explicitly enabled with the -Xshare:on
HotSpot VM command line switch. Likewise, it can be explicitly disabled with
-Xshare:off. As of this writing, the Server HotSpot VM, does not support the
class data sharing feature, and class data sharing is also not supported on the Cli-
ent HotSpot VM when a garbage collector other than the serial garbage collector is
in use. Class data sharing is described in more detail in the “Class Data Sharing”
section later in this chapter.

Type Safety

A Java class or Java interface name is defined as a fully qualified name, which
includes the package name. A Java class type is uniquely determined by that
fully qualified name and the class loader. In other words, a class loader defines a
namespace. This means the same fully qualified class name loaded by two distinctly
defined class loaders results in two distinct class types. Given the existence of custom
class loaders, the HotSpot VM is responsible for ensuring that non-well-behaved class
loaders cannot violate type safety. See Dynamic Class Loading in the Java Virtual
Machine, [4] and the Java Virtual Machine Specification 5.3.4 [3] for additional infor-
mation. The HotSpot VM ensures that when class A calls B. someMethodName (),
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A’s class loader and B’s class loader agree on someMethodName ()’s parameters and
return type by tracking and checking class loader constraints.

Class Metadata in HotSpot

Class loading in the HotSpot VM creates an internal representation of a class in
either an instanceKlass or an arrayKlass in the HotSpot VM’s permanent generation
space. The HotSpot VM’s permanent generation space is described in more detailed in
the “HotSpot VM Garbage Collectors” section later in this chapter. The instanceKlass
refers to a Java mirror, which is the instance of java.lang.Class mirroring this
class. The HotSpot VM internally accesses the instanceKlass using an internal
data structure called a klassOop. An “Oop” is an ordinary object pointer. Hence, a
klassOop is an internal HotSpot abstraction for a reference, an ordinary object
pointer, to a Klass representing or mirroring a Java class.

Internal Class Loading Data

The HotSpot VM maintains three hash tables to track class loading. The System-
Dictionary contains loaded classes, which maps a class name/class loader pair to
a klassOop. The SystemDictionary contains both class name/initiating loader
pairs and class name/defining loader pairs. Entries are currently only removed at a
safepoint. Safepoints are described in more detail in the “VM Operations and Safe-
points” section later in the chapter. The PlaceholderTable contains classes that
are currently being loaded. It is used for ClassCircularityError checking and
for parallel class loading for class loaders that support multithreaded class loading.
The LoaderConstraintTable tracks constraints for type safety checking. These
hash tables are all guarded by a lock; in the HotSpot VM it is called the System-
Dictionary lock.In general, the load class phase in the HotSpot VM is serialized
using the Class loader object lock.

Byte Code Verification

The Java language is a type-safe language, and standard Java compilers (javac)
produce valid classfiles and type-safe code; but a Java Virtual Machine cannot guar-
antee that the code was produced by a trustworthy javac compiler. It must reestab-
lish type-safety through a process at link time called bytecode verification. Bytecode
verification is specified in section 4.8 of the Java Virtual Machine Specification.
The specification prescribes both static and dynamic constraints on the code that a
Java Virtual Machine verifies. If any violations are found, the Java Virtual Machine
throws a VerifyError and prevents the class from being linked.

Many of the constraints on bytecodes can be checked statically, such as the
operand of an “Idc” bytecode must be a valid constant pool index whose type
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is CONSTANT Integer, CONSTANT String, or CONSTANT Float. Other con-
straints that check the type and number of arguments for other instructions
requires dynamic analysis of the code to determine which operands will be pres-
ent on the expression stack during execution. There are currently two methods of
analyzing bytecodes to determine the types and number of operands present for
each instruction. The traditional method is called type inference. It operates by
performing an abstract interpretation of each bytecode and merging type states
at branch targets or exception handles. The analysis iterates over the bytecode
until a steady state for the types is found. If a steady state cannot be found, or
if the resulting types violate some bytecode constraint, then a VerifyError is
thrown. The code for this verification step is present in the HotSpot VM’s libverify.
so external library, and uses JNI to gather whatever information is needed for
classes and types.

New in the Java 6 HotSpot VMs is a second method for verification called type
verification. In this approach the Java compiler provides the steady-state type infor-
mation for each branch target or exception target, via the code attribute, Stack-
MapTable. The StackMapTable consists of a number of stack map frames; each
indicates the types of the items on the expression stack and in the local variables at
some offset in the method. The Java Virtual Machine needs to then only perform one
pass through the bytecode to verify the correctness of the types to verify the bytecode.
This verification approach is faster and smaller than the traditional type inference
approach for bytecode verification approach.

For all classfiles with a version number less than 50, such as those created prior
to Java 6, the HotSpot VM uses the traditional type inference method to verify the
classfiles. For classfiles greater than or equal to 50, the StackMapTable attri-
butes are present and the new “type verification” verifier is used. Because of the
possibility of older external tools that might instrument the bytecode but neglect
to update the StackMapTable attribute, certain verification errors that occur dur-
ing type-checking verification may failover to the type inference method. Should
this type inference verification pass fail, only then will the HotSpot VM throw a
VerifyError.

Class Data Sharing

Class data sharing is a feature introduced in Java 5 that was intended to reduce
the startup time for Java applications, in particular small Java applications, as well
as reduce their memory footprint. When the Java Runtime Environment (JRE) is
installed on 32-bit platforms using the Java HotSpot JRE provided installer, the
installer loads a set of classes from the system jar file into a private internal rep-
resentation, and dumps that representation to a file, called a shared archive. If the
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Java HotSpot JRE installer is not being used, this can be done manually. During
subsequent Java Virtual Machine invocations, the shared archive is memory-mapped
into the JVM, which saves the cost of loading those classes and allowing much of
the JVM’s metadata for these classes to be shared among multiple JVM processes.

Tip
As of the writing of this chapter (Java 6 Update 21), class data sharing is supported only with
the HotSpot Client VM, and only with the serial garbage collector.

The primary motivation for the class data sharing feature is the decrease in
startup time it provides. Class data sharing produces better results for smaller appli-
cations because it eliminates a fixed cost of loading certain Java SE core classes. The
smaller the application relative to the number of Java SE core classes it uses, the
larger the saved fraction of startup time.

With class data sharing, the memory footprint cost of new JVM instances is
reduced in two ways. First, a portion of the shared archive, currently between five
and six megabytes of space, is memory mapped read-only and therefore shared
among multiple JVM processes. Previously this data was replicated in each JVM
instance. Second, since the shared archive contains class data in the form in which
the Hotspot VM uses it, the memory that would otherwise be required to access the
original class information in the Java SE core libraries jar file, rt.jar, is not needed.
These savings allow more applications to be run concurrently on the same machine.
On Microsoft Windows, the footprint of a process, as measured by various tools, may
appear to increase, because a larger number of pages are being mapped into the pro-
cess address space. This is offset by the reduction in the amount of memory (inside
Windows) that is needed to hold portions of the Java SE library jar file rt.jar. Reduc-
ing memory footprint in the HotSpot VM remains a high priority.

In the HotSpot VM, the class data sharing implementation introduces new Java
subspaces into the permanent generation space that contains the shared data. The
classes.jsa shared archive is memory mapped into these spaces in permanent gen-
eration at HotSpot VM startup time. Subsequently, the shared region is managed by
the existing HotSpot VM memory management subsystem. Read-only shared data,
which is one of the new subspaces in permanent generation includes constant method
objects, symbol objects and arrays of primitives, mostly character arrays. Read-write
shared data, the other new Java heap space introduced in permanent generation,
consists of mutable method objects, constant pool objects, HotSpot VM internal rep-
resentation of Java classes and arrays, and various String, Class, and Exception
objects.



HotSpot VM Runtime 69

Interpreter

The HotSpot VM interpreter is a template based interpreter. The HotSpot VM
Runtime generates the interpreter in memory at JVM startup using information
stored internally in a data structure called a TemplateTable. The TemplateTable
contains machine dependent code corresponding to each bytecode. A template is a
description of each bytecode. The HotSpot VM’s TemplateTable defines all the tem-
plates and provides accessor functions to get the template for a given bytecode. The
template table generated in memory can be viewed using what is called a HotSpot
“debug” VM and the nonproduct flag -XX: +PrintInterpreter.

Tip

A HotSpot debug VM is a version of the HotSpot VM that contains additional debugging
information and additional HotSpot VM command line options that can be used together to
debug, or further instrument the HotSpot VM. Its use is not recommended for production
environments.

The template design of the HotSpot VM interpreter performs better than a classic
switch statement loop approach. For example, a switch statement approach must per-
form repeated compare operations. In the worst case, the switch statement approach
may be required to compare a given command with all but one bytecodes to locate the
required one. Additionally, the switch statement approach must use a separate soft-
ware stack to pass Java arguments. The HotSpot VM uses the native C stack to pass
Java arguments. A number of HotSpot VM internal variables, such as the program
counter or the stack pointer for a Java thread, are stored in C variables, that are not
guaranteed to be always kept in underlying hardware registers. As a result, the man-
agement of these software interpreter data structures consumes a considerable share
of total execution time. [5] Overall, the performance gap between the HotSpot VM and
the real machine is significantly narrowed by the HotSpot interpreter, which makes
the interpretation speed considerably higher. However, this comes at a price of large
amounts of machine-specific code. For example, approximately 10,000 lines of code
are dedicated to Intel x86 platforms, and about 14,000 lines of code are dedicated to
SPARC platforms. The overall code size and complexity are also significantly higher,
since the code supporting dynamic code generation (JIT compilation) is needed. Obvi-
ously, debugging dynamically generated machine code (JIT compiled code) is much
more difficult than debugging static code. These properties certainly do not facilitate
implementation of runtime evolution, but they do not make it infeasible either. [5]

There are interpreter calls out to the HotSpot VM Runtime for complex opera-
tions, which are essentially anything too complex or complicated to do in assembly
language such as constant pool lookup.
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The HotSpot VM interpreter is also a critical part of the overall HotSpot VM adap-
tive optimization story. Adaptive optimization solves the problems of JIT compila-
tion by taking advantage of an interesting program property. Virtually all programs
spend the vast majority of their time executing a minority of their code. Rather
than compiling method by method, “just in time” or “ahead of time,” the HotSpot
VM immediately runs the program using an interpreter, and analyzes the code as
it runs to detect the critical hot spots in the program. Then it focuses the attention
of a global machine code optimizer on those hot spots. By avoiding compilation of
infrequently executed code the HotSpot VM JIT compiler can devote more attention
to the performance-critical parts of the program, without necessarily increasing the
overall compilation time.

Tip
The term JIT compiler is not very descriptive for how the HotSpot VM utilizes a compiler to
generate optimized machine dependent code. The HotSpot VM actually generates machine

code dynamically as it observes a program'’s behavior rather than compiling it “just in time”
or “ahead of time.”

This hot spot monitoring is continued dynamically as the program runs, so that it lit-
erally adapts its performance on the fly to the program’s execution and the user’s needs.

Exception Handling

Java Virtual Machines use exceptions to signal that a program has violated the
semantic constraints of the Java language. For example, an attempt to index outside
the bounds of an array causes an exception. An exception causes a nonlocal transfer
of control from the point where the exception occurred, or was thrown, to a point
specified by the programmer, or where the exception is caught. [6] The HotSpot VM
interpreter, its JIT compilers, and other HotSpot VM components all cooperate to
implement exception handling. There are two general cases of exception handling;
either the exception is thrown or caught in the same method, or it is caught by a
caller. The latter case is more complicated and requires stack unwinding to find the
appropriate handler. Exceptions can be initiated by the thrown bytecode, a return
from a VM-internal call, a return from a JNI call, or a return from a Java call. The
last case is simply just a later stage of the first three. When the VM recognizes that
an exception has been thrown, the HotSpot VM Runtime system is invoked to find
the nearest handler for that exception. Three pieces of information are used to find
the handler: the current method, the current bytecode, and the exception object. If
a handler is not found in the current method, as mentioned previously, the current
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activation stack frame is popped and the process is iteratively repeated for previous
frames. Once the correct handler is found, the HotSpot VM execution state is updated,
and the HotSpot VM jumps to the handler as Java code execution is resumed.

Synchronization

Broadly, synchronization is described as a mechanism that prevents, avoids, or
recovers from the inopportune interleavings, commonly called races, of concurrent
operations. In Java, concurrency is expressed through the thread construct. Mutual
exclusion is a special case of synchronization where at most a single thread is per-
mitted access to protected code or data. The HotSpot VM provides Java monitors by
which threads running application code can participate in a mutual exclusion pro-
tocol. A Java monitor is either locked or unlocked, and only one thread may own the
monitor at any one time. Only after acquiring ownership of a monitor may a thread
enter a critical section protected by the monitor. In Java, critical sections are referred
to as synchronized blocks and are delineated in code by the synchronized statement.

If a thread attempts to lock a monitor and the monitor is in an unlocked state,
the thread immediately gains ownership of the monitor. If a subsequent second
thread attempts to gain ownership of the monitor while the monitor is locked that
second thread will not be permitted to proceed into the critical section until the
owner releases the lock and the second thread manages to gain (or is granted)
exclusive ownership of the lock. For clarification, to enter a monitor means to
acquire exclusive ownership of the monitor and enter the associated critical section.
Likewise, to exit a monitor means to release ownership of the monitor and exit the
critical section. Additionally, a thread that has locked a monitor, owns that moni-
tor. Uncontended refers to synchronization operations on an otherwise unowned
monitor by only a single thread.

The HotSpot VM incorporates leading-edge techniques for both uncontended and
contended synchronization operations, which boost synchronization performance by a
large factor. Uncontended synchronization operations, which comprise the majority of
synchronizations, are implemented with constant time techniques. With biased lock-
ing, a feature introduced in Java 5 HotSpot VMs with the -XX: +UseBiasedLocking
command line option, in the best case these operations are essentially free of cost.
Since most objects are locked by at most one thread during their lifetime, enabling
-XX:+UseBiasedLocking allows that thread to bias the lock toward itself. Once
biased, that thread can subsequently lock and unlock the object without resorting to
expensive atomic instructions. [7]

Contended synchronization operations use advanced adaptive spinning techniques
to improve throughput even for applications with significant amounts of lock con-
tention. As a result, synchronization performance becomes so fast that it is not a
significant performance issue for the vast majority of real-world programs.
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In the HotSpot VM, most synchronization is handled through what is called fast-
path code. The HotSpot VM has two JIT compilers and an interpreter, all of which
will emit fast-path code. To HotSpot engineers, the JIT compilers are known as “C1”
—the -client JIT compiler—and “C2”—the -server JIT compiler. C1 and C2 both
emit fast-path code directly at the synchronization site. In the normal case when
there is no contention, the synchronization operation will be completed entirely in
fast-path code. If, however, there is a need to block or wake a thread (in monitor-enter
or monitor-exit state, respectively), the fast-path code will call into the slow-path
code. The slow-path implementation is C++ code, while fast-path code is machine
dependent code emitted by the JIT compilers.

Java object synchronization state is encoded for every Java object internally within
the HotSpot VM’s object representation of that Java object in the first word, often
referred to as the mark word. For several states, the mark word is multiplexed to
point to additional synchronization metadata. The possible Java object synchroniza-
tion states stored in HotSpot VM’s mark word are

= Neutral. Unlocked.
= Biased. Locked/Unlocked + Unshared.

= Stack-Locked. Locked + Shared but uncontended. Shared means the mark
points to a displaced mark word on the owner thread’s stack.

= Inflated. Locked/Unlocked + Shared and contended. Threads are blocked
in monitorenter or wait(). The mark points to a heavyweight “objectmonitor”
structure.

As a side note, the mark word is also multiplexed to contain the garbage collector’s
object age data, and the object’s identity hash code value.

Thread Management

Thread management covers all aspects of the thread life cycle, from creation through
termination along with the coordination of threads within the HotSpot VM. This
involves management of threads created from Java code, regardless of whether they
are created from application code or library code, native threads that attach directly
to the HotSpot VM, or internal HotSpot VM threads created for other purposes. While
the broader aspects of thread management are platform independent, the details
vary depending on the underlying operating system.

Threading Model

The threading model in the Hotspot VM is a one-to-one mapping between Java
threads, an instance of java.lang.Thread, and native operating system threads.
A native operating system thread is created when a Java thread is started and is
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reclaimed once it terminates. The operating system is responsible for scheduling
all threads and dispatching them to an available CPU. The relationship between
Java thread priorities and operating system thread priorities is a complex one that
varies across systems.

Thread Creation and Destruction

There are two ways for a thread to be introduced in the HotSpot VM, either by exe-
cuting Java code that calls the start () method on a java.lang.Thread object,
or by attaching an existing native thread to the HotSpot VM using JNI. Other
threads created by the HotSpot VM for internal use are discussed later. Internally
to the HotSpot VM there are a number of objects, both C++ and Java, associated
with a given thread in the HotSpot VM. These objects, both Java and C++, are as
follows:

= A java.lang.Thread instance that represents a thread in Java code.

= A C++ JavaThread instance that represents the java.lang.Thread instance
internally within the HotSpot VM. It contains additional information to track
the state of the thread. A JavaThread holds a reference to its associated java.
lang.Thread object, as an ordinary object pointer, and the java.lang.Thread
object also stores a reference to its JavaThread as a raw int. A JavaThread
also holds a reference to its associated 0SThread instance.

* An OSThread instance represents an operating system thread and contains
additional operating-system-level information needed to track thread state.
The 0SThread also contains a platform specific “handle” to identify the actual
thread to the operating system.

When a java.lang.Thread is started the HotSpot VM creates the associated
JavaThread and OSThread objects, and ultimately the native thread. After prepar-
ing all the HotSpot VM state, such as thread-local storage and allocation buffers,
synchronization objects and so forth, the native thread is started. The native thread
completes initialization and then executes a startup method that leads to the execu-
tion of the java.lang.Thread object’s run () method, and then, upon its return,
terminates the thread after dealing with any uncaught exceptions, and interacting
with the HotSpot VM to check whether termination of this thread requires termina-
tion of the entire HotSpot VM. Thread termination releases all allocated resources,
removes the JavaThread from the set of known threads, invokes destructors for the
0SThread and JavaThread, and ultimately ceases execution when its initial startup
method completes.

A native thread attaches to the HotSpot VM using the JNI call AttachCurrent-
Thread. In response to this an associated 0OSThread and JavaThread instance is
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created, and basic initialization is performed. Next a java.lang.Thread object
must be created for the attached thread; this is done by reflectively invoking the Java
code for the Thread class constructor, based on the arguments supplied when the
thread attached. Once attached, a thread can invoke whatever Java code it needs via
other JNI methods. Finally, when the native thread no longer wishes to be involved
with the HotSpot VM it can call the JNI DetachCurrentThread method to disas-
sociate it from the HotSpot VM by releasing resources, dropping the reference to the
java.lang.Thread instance, destructing the JavaThread and 0SThread objects,
and so on.

A special case of attaching a native thread is the initial creation of the HotSpot
VM via the JNI CreateJdJavaVM call, which can be done by a native application or
by the HotSpot VM launcher. This causes a range of initialization operations to take
place and then acts effectively as if a call to AttachCurrent Thread was made. The
thread can then invoke Java code as needed, such as reflective invocation of the Java
main method of an application. See the “Java Native Interface” section later in the
chapter for further details.

Thread States

The HotSpot VM uses a number of different internal thread states to characterize
what each thread is doing. This is necessary both for coordinating the interactions of
threads and for providing useful debugging information if things go wrong. A thread’s
state transitions as different actions are performed, and these transition points are
used to check that it is appropriate for a thread to proceed with the requested action
at that point in time; see the discussion of safepoints for details.

From the HotSpot VM perspective the possible states of the main thread are

= New thread. A new thread in the process of being initialized

= Thread in Java. A thread that is executing Java code

* Thread in vim. A thread that is executing inside the HotSpot VM

= Blocked thread. The thread is blocked for some reason (acquiring a lock,

waiting for a condition, sleeping, performing a blocking I/O operation, and so
on)

For debugging purposes additional state information is also maintained for report-
ing by tools, in thread dumps, stack traces, and so on. This is maintained in the
internal HotSpot C++ object 0SThread. Thread states reported by tools, in thread
dumps, stack traces, and so on, include

= MONITOR_WAIT. A thread is waiting to acquire a contended monitor lock.

= CONDVAR_WAIT. A thread is waiting on an internal condition variable used
by the HotSpot VM (not associated with any Java object).
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= OBJECT_WAIT. A Javathread is performing a java.lang.Object.wait ()
call.

Other HotSpot VM subsystems and libraries impose their own thread state informa-
tion, such as the JVMTI system and the thread state exposed by the java.lang.
Thread class itself. Such information is generally not accessible to, nor relevant to,
the management of threads inside the HotSpot VM.

Internal VM Threads

Much to the surprise of many, the executing of a trivial “Hello World” Java program
can result in the creation of a dozen or more threads in the HotSpot VM. These arise
from a combination of internal HotSpot VM threads and HotSpot VM library related
threads such as the reference handler and finalizer threads. The internal HotSpot
VM threads are

= VM thread. A singleton C++ object instance that is responsible for executing
VM operations. VM operations are further discussed in the next subsection.

= Periodic task thread. A singleton C++ object instance, also called the Watch-
erThread, simulates timer interrupts for executing periodic operations within
the HotSpot VM.

= Garbage collection threads. These threads, of different types, support the
serial, parallel, and concurrent garbage collection.

= JIT compiler threads. These threads perform runtime compilation of byte-
code to machine code.

= Signal dispatcher thread. This thread waits for process directed signals
and dispatches them to a Java level signal handling method.

All these threads are instances of the internal HotSpot C++ Thread class, and
all threads that execute Java code are internal HotSpot C++ JavaThread instances.
The HotSpot VM internally keeps track of all threads in a linked-list known as the
Threads list and is protected by the Threads lock—one of the key synchroni-
zation locks used within the HotSpot VM.

VM Operations and Safepoints

The internal HotSpot VM VMThread spends its time waiting for operations to appear
in a C++ object called VMOperationQueue and executing those operations. Typi-
cally these operations are passed on to the VMThread because they require that the
HotSpot VM reach what is called a safepoint before they can be executed. In simple
terms, when the HotSpot VM is at a safepoint all Java executing threads are blocked,
and any threads executing in native code are prevented from returning to Java code
while the safepoint is in progress. This means that a HotSpot VM operation can be
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executed knowing that no thread can be in the middle of modifying the Java heap,
and all threads are in a state where their Java stacks are not changing and can be
examined.

The most familiar HotSpot VM safepoint operation is to support garbage collec-
tion, or more specifically stop-the-world phases of garbage collection.

Tip

“Stop-the-world” in the context of garbage collection means that all Java executing threads
are blocked or stopped from executing in Java code while the garbage collector frees up
memory as a result of finding Java objects no longer in use by the application. If an application
thread is executing in native code (i.e., INI), it is allowed to continue, but will block if it
attempts to cross the native boundary into Java code.

There many other safepoints, such as biased locking revocation, thread stack
dumps, thread suspension or stopping (i.e., java.lang.Thread.stop () method),
and numerous inspection and modification operations requested through JVMTI.

Many HotSpot VM operations are synchronous, that is, the requester blocks until the
operation has completed, but some are asynchronous or concurrent, meaning that the
requester can proceed in parallel with the VMThread (assuming no safepoint is initiated).

Safepoints are initiated using a cooperative, polling-based mechanism. In simplis-
tic terms, every so often a thread asks “should I block for a safepoint?” Asking this
question efficiently is not so simple. One place where the question is often asked
is during a thread state transition. Not all state transitions do this, for example,
a thread leaving the HotSpot VM to go to native code, but many do. Another place
where a thread asks, “should I block for a safepoint?” is when JIT compiled code is
returning from a method or at certain stages during loop iteration. Threads executing
interpreted code do not usually ask whether they should block for a safepoint. Instead
the safepoint is requested when the interpreter switches to a different dispatch table.
Included as part of the switching operation is code that asks when the safepoint is
over. When the safepoint is over, the dispatch table is switched back again. Once a
safepoint has been requested, the VMThread must wait until all threads are known
to be in a safepoint-safe state before proceeding to execute a VM operation. During
a safepoint the Threads lock is used to block any threads that are running. The
VMThread releases the Threads lock after the VM operation has been performed.

C++ Heap Management

In addition to HotSpot VM’s Java heap, which is maintained by the HotSpot VIM’s
memory manager and garbage collectors, the HotSpot VM also uses a C/C++ heap
for storage of HotSpot VM internal objects and data. Within the HotSpot VM and
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not exposed to a user of the HotSpot VM, a set of C++ classes derived from a base
class called Arena is used to manage the HotSpot VM C++ heap operations. The
Arena base class and its subclasses provide a rapid C/C++ allocation layer that
sits on top of the C/C++ malloc/free memory management routines. Each Arena
allocates memory blocks (internally the HotSpot VM refers to them as Chunks) from
three global ChunkPools. Each ChunkPool satisfies allocation requests for a dis-
tinct range of allocation sizes. For example, an allocation request for 1K of memory
is allocated from the “small” ChunkPool, while a 10K allocation request is made
from the “medium” ChunkPool. This is done to avoid wasteful memory fragmenta-
tion. The Arena approach for allocating memory provides better performance than
directly using the C/C++ malloc/free memory management routines. The latter
operations may require acquisition of global OS locks, which can affect scalability
and impact performance.

Arenas are thread-local objects that cache a certain amount of memory storage.
This allows for fast-path allocation where a global shared lock is not required.
Likewise, Arena free operations do not require a lock in the common uses of
releasing memory back to the Chunks. Arenas are also used for thread-local
resource management implemented internally within the HotSpot VM as a C++
object called ResourceArea. Arenas are additionally used for handle manage-
ment implemented internally within the HotSpot VM as a C++ HandleArea
object. Both the HotSpot client and server JIT compilers use Arenas during JIT
compilation.

Java Native Interface

The Java Native Interface, referred to as JNI hereafter, is a native programming
interface. It allows Java code that runs inside a Java Virtual Machine to interoper-
ate with applications and libraries written in other programming languages, such
as C, C++, and assembly language. Although applications can be written entirely in
Java, there are circumstances where Java alone does not meet the requirements of
an application. Programmers can use JNI to write native methods to handle those
situations when an application cannot be written entirely in Java.

JNI native methods can be used to create, inspect, and update Java objects, call
Java methods, catch and throw exceptions, load classes and obtain class information,
and perform runtime type checking. JNI may also be used with the Invocation API to
enable an arbitrary native application to embed the Java VM. This allows program-
mers to easily make their existing applications Java-enabled without having to link
with the VM source code. [8]

It is important to remember that once an application uses JNI, it risks losing
two benefits of the Java platform. First, Java applications that depend on JNI can
no longer readily run on multiple heterogeneous hardware platforms. Even though
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the part of an application written in the Java programming language is portable to
multiple heterogeneous hardware platforms, it is necessary to recompile the part
of the application written in native programming languages. In other words, using
JNI loses one of the Java promises, “write once, run anywhere.” Second, the Java
programming language is type-safe and secure; native languages such as C or C++
are not. As a result, Java developers must use extra care when writing applications
using JNI. A misbehaving native method can corrupt an entire application. For this
reason, Java applications are subject to security checks before invoking JNI meth-
ods. The additional security checks and the copying of data between the Java layer
and JNI layer within the HotSpot VM can infringe on an application’s performance.

Tip
As a general rule, developers should architect their application so that native methods are

defined in as few classes as possible. This entails a cleaner isolation between native code and
the rest of the application. [9]

The HotSpot VM provides a command line option to aid in debugging problems with
native methods using JNI called -Xcheck:jni. Specifying -Xcheck:jni causes
an alternate set of debugging interfaces to be used by an application’s JNT calls.
The alternate interface verifies arguments to JNI calls more stringently, as well as
performing additional internal consistency checks.

Internally to the HotSpot VM, the implementation of JNI functions is straightfor-
ward. It uses various HotSpot VM internal primitives to perform activities such as
object creation, method invocation, and so on. In general, these are the same runtime
primitives used by other HotSpot VM subsystems such as the interpreter described
earlier in this chapter.

The HotSpot VM must take special care to keep track of which threads are cur-
rently executing in native methods. During some HotSpot VM activities, most notably
some phases of garbage collection, one or more threads must be halted at a safepoint
to guarantee that the Java memory heap is not modified to ensure garbage collection
accuracy. When the HotSpot VM wants to bring a thread executing in native code
to a safepoint, that thread is allowed to continue executing in native code until it
attempts to either return into Java code or makes a JNI call.

VM Fatal Error Handling

The designers of the HotSpot VM believe it is important to provide sufficient informa-
tion to its users and developers to diagnose and fix VM fatal errors. A common VM
fatal error is an OutOfMemoryError. Another common fatal error on Solaris and
Linux platforms is a segmentation fault. The equivalent error on Windows is called
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Access Violation error. When these fatal errors occur, it is critical to understand the
root cause to fix them. Sometimes the resolution to the root cause requires a change
in a Java application, and sometimes the root cause is within the HotSpot VM. When
the HotSpot VM crashes on a fatal error, it dumps a HotSpot error log file called
hs_err_pid<pid>.log where <pid> is replaced with the process id of the crashed
HotSpot VM. The hs_err_pid<pid>.log file is created in the directory where HotSpot
VM was launched. Since this feature’s initial introduction in HotSpot VM 1.4.2 version,
many enhancements have been made to improve the diagnosability of the root cause
of a fatal error. These additional enhancements include

= A memory map is included in the hs_err_pid<pid>.log error log file to make it
is easy to see how memory is laid out during the VM crash.

= A -XX:ErrorFile command line option is provided so you can set the path
name of the hs_err_pid<pid>.log error log file.

= An OutOfMemoryError also triggers the hs_err_pid<pid>.log file to be
generated.

An additional popular feature often used to diagnose the root cause of a VM fatal
error is using the HotSpot VM command line option -XX:OnError=cmdl args...;
com2 ... .This HotSpot VM command line option executes the list of commands
given to -XX:OnError whenever the HotSpot VM crashes. A common use of this fea-
ture is invoking a debugger such as Linux/Solaris dbx or Windows Winddbg to imme-
diately examine the crash. For releases that do not have support for -XX:OnError,
an alternative HotSpot VM command line option can be used called -XX:+Show
MessageBoxOnError. This option stops the VM before it exits by displaying a dia-
log box saying the VM has experienced a fatal error. This provides an opportunity
to attach to the HotSpot VM with a debugger prior to it exiting.

When the HotSpot VM experiences a fatal error, it internally uses a class called
VMError to aggregate and dump the hs_err_pid<pid>.log file. The VMError class is
invoked by operating specific code when an unrecognized signal or exception is observed.

Tip
The HotSpot VM uses signals internally for communication. The fatal error handler in the
HotSpot VM is invoked when a signal is not recognized. This unrecognized case may originate

from a fault in application NI code, OS native libraries, JRE native libraries, or the HotSpot
VM itself.

The HotSpot VM’s fatal error handler had to be carefully written to avoid causing
faults itself as a result of fatal errors such as StackOverflow or fatal errors when
critical locks are held such as a malloc lock.
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Since an OutOfMemoryError is possible to experience, especially on some large
scale applications, it is critical to provide useful diagnostic information to users so a
resolution can be quickly identified. Often it can be resolved by just simply specifying
a larger Java heap size. When an OutOfMemoryError happens, the error message
indicates which type of memory is problematic. For example, it could be a result of a
Java heap space or permanent generation space being specified as too small. Begin-
ning with Java 6, a stack trace is included in the error message produced by the
HotSpot VM. Also, the -XX: OnOutOfMemoryError=<cmd> option was introduced so
a command can be run when the first OutOfMemoryError is thrown. An additional
useful feature worth mentioning is being able to generate a heap dump on an oOut
OfMemoryError. This can be enabled by specifying - XX : +HeapDumpOnOut OfMemory
Error HotSpot VM command line option. There is an additional HotSpot VM com-
mand line option that allows a user to specify a path where the heap dump will be
placed, -XX :HeapDumpPath=<pathnames>.

Although applications are written with the intent to avoid thread deadlocks, devel-
opers sometimes make mistakes and deadlocks occur. When a deadlock occurs, doing
a Ctrl + Break on Windows forces a Java level thread stack trace to print to standard
output. On Solaris and Linux, sending a SIGQUIT signal to the Java process id does
the same. With a thread stack trace, the source of the deadlock can be analyzed.
Beginning with Java 6, the bundled JConsole tool added the capability to attach to
a hung Java process and analyze the root cause of the deadlock. Most of the time, a
deadlock is caused by acquiring locks in the wrong order.

Tip
The “Trouble-Shooting and Diagnostic Guide” [10] for Java 5 contains a lot of information
that may be useful to diagnosing fatal errors.

HotSpot VM Garbage Collectors

“Heap storage for objects is reclaimed by an automatic storage management system
(typically a garbage collector); objects are never explicitly de-allocated.”

—Java Virtual Machine Specification [1]

The Java Virtual Machine (JVM) specification dictates that any JVM implementa-
tion must include a garbage collector to reclaim unused memory (i.e., unreachable
objects).[1] The behavior and efficiency of the garbage collector used can heavily influ-
ence the performance and responsiveness of an application that’s taking advantage of
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it. This section gives an introduction to the garbage collectors included in the HotSpot
VM. The aim is to gain a better understanding of how garbage collection works in
the HotSpot VM and, as a result, be able to take full advantage of it when designing,
developing, and deploying applications.

Generational Garbage Collection

The HotSpot VM uses a generational garbage collector, [11] a well-known garbage
collection approach that relies on the following two observations:

= Most allocated objects become unreachable quickly.

= Few references from older to younger objects exist.

These two observations are collectively known as the weak generational hypoth-
esis, which generally holds true for Java applications. To take advantage of this
hypothesis, the HotSpot VM splits the heap into two physical areas (also called
spaces), which are referred to as generations:

= The young generation. Most newly allocated objects are allocated in the
young generation (see Figure 3-2), which, relatively to the Java heap, is typi-
cally small and collected frequently. Since most objects in it are expected to
become unreachable quickly, the number of objects that survive a young gen-
eration collection (also referred to as a minor garbage collection) is expected to
be low. In general, minor garbage collections are efficient because they concen-
trate on a space that is usually small and is likely to contain a lot of garbage
objects.

= The old generation. Objects that are longer-lived are eventually promoted,
or tenured, to the old generation (see Figure 3-2). This generation is typically
larger than the young generation, and its occupancy grows more slowly. As a
result, old generation collections (also referred to as major garbage collections,
or full garbage collections) are infrequent, but when they do occur they can be
quite lengthy.

* The permanent generation. This is a third area in the HotSpot VM’s mem-
ory layout, and it is also shown in Figure 3-2. Even though it is also referred to
as a generation, it should not be seen as part of the generation hierarchy (i.e.,
user-allocated objects do not eventually move from the old generation to the
permanent generation). Instead, it is only used by the HotSpot VM itself to hold
metadata, such as class data structures, interned strings, and so on.
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Figure 3-2 HotSpot VM generational spaces

To keep minor garbage collections short, the garbage collector must be able to
identify live objects in the young generation without having to scan the entire (and
potentially larger) old generation. To achieve this, the garbage collectors in the Hot-
Spot VM use a data structure called a card table. [11] The old generation is split into
512-byte chunks called cards. The card table is an array with one byte entry per card
in the heap. Every update to a reference field of an object must also ensure that the
card containing the updated reference field is marked dirty by setting its entry in
the card table to the appropriate value. During a minor garbage collection, only the
areas that correspond to dirty cards are scanned to potentially discover old-to-young
generation references (see Figure 3-3).
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Figure 3-3 Garbage collector interaction with the card table
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In cooperation with the bytecode interpreter and the JIT compiler, the HotSpot VM
uses a write barrier [11] to maintain the card table. This barrier is a small fragment
of code that sets an entry of the card table to the dirty value. The interpreter executes
a write barrier every time it executes a bytecode that updates a reference field. Addi-
tionally, the JIT compiler emits the write barrier after emitting the code that updates
a reference field. Although write barriers do impose a small performance overhead on
the application threads, their use allows for much faster minor garbage collections,
and much higher overall garbage collector efficiency, which typically improves the
throughput of an application.

Tip
The bytecode interpreter is considered part of the HotSpot VM Runtime. Additional
information on the HotSpot VM Runtime can be found in the “HotSpot VM Runtime” section

earlier in this chapter. Likewise, additional information on the HotSpot JIT compiler can be
found in the “HotSpot VM |IT Compilers” section later in this chapter.

A big advantage of generational garbage collection is that each generation can be
managed by the garbage collection algorithm most appropriate for its characteristics.
A fast garbage collector usually manages the young generation, as minor garbage
collections are frequent. This garbage collector might be a little space wasteful, but
since the young generation typically is a small portion of the Java heap, this is not
a big problem. On the other hand, a garbage collector that is space efficient usually
manages the old generation, as the old generation takes up most of the Java heap.
This garbage collector might not be quite as fast, but because full garbage collections
are infrequent, it doesn’t have a big performance impact.

To take full advantage of generational garbage collection, applications should
conform to the weak generational hypothesis, as it is what generational garbage col-
lection exploits. For the Java applications that do not do so, a generational garbage
collector might add more overhead. In practice, however, such applications are rare.

The Young Generation

Figure 3-4 illustrates the layout of the young generation of the HotSpot VM (the
spaces are not drawn to proportion). It is split into three separate areas (or spaces):

= The eden. This is where most new objects are allocated (not all, as large
objects may be allocated directly into the old generation). The eden is almost
always empty after a minor garbage collection. A case where it may not be
empty is described in Chapter 7, “Tuning the JVM, Step By Step.”
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Figure 3-4 Eden and survivor spaces of young generation

* The two survivor spaces. These hold objects that have survived at least
one minor garbage collection but have been given another chance to become
unreachable before being promoted to the old generation. As illustrated in
Figure 3-4, only one of them holds objects, while the other is most of the time
unused.

Figure 3-5 illustrates the operation of a minor garbage collection. Objects that
have been found to be garbage are marked with a gray X. As seen in Figure 3-5a,
live objects in the eden that survive the collection are copied to the unused survivor
space. Live objects in the survivor space that is in use, which will be given another
chance to be reclaimed in the young generation, are also copied to the unused survi-
vor space. Finally, live objects in the survivor space that is in use, that are deemed
“old enough,” are promoted to the old generation.
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Figure 3-5 Minor garbage collection illustration
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At the end of the minor garbage collection, the two survivor spaces swap roles (see
Figure 3-5b). The eden is entirely empty; only one survivor space is in use; and the
occupancy of the old generation has grown slightly. Because live objects are copied dur-
ing its operation, this type of garbage collector is called a copying garbage collector. [11]

It should be pointed out that, during a minor garbage collection, there is no guar-
antee that the allocating survivor space will always be large enough to accommodate
the surviving objects from both the eden and the other survivor space. If it overflows,
the rest of the objects that need to be evacuated will be moved to the old generation.
This is referred to as premature promotion. It causes the old generation to grow with
potentially short-lived objects, and it can potentially be a serious performance issue.
Further, if during a minor garbage collection the old generation becomes full and it is
not possible to copy more objects into it, that minor garbage collection is typically fol-
lowed by a full garbage collection, which collects the entire Java heap. This is referred
to as promotion failure. Careful user-tuning, as well as some self-tuning done by the
garbage collectors, typically makes the likelihood of either those two undesirable
events very low. Tuning the HotSpot VM is the subject matter found in Chapter 7.

Fast Allocation

The operation of the object allocator is tightly coupled with the operation of the gar-
bage collector. The garbage collector has to record where in the heap the free space
it reclaims is located. In turn, the allocator needs to discover where the free space in
the heap is before it can reuse it to satisfy allocation requests. The copying garbage
collector that collects the young generation of the HotSpot VM has the advantage of
always leaving the eden empty. That allows allocations into the eden to be efficient
by using what’s referred to as the bump-the-pointer technique. According to this
technique, the end of the last allocated object is tracked (this is usually referred to
as top), and when a new allocation request needs to be satisfied, the allocator needs
only to check whether it will fit between top and the end of the eden. If it does, top
is bumped to the end of the newly allocated object.

Additionally, most interesting Java applications are multithreaded, and their alloca-
tion operations need to be multithreaded safe. If they simply used global locks to ensure
this, then allocation into eden would become a bottleneck and degrade performance.
Instead, the HotSpot VM has adopted a technique called Thread-Local Allocation Buf-
fers (TLABs), which improves multithreaded allocation throughput by giving each
thread its own buffer (i.e., a small chunk of the eden) from which to allocate. Since only
one thread can be allocating into each TLAB, allocation can take place quickly with
the bump-the-pointer technique and without any locking. However, when a thread fills
up its TLAB and needs to get a new one (an infrequent operation), it needs to do so in
a multithreaded safe way. In the HotSpot VM, the new Object () operation is, most
of the time, around ten assembly code instructions. It is the operation of the garbage
collector, which empties the eden space, that enables this fast allocation.
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Garbage Collectors: Spoiled for Choice

“The Java Virtual Machine assumes no particular type of automatic storage
management system, and the storage management technique may be chosen
according to the implementor’s system requirements.”

—dJava Virtual Machine Specification [1]

The HotSpot VM has three different garbage collectors, as well as a fourth one that
at the time of this writing is under development. Each garbage collector is targeted
to a different set of applications. The next four sections describe them.

The Serial GC

The configuration of the Serial GC is a young generation that operates as described
earlier, over an old generation managed by a sliding compacting mark-sweep, also
known as a mark-compact garbage collector. [11] Both minor and full garbage col-
lections take place in a stop-the-world fashion (i.e., the application is stopped while
a collection is taking place). Only after the garbage collection has finished is the
application restarted (see Figure 3-6a).

The mark-compact garbage collector first identifies which objects are still live in
the old generation. It then slides them toward the beginning of the heap, leaving
any free space in a single contiguous chunk at the end of the heap. This allows any
future allocations into the old generation, which will most likely take place as objects
are being promoted from the young generation, to use the fast bump-the-pointer
technique. Figure 3-7a illustrates the operation of such a garbage collector. Objects
marked with a gray X are assumed to be garbage. The shaded area at the end of the
compacted space denotes reclaimed (e.g., free) space.
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GC Application
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Figure 3-6 Stop-the-world garbage collection



HotSpot VM Garbage Collectors 87

Start of Compaction Start of Sweeping

XXX IO0N0O]| | [KRORXCI00]

End of Compaction End of Sweeping

O (00w | |2 0 vzza T Oz 0|

() (b)

Figure 3-7 Garbage collection sequences

The Serial GC is the garbage collector of choice for most applications that do not
have low pause time requirements and run on client-style machines. It takes advan-
tage of only a single virtual processor for garbage collection work (hence, its name).
Still, on today’s hardware, the Serial GC can efficiently manage a lot of nontrivial
applications with a few 100MBs of Java heap, with relatively short worst-case pauses
(around a couple of seconds for full garbage collections). Another popular use for the
Serial GC is in environments where a high number of JVMs are run on the same
machine (in some cases, more JVMs than available processors!). In such environ-
ments when a JVM does a garbage collection it is better to use only one processor
to minimize the interference on the remaining JVMs, even if the garbage collection
might last longer. And the Serial GC fits this trade-off nicely.

The Parallel GC: Throughput Matters!

These days, a lot of important Java applications run on (sometimes dedicated) servers
with a lot of physical memory and multiple processors. Ideally, the garbage collector
should take advantage of all available processing resources and not leave most of
them idle while it is doing garbage collection work.

To decrease garbage collection overhead and hence increase application through-
put on server-style machines, the HotSpot VM includes the Parallel GC, also called
the Throughput GC. Its operation is similar to that of the Serial GC (i.e., it is a stop-
the-world GC with a copying young generation over a mark-compact old generation).
However, both the minor and full garbage collections take place in parallel, using
all available processing resources, as illustrated in Figure 3-6b. Note that earlier
version of this garbage collector actually performed old collections serially. This has
been rectified since the introduction of the Parallel Old GC.

Applications that can benefit from the Parallel GC are those that require high
throughput and have pause time requirements that can be met by the worst-case
stop-the-world induced full garbage collection durations along with being run on
machines with more than one processor. Applications such as batch processing
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engines, scientific computing, and so on are well suited for Parallel GC. The Parallel
GC, compared to the Serial GC, improves overall garbage collection efficiency, and
as a result also improves application throughput.

The Mostly-Concurrent GC: Latency Matters!

For a number of applications, end-to-end throughput is not as important as rapid
response time. In the stop-the-world garbage collection model, when a garbage collec-
tion is taking place, the application threads are not running, and external requests
will not be satisfied until the application threads are restarted at the end of a garbage
collection. Minor garbage collections do not typically cause long pauses. However, full
garbage collections or compacting garbage collections, even though infrequent, can
impose long pauses, especially when large Java heaps are involved.

To deal with this, the HotSpot VM includes the Mostly-Concurrent GC, also known
as the Concurrent Mark-Sweep GC (CMS). It manages its young generation the
same way the Parallel and Serial GCs do. Its old generation, however, is managed by
an algorithm that performs most of its work concurrently, imposing only two short
pauses per garbage collection cycle.

Figure 3-8a illustrates how a garbage collection cycle works in CMS. It starts
with a short pause, called the initial mark, that identifies the set of objects that are
immediately reachable from outside the old generation. Then, during the concurrent
marking phase, it marks all live objects that are transitively reachable from this set.
Because the application is running and it might be updating reference fields (hence,
modifying the object graph) while the marking phase is taking place, not all live
objects are guaranteed to be marked at the end of the concurrent marking phase.
To deal with this, the application is stopped again for a second pause, called the

Mostly-Concurrent GC Garbage-First GC
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Figure 3-8 Comparison of CMS GC versus garbage first GC
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remark pause, which finalizes the marking information by revisiting any objects that
were modified during the concurrent marking phase. The card table data structure
is reused to also keep track of modified objects. Because the remark pause is more
substantial than the initial mark, it is parallelized to increase its efficiency.

To reduce further the amount of work the remark pause has to do, the concurrent
pre-cleaning phase was introduced. As Figure 3-8a shows, it takes place after the
concurrent marking phase and before the remark pause and does some of the work
that would have been done during the remark pause, i.e., revisiting objects that were
modified concurrently with the marking phase. Even though there is still a need for
the remark pause to finalize marking (given that the application might update more
objects during the pre-cleaning phase), the use of pre-cleaning can reduce, sometimes
dramatically, the number of objects that need to be visited during the remark pause,
and, as a result, it is very effective in reducing the duration of the remark pause.

At the end of the remark pause, all live objects in the Java heap are guaranteed
to have been marked. Since revisiting objects during the pre-cleaning and remark
phases increases the amount of work the garbage collector has to do (as compared to,
say, the Parallel GC that only visits objects once during marking), the overall over-
head of CMS also increases accordingly. This is a typical trade-off for most garbage
collectors that attempt to reduce pause times.

Having identified all live objects in the old generation, the final phase of the
garbage collection cycle is the concurrent sweeping phase, which sweeps over the
Java heap, deallocating garbage objects without relocating the live ones. Figure 3-7b
illustrates the operation of the sweeping phase. Again, objects marked with a gray X
are assumed to be garbage, and the shaded areas in the post-sweep space denote free
space. In this case, free space is not contiguous (unlike in the previous two garbage
collectors, as illustrated in Figure 3-7a), and the garbage collector needs to employ
a data structure (free lists, in the case of the HotSpot VM) that records which parts
of the heap contain free space. As a result, allocation into the old generation is more
expensive, as allocation from free lists is not as efficient as the bump-the-pointer
approach. This imposes extra overhead to minor garbage collections, as most allo-
cations in the old generation take place when objects are promoted during minor
garbage collections.

Another disadvantage that CMS has, that the previous two don’t, is that it typi-
cally has larger Java heap requirements. There are a few reasons for this. First, a
concurrent marking cycle lasts much longer than that of a stop-the-world garbage
collection. And it is only during the sweeping phase that space is actually reclaimed.
Given that the application is allowed to run during the marking phase, it is also
allowed to allocate memory, hence the occupancy of the old generation potentially
increases during the marking phase and decreases only during the sweeping phase.
Additionally, despite the garbage collector’s guarantee to identify all live objects dur-
ing the marking phase, it doesn’t actually guarantee that it will identify all objects
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that are garbage. Objects that become garbage during the marking phase may or may
not be reclaimed during the cycle. If they are not, then they will be reclaimed during
the next cycle. Garbage objects that are not identified during a garbage collection are
usually referred to as floating garbage.

Finally, fragmentation issues [11] due to the lack of compaction might also prevent
the garbage collector from using all the available free space as efficiently as pos-
sible. If the old generation is full before the collection cycle in progress has actually
reclaimed sufficient space, CMS reverts to an expensive stop-the-world compacting
phase, similar to that of the Parallel and Serial GCs.

It should be noted that, in the latest versions of the HotSpot VM, both the concur-
rent phases of CMS (marking and sweeping) are parallelized, as demonstrated in
Figure 3-8a. This is a useful feature when running on machines with high hardware
parallelism (which are becoming more and more common). Otherwise, one concurrent
CMS thread would not have been able to keep up with the work the many application
threads would generate.

Compared to the Parallel GC, CMS decreases old-generation pauses—sometimes
dramatically—at the expense of slightly longer young generation pauses, some reduc-
tion in throughput, and extra heap size requirements. Due to its concurrency, it also
takes CPU cycles away from the application during a garbage collection cycle. Appli-
cations that can benefit from it are ones that require rapid response times (such as
data-tracking servers, Web servers, and so on), and it is in fact widely used in this
context.

The Garbage-First GC: CMS Replacement

The Garbage-First GC (aka G1I) is a parallel, concurrent, and incrementally com-
pacting low-pause garbage collector intended to be the long-term replacement of
CMS. G1 uses a drastically different Java heap layout to the other garbage collectors
in the HotSpot VM. It splits the Java heap into equal-sized chunks called regions.
Even though G1 is generational, it does not have physically separate spaces for the
young and old generations. Instead, each generation is a set of (maybe noncontigu-
ous) regions. This allows G1 to resize the young generation in a flexible way.

All space reclamation in G1 takes place by evacuating the surviving objects from
one set of regions to another and then reclaiming the initial (and typically larger) set
of regions. Most of the time such garbage collections collect only young regions (which
make up G1’s young generation), and they are the equivalent of minor garbage col-
lections. G1 also periodically performs concurrent marking cycles that identify which
non-young regions are either empty or mostly empty. These are the regions that
are the most efficient to collect (i.e., G1 gets back the most free space for the least
amount of work), and they are scheduled for garbage collection in favor to the rest of
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the regions. This is where G1 gets its name from: It goes after regions with the most
garbage objects in them.

Figure 3-8b shows the parallelism and concurrency in G1. Note that, apart from
the concurrent marking phase, G1 also has additional short concurrent tasks. For
more information on G1, please listen to the talk located at http://developers.sun.com/
learning/javaoneonline/j1sessn.jsp?sessn=TS-5419&yr=2008&track=javase]. [12]

Comparisons

Table 3-1 summarizes the trade-offs between the garbage collectors that are covered
in this section.

Creating Work for the Garbage Collector

This section includes a brief overview of how an application can create work for the
garbage collector. Generally, there are three ways of doing so:

= Allocation. Garbage collections are triggered when a generation occupancy
reaches a certain limit (e.g., a minor garbage collection takes place when the
eden is full, a CMS cycle starts when the old generation occupancy goes over the
CMS initiating limit). As a result, the higher the allocation rate of an applica-
tion, the more often garbage collections are triggered.

= Live data size. All garbage collectors in the HotSpot VM do work propor-
tional to the amount of live data that exists in each generation (a minor gar-
bage collection copies all live objects as shown in Figure 3-5, a mark-compact
garbage collector first needs to mark all live objects before moving them, etc.).
As a result, the more live objects there are in the Java heap, the more work the
garbage collector needs to do.

= Reference updates in the old generation. An update of a reference field in
the old generation might create an old-to-young reference (which, as shown in

Table 3-1 Comparison of Garbage Collectors

Serial GC Parallel GC CMS GC G1GC
Parallelism No Yes Yes Yes
Concurrency No No Yes Yes
Young GCs Serial Parallel Parallel Parallel

Old GCs Serial Parallel Parallel & Conc Parallel & Conc
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Figure 3-3, will have to be processed during the next minor garbage collection)
or might cause an object to be revisited at the pre-cleaning or the remark phase
(if it takes place during a CMS marking cycle).

Typically garbage collection overhead can be reduced by reducing one or more of
the preceding metrics. However, sometimes this is either impossible (e.g., it might not
be possible to compress further the data that needs to be loaded into the Java heap;
or it is difficult to write a useful application that does not update references at all),
or even undesirable (reusing objects can reduce the allocation rate, but it is also more
time-consuming to implement and maybe more error-prone too). But by avoiding
some bad programming practices, it is possible to find a good balance between having
low garbage collection overhead, as well as well-written, easily maintained code. Bad
programming practices to avoid include object pooling (pooled objects are long-lived,
hence they increase the live data size of the old generation and initializing writes
to them can also increase the number of reference updates in the old generation),
sloppy sizing of array-based data structures (e.g., if an ArrayList is initially sized
too small, its backing array might subsequently need to be resized several times,
causing unnecessary allocation), and so on. Expanding on this goes beyond the scope
of this book, but you can find some more information in this talk. [13]

A Historical Perspective

The Serial GC was the first garbage collector included in the HotSpot VM (introduced
in Java 1.3), as well as another incremental garbage collector called the Train GC.
The latter, however, was not used very widely and was end-of-lifed in Java 6. Java
1.4.2 saw the introduction of both the Parallel GC (which only had a parallel young
generation garbage collector, but a serial old generation garbage collector), as well as
CMS (which also had a parallel young generation garbage collector, whereas its con-
current phases were serial). The Parallel Old GC, which parallelized the old genera-
tion of the Parallel GC, was introduced in Java 5 Update 6. The concurrent marking
and sweeping phases of CMS were parallelized in Java 5 Update 6 and Java 5 Update
7, respectively. Finally, at the time of this writing, G1 GC was included in Java 6
Update 20 (and available in later Java 6 releases). Java 7 will also have G1 GC.

HotSpot VM JIT Compilers

Before diving into the details of the JITs used in the HotSpot VM it is useful to
digress a bit and talk about code generation in general and the particular trade-offs
of JIT compilation. This will help frame the differences between the HotSpot VM
Client and Server JIT compilers when they are discussed.
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Compilation is the generation of machine-dependent code from some high level
language. Traditionally compilers have started from a source language like C or
C++, compiling each of the individual source files into object files and then finally
linking those objects into a library or executable that can then be run. Since this
is a relatively infrequent task, compilation time isn’t a huge constraint on static
compilers, though obviously developers won’t wait forever. Java on the other hand
uses a compiler, javac, which takes the high level sources and converts them into
class files. These class files are then collected into jar files for use by a Java Virtual
Machine. So the Java Virtual Machine always starts with the bytecode representa-
tion of the original program and is required to convert that dynamically into machine
dependent code.

All compilers have a roughly similar structure, and it is useful to describe this
first. They must have a front end to take the source representation and convert it
into an intermediate representation or IR. There are many different kinds of inter-
mediate representations used in compilers, and a compiler might in fact use several
since different representations can be useful for different stages of compilation. One
common style of IR is called SSA, which stands for static single assignment. This is
a representation that has the property that a variable is only assigned to once, and
instructions directly use those values. This has the advantage that the values used by
an instruction are directly visible to it. The other common style is a named form that
is conceptually similar to a source language in that values are assigned to variables,
or names, and instructions use the names. This gives a certain amount of flexibility
and can simplify some operations such as cloning of code, but there’s a less direct
relationship between an instruction and the values it uses.

The IR produced by the front end is generally the focus of most optimizations in a
compiler. What optimizations are supported can cover a large range and will often be
driven by the time required for the optimization. The most basic classes of optimiza-
tions are simple identity transformations, constant folding, common subexpression
elimination, and inlining of functions. More complicated optimizations are commonly
focused around improving the execution of loops and include range check elimination,
unrolling, and loop invariant code motion. Illustrating how the HotSpot VM performs
each of these optimizations is outside the scope of this book and is a topic worthy to
expanding upon in an entire book.

Once these high level optimizations are performed there’s a back end that takes
the IR and converts it into some machine representation. This stage includes instruc-
tion selection and assignment of values to machine registers. Instruction selection
can be done in many ways. It can be handled in an explicit manner where the com-
piler writer manages all the cases directly or by using a machine description with
associated rules to drive automatic instruction selection. The automated approach
can be somewhat complicated to build and maintain but can often take better advan-
tage of the details of a machine.
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Once the instructions are selected registers must be assigned to all the values in
the program, and code must be emitted to deal with the calling conventions of the
machine. For most functions the number of values live will be greater than the num-
ber of registers on the machine. The generated code will deal with this by assigning
some values to registers and moving values between the registers and the stack to
free them up for other values. Moving values to the stack is referred to as spilling
the value or register spilling. Again there are several approaches to this problem. For
simple code generators, a round robin style local allocator will execute quickly but is
only suitable for the most simple code generators.

The classic strategy for register allocation is called graph coloring and generally
results in the best usage of the machine registers and the fewest spills of extra values
onto the stack. A graph is built that represents which values are in use simultane-
ously and which registers those values can live in. If there are more values live simul-
taneously than there are registers available, then the least important of those values
are moved to the stack so the other values can use registers. Assigning every value
to a register commonly requires several rounds of graph construction and coloring.
This leads to the downside of graph coloring, which is that it can be expensive both
in terms of time spent and the space required for the data structures.

A simpler strategy is called linear scan register allocation. The goal in linear scan
is to assign registers in a single pass over all the instructions while still producing
a good register assignment. It constructs lists of ranges where a value must be in a
register and then in a single pass walks over that list assigning registers to values
or spilling them to the stack. This can operate quickly but isn’t as good at keeping
values in the same register for their whole lifetime.

Class Hierarchy Analysis

In an object-oriented language, intelligent inlining can be critical to getting good
performance since code is often broken up into small methods. Java presents some
interesting difficulties in this regard since by default any instance method could be
overridden by a subclass, so just seeing the local type often isn’t enough to know
what method to inline. One way the HotSpot VM addresses this is by something
called Class Hierarchy Analysis. This is an on-demand analysis that can be used by
the compiler to determine whether any loaded subclass has overridden a particular
method. The important part of this trick is that the HotSpot VM is only considering
the subclasses that are loaded and does not worry about any other subclasses that
it hasn’t seen yet. When the compiler takes advantage of Class Hierarchy Analysis,
often referred to as CHA, it records that fact in the compiled code. If later on in the
execution of the program a subclass that overrides that method is requested to be
loaded, then as part of the loading process the compiled code that assumed there was
only one implementor is thrown out. If that compiled code is currently being executed
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somewhere, then a process called deoptimization is used to convert that compiled
frame into an equivalent set of interpreter frames. This allows complete recovery
from the assumptions of the CHA result. CHA is also used to identify cases where
an interface or abstract class only has a single loaded implementation.

Compilation Policy

Since the JIT does not have time to compile every single method in an application, all
code starts out initially running in the interpreter, and once it becomes hot enough it
gets scheduled for compilation. In the HotSpot VM this is controlled through the use
of counters associated with each method. Every method has two counters: the invoca-
tion counter that is incremented every time a method is entered and the backedge
counter that is incremented every time control flow moves from a higher bytecode
index to a lower one. The backedge counter is used to detect methods that contain
loops and to cause them to get compiled earlier than they would with just an invoca-
tion counter. Whenever either counter is incremented by the interpreter it checks
them against a threshold, and if they cross this threshold the interpreter requests
a compile of that method. The threshold used for the invocation count is called the
CompileThreshold, and the backedge counter uses a more complex formula of Com-
pileThreshold * OnStackReplacePercentage / 100.

When a compilation is requested it is enqueued in a list that is monitored by one
or more compiler threads. If a compiler thread is not busy it removes the compilation
request from the queue and begins to compile it. Normally the interpreter doesn’t
wait for the compilation to complete. Instead it resets the invocation counter and
resumes executing the method in the interpreter. Once the compile completes and
the compiled code is associated with the method, then the next caller of the method
begins using the compiled code. Normally this behavior of not waiting for the compile
to complete is a good idea since the execution and compilation can continue in paral-
lel. If you want the interpreter to wait for the compile to complete, then the HotSpot
VM command line option -Xbatch or -XX : -BackgroundCompilation can be used
to make it block waiting for the compile.

The HotSpot VM can also perform special compiles called On Stack Replacement
compiles, or OSRs as they are commonly known. These are used when Java code
contains a long-running loop that started executing in the interpreter. Normally the
way Java code ends up in compiled code is that when invoking a method the inter-
preter detects that there’s compiled code for it, and it dispatches to that instead of
staying in the interpreter. This does not help long-running loops that started in the
interpreter since they are not being invoked again.

When the backedge counter overflows, the interpreter requests a compile that
starts its execution at the bytecode of backedge instead of starting at the first byte-
code in the method. The resulting generated code takes an interpreter frame as its
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input and uses that state to begin its execution. In this way long-running loops are
able to take advantage of compiled code. The act of the generated code taking an
interpreter frame as its input to be its execution is called On Stack Replacement.

Deoptimization

Deoptimization is the term used in the HotSpot VM for the process of taking a com-
piled frame, which may be the result of several levels of inlining, and converting that
compiled frame into an equivalent set of interpreter frames. This is used to recover
from various kinds of optimistic optimizations that compiled code can perform. In
particular it is used to recover from the assumptions of class hierarchy analysis.
The server compiler also uses it for something it refers to as uncommon traps. These
are special points in the generated code where the compiler has chosen to use the
interpreter to deal with some execution path. Most commonly this is either because
at compilation time some class was unloaded, or a path appeared to have never been
executed. Some kinds of exceptions are handled in this way as well.

The HotSpot VM’s JIT compilers support deoptimization by recording some meta-
data at every potential safepoint that describes what the state of the bytecode execu-
tion was at that point. Every safepoint already has to include the chain of methods
and bytecode indexes that describe the current execution state so that things like
exception stack traces and the stack walking required by security checks can be
implemented. For deoptimizations the compiler additionally records the location of
every value referenced by the locals and expression stack of the method, along with
which lock(s) are held. This is an abstract representation of the state of the inter-
preter frame at that point and is sufficient to build a set of interpreter frames that
resume execution in the interpreter.

At first glance it may appear as though a lot of extra values are kept alive to sup-
port this, but there are a few tricks used to reduce this. The HotSpot VM’s JIT com-
pilers use a bytecode analysis called Method Liveness that computes for every Java
local field whether there’s a bytecode later in the method that might use its value.
These locals are considered live, and only locals that are live need to have values in
the debug info state. In practice this means that the JIT compilers are not keeping
many values alive solely for the purposes of deoptimization.

Once compiled code has been generated it may be invalidated for several reasons,
such as class loading that invalidates a CHA optimization or because classes refer-
enced by the code have been unloaded. In this case the space for the compiled code
is returned to the code cache for use by later compiles. In the absence of explicit
invalidation of compiled code it is normally never freed.

JIT compiled code has several kinds of metadata associated with it that’s required
to support various features of the runtime. In particular because the HotSpot VM
uses precise garbage collection, compiled code has to be able to describe which
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locations in a compiled frame contain references to Java objects. This is accomplished
using OopMaps, which are tables listing registers and stack locations that must be
visited by the garbage collector. These are required at any location in compiled code
where the system might have to stop for a safepoint. This includes all call sites and
places where allocation might occur. Additionally because there are VM operations
such as garbage collection, biased lock revocation, and so on that require code be
able to come to a halt in a reasonable amount of time for a safepoint, every loop that
does not contain calls also requires an explicit safepoint check inside it. Otherwise
a long-running loop could stop the entire system from performing a garbage collec-
tion and cause it to hang. Each of these safepoints also contains all the information
describing the chain of methods that were inlined and the description of the Java
frame required for support of deoptimization.

Client JIT Compiler Overview

The HotSpot VM’s Client JIT compiler targets applications desiring rapid startup
time and quick compilation so as to not introduce jitter in responsiveness such as
client GUI applications. The Client JIT compiler started life as a fast, simple code
generator intended to give Java reasonable startup performance without a lot of
complexity. It was conceptually similar to the interpreter in that it generated a kind
of template for each kind of bytecode and maintained a stack layout that was similar
to an interpreter frame. It also only inlined field accessors. In Java 1.4, the HotSpot
VM’s Client JIT compiler was upgraded to support full method inlining and added
support for Class Hierarchy Analysis and deoptimization both of which provided a
substantial improvement. The Java 5 Client JIT compiler saw few changes because
a more substantial set of changes was being worked on for the Java 6 Client JIT
compiler.

Java 6’s Client JIT Compiler included many changes intended to improve per-
formance across the board. The Client compiler’s intermediate representation was
changed to an SSA style representation, and the simple local register allocator
was replaced by a linear scan register allocator. Additionally value numbering was
improved by extending it across multiple blocks, and some minor improvements
to memory optimizations were made. On x86 platforms, support for using SSE for
floating point operations was added, which significantly improved floating point
performance.

Server JIT Compiler Overview

The HotSpot VM Server JIT compiler targets peak performance and high throughput
for Java applications, so its design tends to focus on using the most powerful opti-
mizations it can. This often means that compiles can require much more space or
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time than an equivalent compile by the Client JIT compiler. It tends to aggressively
inline as well, which often leads to large methods, and larger methods take longer
to compile. It also has an extensive set of optimizations covering a large number of
corner cases, which is needed to generate optimal code for any bytecodes it might see.

SSA—Program Dependence Graph

The Server JIT compiler’s intermediate representation (IR) is internally called “ideal”
and is an SSA style IR, but it uses a different way of representing control flow called
the program dependence graph. The representation tries to capture the minimal set
of constraints on the execution of each operation, which allows for aggressive reorder-
ing of operations and global value numbering, which reduces redundant computa-
tions. It has a rich type system that captures all the details of the Java type system
and feeds that knowledge back into the optimizations.

The Server JIT compiler also takes advantage of profile information collected by
execution in the interpreter. During execution of bytecodes, if a method is executed
enough times, the interpreter created an object known as a methodDataOop, which
is a container for profile information about an individual method. It has entries for
recording information about the types seen at call sites along with counts of how
often they are seen. All the control flow bytecodes also record how often they are
taken and which direction they go. All this information is used by the Server JIT
compiler to find opportunities to inline based on common types and to compute fre-
quencies for the control flow, which drives the block layout and register allocation.

All JIT compilers of Java bytecodes have to deal with the possibility of unloaded
or uninitialized classes, and the Server JIT compiler handles this by treating the
path as unreached when it contains unresolved constant pool entries. In this case it
emits what is called an uncommon trap for that bytecode and stops parsing that path
through the method. An uncommon trap is a request to the HotSpot VM Runtime
to deoptimize the current compiled method and resume execution in the interpreter
where the constant pool entry that was unresolved can be processed and properly
resolved. The compiled code for that method is thrown out, and executions continue
in the interpreter until a new compile is triggered. Since that path has been properly
resolved the new compile will compile that path normally, and future execution will
use the compiled version of that path.

Uncommon traps are also used to deal with unreached paths so that the compiler
does not generate code for parts of the method that are never used, resulting in
smaller code and more straight-line sections of code that are generally more optimiz-
able. The Server JIT compiler additionally uses uncommon traps to implement some
kinds of optimistic optimizations. These are cases where the Server JIT compiler has
decided that some behavior is likely so it proceeds as if that was the only behavior but
puts in a dynamic check that it is true. If the dynamic check fails the code heads to
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an uncommon trap, which handles that case in the interpreter. If the uncommon trap
happens often enough the HotSpot VM Runtime decides that it is really not uncom-
mon so the code should be thrown out and regenerated without the assumption that it
is uncommon. This is done for some things like predicated call sites where it appears
from profile information that call site only ever sees one receiver type, so the Server
JIT compiler inlines assuming that it will see this type but puts in a guard checking
that the type is really the expected one. If a call site mostly sees one type but some-
times sees others, instead of emitting an uncommon trap for the other case the Server
JIT compiler emits a regular call. The advantage of emitting that uncommon trap is
that later code will see just the effects of the inlined version, which can result in bet-
ter final generated code since a call has unknown side effects on the state of memory.

The Server JIT compiler performs a large set of optimizations on loops in the
generated code, including loop unswitching, loop unrolling, and range check elimi-
nation through iteration splitting. Iteration splitting is the process of taking a loop
and converting it into three loops: the preloop, the main loop, and the post loop. The
idea is to compute bounds on each of the loops such that it is provable that the main
loop does not need any range checks. The preloop and the post loop deal with the
boundary conditions of the iteration where range checks are needed. In most cases
the preloop and the post loop run a small number of times, and in many cases the
post loop can be eliminated completely. This allows the main loop to run without any
range checks at all.

Once a loop has had its range checks removed it is possible that it can be unrolled.
Loop unrolling takes relatively simple loop bodies and creates multiple copies of the
body inside the loop, while reducing the number of iterations that the loop runs.
This helps amortize the cost of the loop control flow and often allows the loop body to
simplify more, allowing the loop to do more work in less time. In some cases repeated
unrolling can cause a loop to go away completely.

Loop unrolling enables another optimization called superword, which is a form of
vectorization. Unrolling creates a parallel set of operations in the body, and if those
operations are on sequential memory locations they can be collected into operations
on a vector such that a single instruction performs multiple operations in the same
amount of time. As of Java 6, HotSpot VMs, this is mainly focused on copying or ini-
tialization patterns, but eventually it will fully support all available SIMD (single
instruction, multiple data) arithmetic operations.

Once all the high level optimizations are performed the IR (intermediate repre-
sentation) is converted into a machine dependent form that is able to take advan-
tage of all the special instructions and address modes available on the processor.
The machine dependent nodes are scheduled into basic blocks based on the require-
ments of their inputs and the expected frequency of the blocks. The graph coloring
register allocator then assigns registers to all the instructions and inserts any
needed register spills. Finally the code is turned into an nmethod, which is the
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HotSpot VM’s internal representation of compiled bytecodes and contains all the
code along with the metadata required to use the code within the HotSpot VM
Runtime.

Future Enhancements

The HotSpot VM currently supports two JIT compilers, Client and Server. At the
time of this writing development is underway to introduce a hybrid HotSpot JIT
compiler that combines the major attributes of the Client JIT compiler and the
Server JIT compiler called tiered compilation. The promise offered by tiered com-
pilation is the rapid startup features of the Client JIT compiler and continuing
to improve the performance of an application through the use of the Server JIT
compiler’s more advanced optimization techniques. For the adventurous or curi-
ous, tiered compilation can be enabled on recent Java 6 HotSpot VMs using the
-server-XX: +TieredCompilation command line options. However, tiered com-
pilation as of this writing, is not recommended as the HotSpot JIT compiler of choice
for production or critical systems if using Java 6 Update 24 or earlier. If you are
using Java 6 Update 25, Java 7, or later, using -server -XX: +TieredCompila-
tion may be an alternative for applications typically using the Client JIT compiler.
As tiered compilation improves in its optimization capabilities and matures, it is
likely to be the recommended JIT compiler for both client and server families of
Java applications.

HotSpot VM Adaptive Tuning

The Java 5 HotSpot VMs introduced a new feature that evaluates the underlying
platform and system configuration at JVM launch time and then automatically
selects the garbage collector, configures Java heap size, and chooses a runtime
JIT compiler to use. In addition, this feature also introduced an adaptive means
for tuning the Java heap for the throughput garbage collector. This new adaptive
Java heap tuning allowed the garbage collector to dynamically tune the sizes of
the Java heap to meet application behavior and object allocation rates. This com-
bination of automatic platform dependent selection of default values and adaptive
Java heap sizing to lessen the burden of manual garbage collection tuning is called
ergonomics.

The ergonomics feature has been further enhanced in Java 6 Update 18 to improve
the performance of rich client applications. In this section, the initial default values
for heap sizes, garbage collector, and JIT compilers found in Java 1.4.2 HotSpot VMs
are presented, followed by the default values chosen via the ergonomics feature and
the Java 6 Update 18 ergonomics enhancements.
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Java 1.4.2 Defaults

In the Java 1.4.2 HotSpot VM the following defaults were chosen for garbage collec-
tor, JIT compiler, and Java heap sizes:

= Serial garbage collector, i.e., -XX: +UseSerialGC
= Client JIT compiler, i.e., -client

= 4 megabyte initial and minimum Java heap size along with a 64 megabyte
maximum Java heap size, i.e., -Xms4m and -Xmx64m

Java 5 Ergonomic Defaults

In the Java 5 HotSpot VMs, a category called “server-class machine” was introduced that
allowed the HotSpot VM to choose a different set of default values for garbage collector,
JIT compiler, and Java heap sizes. A server-class machine in the HotSpot VM is defined
as a system with an underlying configuration that has two or more gigabytes of physical
memory and two or more virtual processors. The number of virtual processors identified
by the HotSpot VM when determining whether a system is a server-class machine is
also the same value returned by the Java API Runtime.availableProcessors (),
and generally is the same number of processors reported by operating system tools such
as mpstat for Linux and Solaris. Also note when running a HotSpot VM in an operating
system configured with a processor set, the value returned by the Java API Runtime.
availableProcessors () is the number of virtual processors observed within the
processor set, not the number of virtual processors observed system wide.

Tip
The definition of server-class machine does not apply to systems running a 32-bit version of
the Windows operating system. These systems default to using the Serial garbage collector

(-xX: +UseSerialGc), Client )IT compiler (-client), and 4 megabyte initial and minimum
heap size (-Xms4m) along with a 64-megabyte maximum Java heap size (-Xmx64m).

When the HotSpot VM identifies a system as a server class machine, it selects the
following defaults for garbage collector, JIT compiler, and Java heap sizes:

= Throughput garbage collector, also known as Parallel GC, i.e.,
-XX:+UseParallelGcC!

= Server JIT compiler, i.e., -server

1. On recent Java 6 HotSpot VMs, or where the following switch is available, ergo-
nomics may also automatically select -XX:+UseParallel01dGC, which also enables
-XX:+UseParallelGC.
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= 1/64 of the physical memory up to a maximum of 1GB as the initial and minimum
Java heap size along with a 1/4 the total physical memory up to a maximum of
1GB as the maximum Java heap size

Table 3-2 summarizes the choices made by a Java 5 and later HotSpot VM.

Serial GC means the Serial garbage collector is chosen. Parallel GC means the
Throughput garbage collector is chosen. Client means the client JIT compiler is cho-
sen. Server means the server JIT compiler is chosen. Under (If Server Class) Default
GC, JIT, and Java Heap Sizes, Client means the Client JIT compiler is chosen for a
32-bit Windows platform where other criteria for a server-class machine matched.
This choice is deliberately made on 32-bit Windows platforms because historically
client applications (i.e., interactive applications) are run more often on this combi-
nation of platform and operating system. Where Server is indicated, the Server JIT
compiler is the only JIT compiler available in the HotSpot VM.

To print the ergonomic choices the HotSpot VM has made, the -XX: +PrintCom-
mandLineFlags command line option can be used. For instance, doing a simple java

Table 3-2 Summary of Choices Made by a Java 5 and Later HotSpot VM

Platform Operating
System

SPARC (32-bit) Solaris

(If Not Server Class)
Default GC, JIT and Heap
Sizes -Xms & -Xmx

Serial GC, Client, 4MB,
64MB

(If Server Class) Default
GC, JIT and Java Heap Sizes
-Xms & -Xmx

Parallel GC,Server, 1/64 RAM,
max of 1/4 RAM or 1GB

i586 Solaris Serial GC, Client, 4MB, Parallel GC,Server, 1/64 RAM,
64MB max of 1/4 RAM or 1GB

i586 Linux Serial GC, Client, 4MB, Parallel GC,Server, 1/64 RAM,
64MB max of 1/4 RAM or 1GB

i586 Windows Serial GC, Client, 4MB, Serial GC, Client, 1/64 RAM,

64MB

max of 1/4 RAM or 1GB

SPARC (64-bit) Solaris

Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1GB max

Parallel GC, Server, 1/64
RAM, max of 1/4 RAM or 1GB

x64 (64-bit) Linux Parallel GC, Server, 1/64 Parallel GC, Server, 1/64th
RAM, 1/4 RAM or 1TGB max  RAM, max of 1/4 RAM or 1GB
x64 (64-bit) Windows Parallel GC, Server, 1/64 Parallel GC, Server, 1/64
RAM, 1/4t RAM or TGB max RAM, max of 1/4 RAM or 1GB
1A-64 Linux Parallel GC, Server, 1/64 Parallel GC, Server, 1/64
RAM, 1/4 RAM or 1TGB max RAM, max 1/4 RAM or 1GB
IA-64 Windows Parallel GC, Server, 1/64 Parallel GC, Server, 1/64

RAM, 1/4 RAM or 1GB max

RAM, max of 1/4 RAM or 1GB
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-XX:+PrintCommandLineFlags -version on any system with a Java 5 or Java
6 HotSpot VM prints the default ergonomic values. The following is an example of
the output produced from a Java 5 HotSpot VM on a Sun UltraSPARC 5440 system
configured with 128GB of RAM and 256 virtual processors running the Oracle 11
Express 2010.11 operating system:

$ java -XX: +PrintCommandLineFlags -version
-XX:MaxHeapSize=1073741824 -XX:ParallelGCThreads=85
-XX: +PrintCommandLineFlags -XX: +UseParallelGC

java version "1.6.0 14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b07)
Java HotSpot(TM) Server VM (build 14.0-b15, mixed mode)

From the preceding output, the Java 6 HotSpot VM’s launcher chose the Server JIT com-
piler, as shown in the last line of the output, a maximum Java heap size of 1073741824
bytes, or 1024 megabytes or 1 gigabyte along with selecting the throughput collector
(-XX:+UseParallelGC) with 85 parallel gc threads (-XX: ParallelGCThreads=85).
Note, -XX :MaxHeapSize is the same as the command line option -Xmx.

Java 6 Update 18 Updated Ergonomic Defaults

Java 6 Update 18 further updated the ergonomics feature to better adapt to rich client
applications. The enhancements apply to when a system is identified as a non-server
class machine. Remember that a server class machine is defined as a system with an
underlying configuration that has 2 or more gigabytes of physical memory and two or
more virtual processors. Hence these are enhancements made to systems identified as
having less than 2 gigabytes of physical memory and less than two virtual processors.
For systems identified as non-server class machines, the client JIT compiler remains
as the automatically selected JIT compiler. However, its Java heap sizing defaults have
changed, and the settings for garbage collection are better tuned. The maximum heap
size for Java 6 Update 18 is now one-half of physical memory up to a physical memory
size of 192MB. Otherwise, the maximum heap size is one-fourth of physical memory up
to a physical memory size of 1GB. For systems with 1GB or more of physical memory, the
default maximum heap size is 256m. The initial heap size for non-server class machines
is 8MB up to a physical memory size of 512MB. Otherwise, the initial and minimum
heap size is 1/64 of the physical memory size between 512MB and 1GB of physical
memory. At 1GB and larger physical memory, the default initial and minimum heap size
is explicitly 16MB. In addition, Java 6 Update 18 sizes the young generation space at
one-third of the Java heap size. However, if the concurrent collector happens to be speci-
fied explicitly with no additional Java heap sizing, initial, minimum, maximum, or young
generation space sizing, Java 6 Update 18 reverts to the Java 5 ergonomic defaults.
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Table 3-3 Summary of Choices Made by Java 6 Update 18 and Later

Platform Operating  (If Not Server Class) (If Server Class) Default GC,
System Default GC, JIT, and Heap  JIT, and Java Heap Sizes -Xms

Sizes -Xms & -Xmx & -Xmx

SPARC (32-bit)  Solaris Serial GC, Client, 8MB or Parallel GC,Server, 1/64 RAM,
1/64 RAM or 16MB, 1/2 RAM max of 1/4 RAM or 1GB
or 1/4 RAM or 256 MB

i586 Solaris Serial GC, Client, 8MB or Parallel GC,Server, 1/64 RAM,
1/64 RAM or 16MB, 1/2 RAM max of 1/4 RAM or 1GB
or 1/4 RAM or 256 MB

i586 Linux Serial GC, Client, 8MB or Parallel GC,Server, 1/64 RAM,
1/64 RAM or 16MB, 1/2 RAM max of 1/4 RAM or 1GB
or 1/4 RAM or 256 MB

i586 Windows Serial GC, Client, 8MB or Serial GC, Client, 1/64 RAM,
1/64 RAM or 16MB, 1/2 RAM max of 1/4 RAM or 1GB
or 1/4 RAM or 256 MB

SPARC (64-bit) Solaris Parallel GC, Server, 1/64 Parallel GC, Server, 1/64 RAM,
RAM, 1/4 RAM or 1TGB max max of 1/4 RAM or 1GB

x64 (64-bit) Linux Parallel GC, Server, 1/64 Parallel GC, Server, 1/64 RAM,
RAM, 1/4 RAM or 1GB max  max of 1/4 RAM or 1GB

x64 (64-bit) Windows Parallel GC, Server, 1/64 Parallel GC, Server, 1/64 RAM,
RAM, 1/4 RAM or 1TGB max max of 1/4 RAM or 1GB

1A-64 Linux Parallel GC, Server, 1/64 Parallel GC, Server, 1/4 RAM
RAM, 1/4 RAM or 1GB max  or 1GB max 4MB, 64MB

1A-64 Windows Parallel GC, Server, 1/64 Parallel GC, Server, 1/64 RAM,

RAM, 1/4 RAM or 1GB max

max of 1/4 RAM or 1GB

Table 3-3 summarizes the updated ergonomic choices made by Java 6 Update 18
when no command line options are specified. The values in the cells within Table 3-3
that have changed from the Java 5 ergonomics in Table 3-2 are in italic.

Young generation space size is also sized at 1/3 of the Java heap size for those
configurations listed in the table that are in italic.

Adaptive Java Heap Sizing

An artifact of the ergonomics feature enabling the throughput collector is the enabling of
an additional feature called adaptive heap sizing. Adaptive heap sizing attempts to opti-
mally size the young generation and old generation spaces of the HotSpot VM by evaluat-
ing application object allocation rates and their lifetimes. The HotSpot VM monitors the
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Java application’s object allocation rate and their object lifetimes and then makes sizing
decisions that attempt to size the young generation space such that short-lived objects
are collected prior to getting promoted to old generation along with allowing longer lived
objects to be promoted in a timely manner to avoid them unnecessarily being copied
between survivor spaces. The HotSpot VM initially uses explicit young generation sizing
such as those specified with -Xmn, -XX:NewSize, -XX :MaxNewSize, -XX:NewRatio,
and -XX:SurvivorRatio as a starting point for young generation sizing. Adaptive siz-
ing automatically adjusts young generation space sizes from those initial settings.

Tip
Adaptive heap sizing is available only with the throughput collectors -XX : +UseParallelGC

or -XX:+UseParallelO1dGC. It is not available with the concurrent collector or serial
collector.

Although there exists HotSpot VM command line options that can fine-tune the
policies adaptive heap sizing uses in making its dynamic heap sizing decisions,
these options are rarely used outside the guidance of HotSpot VM engineers. It is much
more common to disable adaptive heap sizing and explicitly size the young generation
space including eden and survivor spaces. On most Java applications using the through-
put collector, enabled via -XX: +UseParallelGCor -XX: +UseParallelOl1dGC, adap-
tive sizing does a good job at optimally sizing the young generation space. The family of
applications that adaptive heap sizing finds the most challenging are those that have
frequent fluctuations, or rapidly changing periods of object allocation rates and experi-
ence frequent phases where object lifetimes vary dramatically. Applications that fall
into this category may realize better performance by disabling adaptive heap sizing
using the -XX: -UseAdaptiveSizePolicy HotSpot VM command line option. Note,
the “-” character after the “-xX:”. The “-” character tells the HotSpot VM to disable
the adaptive sizing policy. In contrast, a “+” character following the “-xx:” tells the
HotSpot VM to enable the feature.

Beyond Ergonomics

Performance demanding applications often find tuning the HotSpot VM beyond its
ergonomic defaults results in improved performance. The one exception to this is
adaptive sizing, which is enabled automatically when using the throughput collector.
Adaptive sizing tends to do well at automatically sizing the young generation space
for most Java applications.

More information on tuning the HotSpot VM can be found in Chapter 7 of this
book. Ergonomics is a feature that continues to evolve with each release of the
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HotSpot VM with the goal of being able to meet or exceed the performance realized
by specialized command line option tuning.
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JVM Performance
Monitoring

This chapter describes the information to monitor at the Java Virtual Machine (JVM)
level of the software stack. In addition, it shows tools that can be used to monitor a
JVM and what to watch for as common patterns. The details of how to make JVM
tuning decisions based on the information observed can be found in Chapter 7, “Tun-
ing the JVM, Step By Step.” There is also a small section at the end of the chapter
covering application monitoring.

Monitoring a JVM is an activity that should be done all the time with a production
application. Since the JVM is a critical component in the software stack, it should
be monitored as much as the application itself and the operating system. Analysis
of JVM monitoring information indicates when JVM tuning is needed. JVM tuning
should be expected anytime there is a JVM version change, operating system change
(configuration or version), application version or update, or a major change in appli-
cation input. A change in application input is something that can occur frequently
with many Java applications that can alter the performance of a JVM. Hence, moni-
toring a JVM is an important activity.

There are several areas of the JVM to monitor including garbage collection, JIT
compiler activity, and class loading. Many tools are available to monitor a JVM.
Some monitoring tools are distributed with a JDK, some tools are free, and others
are commercial. The monitoring tools covered in this chapter are either distributed
with the Oracle JDK, free, or open source. Additionally, all the tools presented in
this chapter are available for Windows, Linux, and Oracle Solaris (also referred to
as Solaris hereafter) operating systems.
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To understand the material presented in this chapter, it is helpful to understand the
major components and the general operations of a modern JVM. An overview of the
Java HotSpot VM and its major components is given in Chapter 3, “JVM Overview.”

Definitions

Before delving into the details of what to monitor, a revisit of the definitions of
performance monitoring and performance profiling presented at the beginning
of Chapter 2, “Operating System Performance Monitoring,” is useful. Performance
monitoring is an act of nonintrusively collecting or observing performance data from
an operating or running application. Performance monitoring is usually a preventa-
tive or proactive type of action and can be performed in a production environment,
qualification environment, or development environment. Performance monitoring
can also be a first step in a reactive situation where an application stakeholder has
reported a performance issue but has not provided sufficient information or clues to
a potential root cause. In this case, performance profiling likely follows the act of per-
formance monitoring. Performance monitoring also helps identify or isolate potential
issues without having a severe impact on application responsiveness or throughput.

In contrast, performance profiling is an act of collecting performance data from an
operating or running application that may be intrusive on application throughput
or responsiveness. Performance profiling tends to be a reactive type of activity, or an
activity in response to a stakeholder reporting a performance issue. It usually has a
narrower focus than performance monitoring. Profiling is rarely done in production
environments. It is typically done in qualification, testing, or development environ-
ments and is often an act that follows a monitoring activity.

Performance tuning, in contrast to performance monitoring and performance pro-
filing, is an act of changing tunables, source code, or configuration attribute(s) for
the purposes of improving throughput or responsiveness. Performance tuning often
follows monitoring or performance profiling activities.

Garbage Collection

Monitoring JVM garbage collection is important since it can have a profound effect
on an application’s throughput and latency. Modern JVMs, such as the Java HotSpot
VM (also referred to as HotSpot VM hereafter), provide the ability to observe garbage
collection statistics per garbage collection in either a textual form, directed to a log
file, or by publishing the garbage collection statistics to a monitoring GUI.

This section begins by listing the garbage collection data of interest. Then a list-
ing of HotSpot VM command line options to report garbage collection statistics is
presented along with an explanation of the reported data. In addition, graphical
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tools that can be used to analyze garbage collection data is presented. And, most
importantly, patterns to look for are given along with suggestions as to when JVM
garbage collection tuning is advisable.

Garbage Collection Data of Interest

The data of interest in garbage collection statistics are

= The garbage collector in use

= The size of the Java heap

= The size of the young generation and old generation spaces

= The size of the permanent generation space

= The duration of minor garbage collections

= The frequency of minor garbage collections

= The amount of space reclaimed in minor garbage collections

= The duration of full garbage collections

= The frequency of full garbage collections

= The amount of space reclaimed in a concurrent garbage collection cycle
= The occupancy of the Java heap before and after garbage collections

= The occupancy of the young generation and old generation spaces before and
after garbage collections

= The occupancy of the permanent generation space before and after garbage
collections

= Whether it is the occupancy of the old generation space or the occupancy of the
permanent generation space that triggers a full garbage collection

= Whether the application is making use of explicit calls to System.gc ()

Garbage Collection Reporting

There is little additional overhead in the HotSpot VM to report garbage collection
data. In fact, the overhead is so small it is recommended to collect garbage collection
data in production environments. This section describes several different HotSpot
VM command line options that produce garbage collection statistics along with an
explanation of the statistics.

There are generally two different types of garbage collections: a minor garbage
collection, also called a young generation garbage collection, and a full garbage col-
lection, also called a major garbage collection. A minor garbage collection collects
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the young generation space. A full garbage collection generally expresses the notion
of garbage collecting and compacting the old generation and permanent generation
spaces. There are some exceptions to this. In the HotSpot VM, the default behavior
on a full garbage collection is to garbage collect the young generation, old generation,
and permanent generation spaces. In addition, the old generation and permanent
generation spaces are compacted along with any live objects in young generation
space being promoted to the old generation space. Hence, at the end of a full garbage
collection, young generation space is empty, and old generation and permanent gen-
eration spaces are compacted and hold only live objects. The behavior of each of the
HotSpot garbage collectors is described in detail in Chapter 3.

As mentioned earlier, a minor garbage collection frees memory occupied by
unreachable objects in the young generation space. In contrast, the default behav-
ior for the HotSpot VM on a full garbage collection is to free memory occupied by
unreachable objects in the young generation, old generation, and permanent gen-
eration spaces. It is possible to configure the HotSpot VM to not garbage collect the
young generation space on a full garbage collection prior to garbage collecting the old
generation space using the command line option -XX:-ScavengeBeforeFullGC.
The “-” character preceding the ScavengeBeforeFullGC disables the garbage col-
lection of the young generation space on a full garbage collection. In contrast, a “+”
character in front of ScavengeBeforeFullGC enables the garbage collection of the
young generation space on a full garbage collection. As just mentioned, the default
behavior for the HotSpot VM is to enable garbage collection of the young generation
space on full garbage collections. It is advisable to use the default behavior and not
disable garbage collection of young generation on a full garbage collection. Garbage
collecting the young generation space prior to garbage collecting the old generation
space usually results in less work for the garbage collector and more objects being
garbage collected since objects in the old generation space may be holding object
references to objects in the young generation space. If the young generation space is
not garbage collected, any object in old generation space that holds a reference to an
object in young generation space cannot be garbage collected.

-XX:+PrintGCDetails
Although -verbose:gc is probably the most commonly used garbage collection
reporting command line option, -XX: +PrintGCDetails prints additional and more
valuable garbage collection information. This subsection presents example output
from -XX:+PrintGCDetails for the throughput and concurrent garbage collectors
along with providing an explanation of data. Also, patterns to watch for in the output
are also presented.

It is important to note the additional information produced with -XX: +
PrintGCDetails can change between versions of the HotSpot VM.



Garbage Collection 111

An example of -XX : +PrintGCDetails output from Java 6 Update 25’s throughput
garbage collector, enabled via -XX: +UseParallelGCor -XX: +UseParallelOldGC,
is shown in the following example. The output is spread across several lines for easier
reading.

[GC
[PSYoungGen: 99952K->14688K(109312K)]
422212K->341136K(764672K), 0.0631991 secs]
[Times: user=0.83 sys=0.00, real=0.06 secs]

The ccC label indicates this is minor garbage collection. [PSYoungGen:
99952K->14688K(109312K) ] provides information about the young generation
space. PSYoungGen indicates the young generation garbage collector in use is the
multithreaded young generation garbage collector used with the throughput collec-
tor, enabled with the command line option -XX: +UseParallelGC, or auto enabled
with -XX: +UseParallel0ldGC. Other possible young generation garbage collec-
tors are ParNew, which is the multithreaded young generation garbage collector
used with the concurrent old generation garbage collector known as CMS, and Def -
New which is the single-threaded young generation garbage collector used with the
serial garbage collector, enabled with the command line option -XX: +UseSerialGC.
-XX:+UseSerialGC, (DefNew), can also be used in combination with the old genera-
tion concurrent garbage collector, CMS, to indicate the use of a single-threaded young
generation collector. At the time of this writing the G1 garbage collector, currently
under development, does not use an identifier in the same way as the other three
garbage collectors to identify the output as G1 GC.

The value to the left of the ->, 99952K, is the occupancy of the young genera-
tion space prior to the garbage collection. The value to the right of the - >, 14688K,
is the occupancy of the young generation space after the garbage collection. Young
generation space is further divided into an eden space and two survivor spaces. Since
the eden space is empty after a minor garbage collection, the value to the right of
the ->, 14688K, is the survivor space occupancy. The value inside the parentheses,
(109312K),is the size, not the occupancy, of the young generation space, that is, the
total size of eden and the two survivor spaces.

On the next line of output, 422212K->341136K (764672K) provides the Java
heap utilization (the total occupancy of both young generation and old generation
spaces), before and after the garbage collection. In addition, it provides the Java heap
size, which is the total size of young generation and old generation spaces. The value
to the left of the - >, 422212K, is the occupancy of the Java heap before the garbage
collection. The value to the right of the ->, 341136K, is the occupancy of the Java
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heap after the garbage collection. The value inside the parentheses, (764672K), is
the total size of the Java heap.

Using the reported young generation size and the reported Java heap size, you
can calculate the size of the old generation space. For example, the Java heap size is
764672K, and the young generation size is 109312K. Hence, the old generation size
1S 764672K—109312K = 655360K.

0.0631991 secs indicates the elapsed time for the garbage collection.

[Times: user=0.06 sys=0.00, real=0.06 secs] provides CPU usage and
elapsed time information. The value to the right of user is the CPU time used by
the garbage collection executing instructions outside the operating system. In this
example, the garbage collector used 0.06 seconds of user CPU time. The value to the
right of sys is the CPU time used by the operating system on behalf of the garbage
collector. In this example, the garbage collector did not use any CPU time execut-
ing operating system instructions on behalf of the garbage collection. The value to
the right of real is the elapsed wall clock time in seconds of the garbage collection.
In this example, it took 0.06 seconds to complete the garbage collection. The times
reported for user, sys, and real are rounded to the nearest 100th of a second.

An example of a full garbage collection with -XX: +PrintGCDetails follows. (The
output is spread across several lines for easier reading.)

[Full GC
[PSYoungGen: 11456K->0K(110400K)]
[PSO1dGen: 651536K->58466K(655360K)]
662992K->58466K (765760K)
[PSPermGen: 10191K->10191K(22528K)],
1.1178951 secs]
[Times: user=1.01 sys=0.00, real=1.12 secs]

The Full cc label indicates it is a full garbage collection. [PSYoungGen:
11456K->0K(110400K)] has the same meaning as in a minor garbage collection
(explained previously).

[PSO1dGen: 651536K->58466K(655360K) ] provides information about the
old generation space. PSO1dGen indicates the old generation garbage collector in
use is the multithreaded old generation garbage collector used with the throughput
collector enabled via the XX:+UseParallel0ldGC command line option. In the
PSO01dGen row of output, the value to the left of the ->, 651536K, is the occupancy of
the old generation space prior to the garbage collection. The value to the right of the
->,58466K,is the occupancy of the old generation space after the garbage collection.
The value inside the parentheses, (655360K), is the size of the old generation space.

662992K->58466K (765760K) provides the Java heap utilization. It is the cumu-
lative occupancy of both young generation and old generation spaces before and after
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the garbage collection. The value to the right of the - > can also be thought of as the
amount of live data in the application at the time of the full garbage collection. Know-
ing the amount of live data in the application, especially while the application is in
steady state is important information to have when sizing the JVM’s Java heap and
fine-tuning the JVM’s garbage collector.

[PSPermGen: 10191K->10191K(22528K)] provides information about the
permanent generation space. PSPermGen indicates the permanent generation
garbage collector in use is the multithreaded permanent generation garbage col-
lector used with the throughput collector enabled via the -XX: +UseParallelGC
or -XX:+UseParallel01dGC command line options. In the PSPermGen row of
data, the value to the left of the ->, 10191K, is the occupancy of the permanent
generation space prior to the garbage collection. The value to the right of the - >,
10191K, is the occupancy of the permanent generation space after the garbage
collection. The value inside the parentheses (22528K), is the size of the perma-
nent generation space.

An important observation to take notice of in a full garbage collection is the heap
occupancies of the old generation and permanent generation spaces before the gar-
bage collection. This is because a full garbage collection may be triggered by either
the occupancy of the old generation or permanent generation space nearing its capac-
ity. In the output, the occupancy of the old generation space before the garbage
collection (651536K), is very near the size of the old generation space (655360K).
In contrast, the occupancy of the permanent generation space before the garbage
collection (10191K), is nowhere near the size of the permanent generation space
(22528K). Therefore, this full garbage collection was caused by the old generation
space filling up.

1.1178951 secs indicates the elapsed time for the garbage collection.

[Times: user=1.01 sys=0.00, real=1.12 secs] provides CPU and elapsed
time information. Its meaning is the same as described earlier for minor garbage
collections.

When using the concurrent garbage collector, CMS, the output produced by
-XX:+PrintGCDetails is different, especially the data reporting what is happen-
ing during a mostly concurrent garbage collection of the old generation space. The
concurrent garbage collector, CMS, is enabled with the -XX : +UseConcMarkSweepGC
command line option. It also auto-enables -XX: +UseParNewGC, a multithreaded
young generation garbage collector. An example of a minor garbage collection using
the concurrent garbage collector, CMS, follows:

[GC
[ParNew: 2112K->64K(2112K), 0.0837052 secs]
16103K->15476K(773376K), 0.0838519 secs]
[Times: user=0.02 sys=0.00, real=0.08 secs]
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The minor garbage collection output from the concurrent garbage collector is simi-
lar to the minor garbage collection output for the throughput garbage collector. It is
explained here for completeness.

The GcC label indicates this is minor garbage collection. [ParNew:
2112K->64K(2112K) ] provides information about the young generation space.
ParNew indicates the young generation garbage collector in use is the multithreaded
young generation garbage collector used with the CMS concurrent garbage collector.
If the serial young generation garbage collector is specified to be used with CMS, the
label here will be DefNew.

The value to the left of the ->, 2112K, and to the right of the ParNew label, is the
occupancy of the young generation space prior to the garbage collection. The value
to the right of the - >, 64K, is the occupancy of the young generation space after the
garbage collection. The young generation space is further divided into an eden space
and two survivor spaces. Since the eden space is empty after a minor garbage collec-
tion, the value to the right of the - >, 64K, is the survivor space occupancy. The value
inside the parentheses (2112K), is the size, not the occupancy, of the young genera-
tion space, that is, the total size of eden and the two survivor spaces. The 0.0837052
secs output is the amount of time it took to garbage collect unreachable objects in
the young generation space.

On the next line of output, 16103K->15476K (773376K) provides the Java heap
utilization (the total occupancy of both young generation and old generation spaces),
before and after the garbage collection. In addition, it provides the Java heap size,
which is the total size of young generation and old generation spaces. The value to
the left of the - >, 16103K, is the occupancy of the Java heap before the garbage col-
lection. The value to the right of the ->, 15476K, is the occupancy of the Java heap
after the garbage collection. The value inside the parentheses (773376K), is the
total size of the Java heap.

Using the reported young generation size and the reported Java heap size, you
can calculate the size of the old generation space. For example, the Java heap size is
773376K and the young generation size is 2112K. Hence, the old generation size is
773376K—2112K=771264K.

0.0838519 secs indicates the elapsed time for the minor garbage collection
including the time it took to garbage collect the young generation space and promote
any objects to old generation along with any remaining final cleanup work.

[Times: user=0.02 sys=0.00, real=0.08 secs] provides CPU usage and
elapsed time information. The value to the right of user is the CPU time used by
the garbage collection executing instructions outside the operating system. In this
example, the garbage collector used 0. 02 seconds of user CPU time. The value to the
right of sys is the CPU time used by the operating system on behalf of the garbage
collector. In this example, the garbage collector did not use any CPU time executing
operating system instructions on behalf of the garbage collection. The value to the
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right of real is the elapsed wall clock time in seconds of the garbage collection. In
this example, it took 0.08 seconds to complete the garbage collection. The times
reported for user, sys, and real are rounded to the nearest 100th of a second.

Recall from the description of CMS in Chapter 3 there is a mostly concurrent garbage
collection cycle that can execute in the old generation space. -XX: +PrintGCDetails
also reports garbage collection activity on each concurrent garbage collection cycle.
The following example shows garbage collection output that reports an entire con-
current garbage collection cycle. The concurrent garbage collection activity is inter-
spersed with minor garbage collections to illustrate that minor garbage collections
can occur during a concurrent garbage collection cycle. The output is reformatted for
easier reading, and the concurrent garbage collection data is in bold. It should also
be noted that the output reported from -XX: +PrintGCDetails when using CMS is
subject to change between releases.

[cc
[1 CMS-initial-mark: 13991K(773376K)]
14103K(773376K), 0.0023781 secs]
[Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-mark-start]
[GC
[ParNew: 2077K->63K(2112K), 0.0126205 secs]
17552K->15855K(773376K), 0.0127482 secs]
[Times: user=0.01 sys=0.00, real=0.01 secs]
[CMS-concurrent-mark: 0.267/0.374 secs]
[Times: user=4.72 sys=0.01, real=0.37 secs]
[GC
[ParNew: 2111K->64K(2112K), 0.0190851 secs]
17903K->16154K(773376K), 0.0191903 secs]
[Times: user=0.01 sys=0.00, real=0.02 secs]
[CMS-concurrent-preclean-start]
[CMS-concurrent-preclean: 0.044/0.064 secs]
[Times: user=0.11l sys=0.00, real=0.06 secs]
[CMS-concurrent-abortable-preclean-start]
[CMS-concurrent-abortable-clean] 0.031/0.044 secs]
[Times: user=0.09 sys=0.00, real=0.04 secs]
[GC
[YG occupancy: 1515 K (2112K)
[Rescan (parallel) , 0.0108373 secs]
[weak refs processing, 0.0000186 secs]
[1 CMS-remark: 16090K (20288K)]
17242K(773376K), 0.0210460 secs]
[Times: user=0.01 sys=0.00, real=0.02 secs]
[GC
[ParNew: 2112K->63K(2112K), 0.0716116 secs]
18177K->17382K(773376K), 0.0718204 secs]
[Times: user=0.02 sys=0.00, real=0.07 secs]
[CMS-concurrent-sweep-start]

Continued
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[GC

[ParNew: 2111K->63K(2112K), 0.0830392 secs]

19363K->18757K(773376K), 0.0832943 secs]

[Times: user=0.02 sys=0.00, real=0.08 secs]
[GC

[ParNew: 2111K->0K(2112K), 0.0035190 secs]

17527K->15479K(773376K), 0.0036052 secs]

[Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-sweep: 0.291/0.662 secs]

[Times: user=0.28 sys=0.01, real=0.66 secs]

[GC

[ParNew: 2048K->0K(2112K), 0.0013347 secs]

17527K->15479K(773376K), 0.0014231 secs]

[Times: user=0.00 sys=0.00, real=0.00 secs]
[CMS-concurrent-reset-start]
[CMS-concurrent-reset: 0.016/0.016 secs]

[Times: user=0.01 sys=0.00, real=0.02 secs]
[GC

[ParNew: 2048K->1K(2112K), 0.0013936 secs]

17527K->15479K(773376K), 0.0014814 secs]

[Times: user=0.00 sys=0.00, real=0.00 secs]

A CMS cycle begins with the initial mark pause and ends at the completion of
the concurrent reset phase. Each of the CMS cycle phases is in bold in the preced-
ing output beginning with the CMS-initial-mark and ending with the cMs-
concurrent-reset. The CMS-concurrent-mark entry indicates the end of the
concurrent marking phase. The CMS-concurrent-sweep label marks the end
of the concurrent sweeping phase. The CMS-concurrent-preclean and CMS-
concurrent-abortable-preclean entries identify work that can be done
concurrently and is in preparation for the remark phase, denoted with the cMs-
remark label. The sweeping phase, noted with the CMS-concurrent -sweep entry,
is the phase that frees the space consumed by objects marked as unreachable. The
final phase is indicated by the CMS-concurrent-reset, which prepares for the
next concurrent gar bage collection cycle.

The initial mark is usually a short pause relative to the time it takes for a minor
garbage collection. The time it takes to execute the concurrent phases (concurrent
mark, concurrent precleaning, and concurrent sweep) may be relatively long (as in
the preceding example) when compared to a minor garbage collection pause, but
Java application threads are not stopped for the duration of the concurrent phases.
The remark pause is affected by the specifics of the application (e.g., a higher rate
of modifying objects can increase this pause time) and the time since the last minor
garbage collection (i.e., a larger number of objects in the young generation space may
increase the duration of this pause).

A pattern to pay particular attention to in the output is the amount in the
reduction of old generation space occupancy during the CMS cycle. In particular,
how much the Java heap occupancy drops between the start and end of the CMS
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concurrent sweep denoted in the output as CMS-concurrent-sweep-start and
CMS-concurrent-sweep. The Java heap occupancy can be observed by looking at
the minor garbage collections. Hence, pay attention to the minor garbage collections
between the start and end of the CMS concurrent sweep phase. If there is little drop
in the Java heap occupancy between the start and end of the CMS concurrent sweep
phase, then either few objects are being garbage collected, meaning the CMS garbage
collection cycles are finding few unreachable objects to garbage collect and as a result
are wasting CPU, or objects are being promoted into the old generation space at a
rate that is equal to or greater than the rate at which the CMS concurrent sweep
phase is able to garbage collect them. Either of these two observations is a strong
indicator the JVM is in need of tuning. See Chapter 7 for information on tuning the
CMS garbage collector.

Another artifact to monitor when using the CMS garbage collector is the tenur-
ing distribution enabled via the -XX:+PrintTenuringDistribution command
line option. The tenuring distribution is a histogram showing the ages of objects in
the young generation’s survivor spaces. When an object’s age exceeds the tenuring
threshold it is promoted from the young generation space to the old generation space.
The tenuring threshold and how to monitor the tenuring distribution along with why
it is important to monitor is explained in the “Tenuring Threshold Explained” and
“Monitoring the Tenuring Threshold” sections of Chapter 7.

If objects are promoted too quickly to the old generation space and the CMS gar-
bage collector cannot keep free enough available space to meet the rate that objects
are promoted from young generation to old generation, it leads to the old genera-
tion running out of available space, a situation known as a concurrent mode fail-
ure. A concurrent mode failure can also occur if the old generation space becomes
fragmented to a point where there is no longer a hole in the old generation space
large enough to handle an object promotion from the young generation space.
-XX:+PrintGCDetails reports a concurrent mode failure in the garbage collec-
tion output with the text (concurrent mode failure).When a concurrent mode
failure occurs, the old generation space is garbage collected to free available space,
and it is compacted to eliminate fragmentation. This operation requires all Java
application threads be stopped, and it can take a noticeably lengthy duration of
time to execute. Therefore, if you observe concurrent mode failures, you should tune
the JVM using the guidance in Chapter 7, especially the section on fine-tuning the
application for low latency.

Including Date and Time Stamps

The HotSpot VM includes command line options to include a date or time stamp on
each reported garbage collection. The -XX:+PrintGCTimeStamps command line
option prints a time stamp that is the number of elapsed seconds since the JVM
started. It is printed at each garbage collection. The following is example minor
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garbage collection output from -XX: +PrintGCTimeStamps being used in combina-
tion with -XX: +PrintGCDetails and the throughput garbage collector. (The output
is spread across several lines for easier reading.)

77.233: [GC
[PSYoungGen: 99952K->14688K(109312K)]
422212K->341136K(764672K), 0.0631991 secs]
[Times: user=0.83 sys=0.00, real=0.06 secs]

Notice the -XX: +PrintGCDetails output is prefixed with a time stamp represent-
ing the number of seconds since the JVM started. The output for full garbage collec-
tions also prefixes the output with a time stamp. In addition, a time stamp is also
printed when using the concurrent garbage collector.

Java 6 Update 4 and later include a -XX:+PrintGCDateStamps command line
option. It produces an ISO 8601 date and time stamp. The date and time stamp have
the following form; YYYY-MM-DD-T-HH-MM-SS.mmm-TZ, where:

= YYYY is the four-digit year.

= MM is the two-digit month; single-digit months are prefixed with 0.

= DD is the two-digit day of the month; single-digit days are prefixed with 0.

= Tis aliteral that denotes a date to the left of the literal and a time of day to the
right.

= HH is the two-digit hour; single-digit hours are prefixed with 0.

= MM is the two-digit minute; single-digit minutes are prefixed with 0.

= SS is the two-digit second; single-digit seconds are prefixed with 0.

= mmm is the three-digit milliseconds; single- and two-digit milliseconds are pre-
fixed with 00 and 0, respectively.

= T7Z is the time zone offset from GMT.

Although the time zone offset from GMT is included in the output, the date and
time of day are not printed as GMT time. The date and time of day are adjusted to
local time. The following example output uses -XX: +PrintGCDateStamps together
with -XX: +PrintGCDetails when using the throughput garbage collector. The out-
put is spread across several lines for easier reading.

2010-11-21T09:57:10.518-0500: [GC
[PSYoungGen: 99952K->14688K(109312K)]
422212K->341136K(764672K), 0.0631991 secs]
[Times: user=0.83 sys=0.00, real=0.06 secs]
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The full garbage collections with the throughput garbage collector also prefixes a
date and time stamp when using -XX:+PrintGCDateStamps. In addition, a date
and time stamp are printed when using the concurrent garbage collector.

The use of date and/or time stamps allows you to measure both the duration of
minor and full garbage collections along with the frequency of minor and full gar-
bage collections. With the inclusion of date and/or time stamps, you can calculate an
expected frequency that minor and full garbage collections occur. If the garbage col-
lection durations or frequency exceed the application’s requirements, consider tuning
the JVM as described in Chapter 7.

-XToggc

To facilitate offline analysis of garbage collection statistics and to direct garbage
collection output to a file, the -X1loggc:<filename> HotSpot VM command line
option can be used. <filename>is the name of the file where you want the garbage
collection data to be stored. Offline analysis of garbage collection data can represent
a wider span of time and the ability to identify patterns without having to observe
the data as the application is running.

When -XX:+PrintGCDetails is used in combination with -Xloggc:<filenames>,
the output is automatically prefixed with a time stamp even without specify-
ing -XX:+PrintGCTimeStamps. The time stamp is printed in the same way as
-XX:+PrintGCTimeStamps is printed. Following is an example of -X1oggc: <filename>
being used in combination with -XX: +PrintGCDetails with the throughput garbage
collector. (The output is spread across several lines for easier reading.)

77.233: [GC
[PSYoungGen: 99952K->14688K(109312K)]
422212K->341136K(764672K), 0.0631991 secs]
[Times: user=0.83 sys=0.00, real=0.06 secs]

Since -X1oggc includes a time stamp automatically in its output, it is easy to deter-
mine when minor and full garbage collections occur. In addition, you can also calcu-
late the frequency of minor and full garbage collections. With the time stamps, you
can calculate the expected frequency that minor and full garbage collections occur. If
the garbage collection durations or frequency exceed the application’s requirements,
consider tuning the JVM as described in Chapter 7.

Application Stopped Time and Application Concurrent Time

The HotSpot VM can report the amount of time an application runs between safepoint
operations and the amount of time the HotSpot VM blocks executing Java threads
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using the command line options -XX:+PrintGCApplicationConcurrentTime
and -XX:+PrintGCApplicationStoppedTime. Observing safepoint operations
using these two command line options can provide useful information in understand-
ing and quantifying the impact of JVM induced latency events. It can also be used
to identify whether a latency event of interest is the result of a JVM induced latency
from a safepoint operation, or if the latency event occurred as a result of something
in the application.

Tip

Chapter 3, “JVM Overview,” describes safepoint operations in more detail.

An example using -XX:+PrintGCApplicationConcurrentTime and
-XX:+PrintGCApplicationStoppedTime in addition to -XX:+PrintGCDetails
is shown in the following:

Application time: 0.5291524 seconds
[GC
[ParNew: 3968K->64K(4032K), 0.0460948 secs]
7451K->6186K(32704K), 0.0462350 secs]
[Times: user=0.01 sys=0.00, real=0.05 secs]
Total time for which application threads were stopped: 0.0468229 seconds
Application time: 0.5279058 seconds
[GC
[ParNew: 4032K->64K(4032K), 0.0447854 secs]
10154K->8648K(32704K), 0.0449156 secs]
[Times: user=0.01 sys=0.00, real=0.04 secs]
Total time for which application threads were stopped: 0.0453124 seconds
Application time: 0.9063706 seconds
[GC
[ParNew: 4032K->64K(4032K), 0.0464574 secs]
12616K->11187K(32704K), 0.0465921 secs]
[Times: user=0.01 sys=0.00, real=0.05 secs]
Total time for which application threads were stopped: 0.0470484 seconds

The output shows the application ran for approximately .53 to .91 seconds with
minor garbage collection pauses of approximately .045 to .047 seconds. That equates
to about 5% to 8% overhead for minor garbage collections.

Also notice there are no additional safepoints between each of the minor garbage
collections. If there happens to be additional safepoints between garbage collections,
the output will show Application time: and Total time for which appli-
cation threads were stopped: messages for each safepoint that occurs between
garbage collections.
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Explicit Garbage Collections

Explicit garbage collections can be identified in garbage collection output easily. The
garbage collection output contains text indicating the full garbage collection is the
result of an explicit call to System.gc(). Following is an example of a full garbage col-
lection initiated with a call to System.gc () using the -XX:+PrintGCDetails com-
mand line option. Again, the output is spread across several lines for easier reading.

[Full GC (System)
[PSYoungGen: 99608K->0K(114688K) ]
[PSOTdGen: 317110K->191711K(655360K)]
416718K->191711K(770048K)
[PSPermGen: 15639K->15639K(22528K)],
0.0279619 secs]
[Times: user=0.02 sys=0.00, real=0.02 secs]

Noticethe (System) label following the Full GCtext.Thisindicates thisis a System.gc()
induced full garbage collection. If you observe an explicit full garbage collection in the
garbage collection logs, investigate the reason why it is being used and then decide
whether the call to System.gc() should be removed from the source code, or whether it
should be disabled.

Recommended Command Line Options for Monitoring Garbage Collection

A minimum set of HotSpot VM garbage collection command line options to
monitor garbage collection are -XX:+PrintGCDetails along with either
-XX:+PrintGCTimeStamps or -XX:+PrintGCDhateStamps. It may also be useful
to use -Xloggc:<filename> to save the data to a file so the data can be further
analyzed offline.

Offline Analysis of Garbage Collection Data

The purpose of doing offline analysis is to summarize garbage collection data and
look for patterns of interest in the data. Offline analysis of garbage collection data
can be done in a variety of different ways such as loading the data into a spreadsheet
or using a charting tool to plot the data. GCHisto is a tool designed to do offline
analysis. GCHisto is a free tool that can be downloaded at http:/gchisto.dev.java.net.
GCHisto reads garbage collection data saved in a file and presents both a tabular
and graphical view of the data. Figure 4-1 shows a tabular summary from its GC
Pause Stats tab.


http://gchisto.dev.java.net
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Figure 4-1 GC Pause Stats in GCHisto

The GC Pause Stats subtab provides information such as the number of, the over-
head of, and duration of garbage collections. The additional GC Pause Stats subtabs
narrow the focus to one of the aforementioned categories.

All garbage collections or phases of garbage collections that induce stop-the-
world pauses have a row in the table in addition to a total on the top row. Figure 4-1
shows data from the concurrent garbage collector. Recall from Chapter 3 that the
concurrent garbage collector, in addition to minor (young) and major garbage col-
lections, also has two stop-the-world garbage collection pauses: the CMS initial
mark and CMS remark. If you observe initial mark or remark pauses greater than
minor garbage collection pauses, it suggests the JVM requires tuning. Initial mark
and remark phases are expected to be shorter in duration than minor garbage
collections.

When viewing statistics from the throughput garbage collector, since it has only
two stop-the-world garbage collection pauses, only minor and full garbage collections
are shown in the GC Pause Stats tab of GCHisto.

The number of minor versus full garbage collections provides a sense of the fre-
quency of full garbage collections. This information along with the full garbage col-
lection pause times can be evaluated against the application’s requirements for
frequency and duration of full garbage collections.

The garbage collection overhead (the Overhead % column) is an indicator of how
well the garbage collector is tuned. As a general guideline, concurrent garbage collec-
tion overhead should be less than 10%. It may be possible to achieve 1% to 3%. For
the throughput garbage collector, garbage collection overhead near 1% is considered
as having a well-tuned garbage collector. 3% or higher can be an indication that tun-
ing the garbage collector may improve the application’s performance. It is important
to understand there is a relationship between garbage collection overhead and the
size of the Java heap. The larger the Java heap, the better the opportunity for lower
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Figure 4-2 GC Pause Distribution

garbage collection overhead. Achieving the lowest overhead for a given Java heap
size requires JVM tuning.

In Figure 4-1, the garbage collection overhead is a little over 14%. Applying the
general guidelines just mentioned, JVM tuning will likely reduce its overhead.

The maximum pause times, the far right column, can be evaluated against the
application’s worst case garbage collection induced latency requirements. If any of
the maximum pause times exceed the application’s requirements, tuning the JVM
may be a consideration. The degree and how many pause times exceed the applica-
tion’s requirements dictate whether JVM tuning is a necessity.

The minimum, maximum, average, and standard deviation provide information
about the distribution of pause times. The distribution of pause times can be viewed
by clicking on the GC Pause Distribution tab as shown in Figure 4-2.

The default view for the GC Pause Distribution shows the distribution of all
garbage collection pauses. Which pause type is included in the view is controlled
by selecting or deselecting the appropriate check box. The y-axis is the count of
pauses and the x-axis is the pause time duration of the garbage collection event.
It is generally more useful to look at full garbage collections separately since they
usually have the longest duration. Looking at only minor garbage collections offers
the possibility to see wide variations in pause times. A wide distribution in pause
times can be an indication of wide swings in object allocation rates or promotion
rates. If you observe a wide distribution of pause times, you should look at the GC
Timeline tab to identify peaks in garbage collection activity. An example is shown
in Figure 4-3.

The default view for the GC Timeline shows all garbage collection pauses
through the entire time line. To see time stamps at the bottom of the graph
(the x-axis), you must have garbage collection statistics that include either
-XX:+PrintGCTimeStamps, -XX:+PrintGCDateStamps, or used -Xloggc. For
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Figure 4-3 GC Timeline tab

every garbage collection pause that occurred, a tick is put on the graph illustrating
the duration of the pause (y-axis) and when the pause occurred relative to the start
of the JVM (the x-axis).

There are several patterns to look for in a time line. For example, you should take
notice of when full garbage collections occur and how frequently. Selecting only full
garbage collections as the pause type is useful for this analysis. With the time line
you can observe when the full garbage collections occur relative to the start of the
JVM to get a sense of when they occurred.

Selecting only minor garbage collections as the pause type to show allows you to
observe peaks, or possibly repeating peaks, in garbage collection duration over time.
Any observed peaks or repeating patterns can be mapped back to application logs to
get a sense of what is happening in the system at that time when the peaks occur. The
use cases being executed at those time periods can be candidates to further explore
for object allocation and object retention reduction opportunities. Reducing object
allocation and object retention during these busiest garbage collection activity time
periods reduces the frequency of minor garbage collections and potentially reduces
the frequency of full garbage collections.

An area of the time line can be zoomed in on by selecting an area of interest with
the mouse, as illustrated in Figure 4-4.

Zooming in allows you to narrow the focus of the time line to a specific area to see
each garbage collection pause. You can zoom back out by pressing the right mouse
button anywhere in the graph and selecting Auto Range > Both Axes from the context
sensitive menu.

GCHisto also provides the capability to load more than one garbage collection log
at a time via the Trace Management tab. When multiple garbage collection logs are
loaded, there is a separate tab for each garbage collection log, which allows you to



Garbage Collection 125

| 4] GC Histogram Tool (GChisto) | =R =R |
Help

Trace Management GC Pause Stats | GC Pause Distribution | GC Timeline

File : CMS-GC.LOG

Name | A
‘'oung GC
ull GC
itial Mark
Remark

File : CMS-GC.LOG (m s)

=

Teme {ms,
s uou s
s 88383

SREREE

1000 2,000 3.000 L4000 8,000 6000 7,000 AO00 ©000 10000 11,000
Elapsed Time (sec)

[# ¥oung GC & Full GC B nitial Mark B Remark|

Figure 4-4 GC Timeline zooming

easily switch between logs. This can be useful when you want to compare garbage
collection logs between different Java heap configurations or between different appli-
cation loads.

Graphical Tools

Garbage collection can also be monitored with graphical tools, which can make the
identification of trends or patterns a little easier than traversing textual output. The
following graphical tools can be used to monitor the HotSpot VM: JConsole, Visu-
alGC, and VisualVM. JConsole is distributed with Java 5 and later JDKs.

VisualGC was originally developed and packaged with jvmstat. It is available as
a free download at http:/java.sun.com/performance/jvmstat.

VisualVM is an open source project that brings together several existing light-
weight Java application monitoring and profiling capabilities into a single tool.
VisualVM is included in Java 6 Update 6 and later JDKs. It is also available as a
free download from http://visualvm.dev.java.net.

JConsole

JConsole is a JMX (Java Management Extensions) compliant GUI tool that con-
nects to a running Java 5 or later JVM. Java applications launched with a Java
5 JVM must add the -Dcom. sun.management . jmxremote property to allow the
JConsole to connect. Java applications launched using Java 6 and later JVMs do
not require this property. The following examples illustrate how to connect JCon-
sole to an example demo application shipped with the JDK called Java2Demo.
Using a Java 5 JDK, the Java2Demo application can be started using the following
command line.


http://java.sun.com/performance/jvmstat
http://visualvm.dev.java.net
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On Solaris or Linux:

$ <JDK 1install dir>/bin/java -Dcom.sun.management.jmxremote -jar <JDK
install dir>/demo/jfc/Java2D/Java2Demo.jar

<JDK install dirs> is the path and directory where a Java 5 JDK is installed.
On Windows:

<JDK 1install dir>\bin\java -Dcom.sun.management.jmxremote -jar <JDK
install dir>\demo\jfc\Java2D\Java2Demo.jar

<JDK install dirs is the path and directory where a Java 5 JDK is installed.
To start JConsole on either with a Java 6 or later JVM the -Dcom. sun.management .
jmxremote property is not required as an argument to JConsole.

On Solaris or Linux:

$ <JDK 1install dir>/bin/jconsole

<JDK install dirs is the path and directory where Java 5 JDK is installed.
On Windows:

<JDK dinstall dir>\bin\jconsole

<JDK install dirs> is the path and directory where a Java 5 JDK is installed.

When JConsole is launched it automatically discovers and provides the oppor-
tunity to connect to Java applications running locally or remotely. The connection
dialogs differ slightly between the JConsole version shipped in Java 5 versus Java 6
as shown in Figure 4-5 and Figure 4-6, respectively.

< JConsole: Connect to Agent @

Local Remaote Advanced |

PID | Class and Argurnents
3972 |demoljfcJava2D\ava2Demo jar |

| Connect |! Cancel |

Figure 4-5 Java 5 JConsole connection dialog
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Figure 4-6 Java 6 |Console connection dialog

In Java 5 JConsoles, the applications listed in the connection dialog that can be
monitored are applications that have been started with the -Dcom. sun . management .
jmxremote property and applications that share the same user credentials as those
of the user who has started JConsole.

With Java 6 JConsole, the applications listed in the connection dialog that can be
monitored are applications that are Java 6 applications and Java 5 applications that
have been started with the -Dcom. sun.management . jmxremote property, which
both share the same user credentials as those of the user who has started JConsole.
Java 5 applications that have not been started with the -Dcom. sun.management .
jmxremote property that share the same user credentials as those of JConsole are
listed but grayed out.

To monitor an application on a local system you select the Name and PID of the
application from the list and click the Connect button. Remote monitoring is advanta-
geous when you want to isolate the system resource consumption from the JConsole
application from the system being monitored. To monitor an application on a remote
system, the application to be monitored must be started with remote management
enabled. Enabling remote management involves identifying a port number to com-
municate with the monitored application and establishing password authentication
along with optionally using SSL for security. Information on how to enable remote
management can be found in the Java SE 5 and Java SE 6 monitoring and manage-
ment guides:
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= Java SE 5 — http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html

= Java SE 6 — http://java.sun.com/javase/6/docs/technotes/guides/management/toc.
html

Tip
More than one Java application can be monitored with JConsole at any time by selecting the
Connection > New Connection menu and selecting a different Name and PID pair.

Once a JConsole is connected to an application it will load six tabs. The default
JConsole display between Java 5 and Java 6 differs. Java 6’s JConsole displays a
graphical representation of heap memory, thread, classes, and CPU usage. In con-
trast, Java 5’s JConsole displays the same information but in a textual form. For the
purposes of monitoring JVM garbage collection, the Memory tab is the most useful.
The Memory tab in both Java 5 and Java 6 JConsole are the same. Figure 4-7 shows
the JConsole Memory tab.

] 1ava Monitoring & Management Console - pict 468 spec.jbb.JBBmain - propfile jprops =5 F=h <)
|&| Connection Window Help iz 8 || x
Chart: H:wMenqusage v'. Time Range: :M v:

" Used

600 Mb
4 437,741,272
ar""h

s . il il i
iy J"K“N‘M it | I‘M IWIWM LFN“ bj

5 MLM w\ il
11:15 11:20 11:25 11:30 11:35

100 Mb

0.0 Mb

Details

Time: 2011-02-11 11:37:43 1009
Used: 409, 588 kbytes
Committed: 514, 624 kbytes

Max: 514,624 kbytes S0 =
GC time: 3.771 seconds onPS MarkSweep (7 collections) 25%
1 minute on PS Scavenge (1,722 collections) 0% -

Figure 4-7 JConsole Memory tab


http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
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The Memory tab uses charts to graphically show the JVM’s use of memory con-
sumption over a period of time. Depending on the JVM being monitored and the gar-
bage collector being used, the spaces that make up the Java heap, or memory pools
as they are called in JConsole, may vary. But from their names it is straightforward
to map them to following HotSpot VM space names:

= Eden space. The memory pool where almost all Java objects are allocated.

= Survivor space. The memory pool containing objects that have survived at
least one garbage collection of the eden space.

= Old or tenured space. The memory pool containing objects that have sur-
vived some garbage collection age threshold.

= Permanent generation space. The memory pool containing all the reflec-
tive data of the JVM such as class and method objects. If the monitored JVM
supports class data sharing, this space will be divided into read-only and read-
write areas.

= Code cache. Applies to the HotSpot VM and contains memory that is used
by the JIT compiler and for the storage of JIT compiled code.

JConsole defines heap memory as the combination of eden space, survivor space,
and old or tenured space. Non-heap memory is defined as the combination of perma-
nent generation space and code cache. You can display charts of heap memory usage
or non-heap memory usage by choosing one of the options in the Chart drop-down
menu. You can also view charts of specific spaces. Additionally, clicking on any of the
Heap or Non-Heap bar charts in the bottom right corner switches the chart to display
the selected Heap or Non-Heap space. If you hover the mouse over any of the Heap
or Non-Heap bar charts in the lower right corner, a tool tip displays text indicating
the memory pool or space name.

A pattern to watch for is whether the survivor space remains full for an extended
period of time. This is an indication that survivor spaces are overflowing and objects
are getting promoted into the old generation space before they have an opportunity
to age. Tuning the young generation space can address survivor spaces overflowing.

You can also change the time range over which memory usage is displayed by
selecting an option in the Time Range drop-down menu.

In the left-hand portion of the Details panel (the bottom left panel), several current
JVM memory metrics are displayed including

= Used. The amount of memory currently used, including the memory occupied
by all Java objects, both reachable and unreachable.

* Committed. The amount of memory guaranteed to be available for use by
the JVM. The amount of committed memory may change over time. The JVM
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may release memory to the system, and the amount of committed memory could
be less than the amount of memory initially allocated at startup. The amount of
committed memory will always be greater than or equal to the amount of used
memory.

= Max. The maximum amount of memory that can be used for memory manage-
ment. Its value may change or be undefined. A memory allocation may fail if
the JVM attempts to increase the used memory to be greater than committed
memory, even if the amount used is less than or equal to max (for example,
when the system is low on virtual memory).

= GC time. The cumulative time spent in stop-the-world garbage collections
and the total number of garbage collection invocations including concurrent
garbage collection cycles. Multiple rows may be shown, each of which represents
the garbage collector used in the JVM.

Additional garbage collection monitoring capabilities are possible with JCon-
sole. Many of these capabilities are described in the JConsole documentation
found at

= Java SE 5 — http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.
html

= Java SE 6 — http://java.sun.com/javase/6/docs/technotes/guides/management/
jeonsole.html

VisualVM

VisualVM is an open source graphical tool that began development in 2007. VisualVM
was introduced in the Java 6 Update 7 JDK and is considered the second generation
of the JConsole tool. VisualVM integrates several existing JDK software tools and
lightweight memory monitoring tools such as JConsole along with adding profiling
capabilities found in the popular NetBeans Profiler. VisualVM is designed for both
production and development environments and further enhances the capabilities of
monitoring and performance analysis for the Java SE platform. It also utilizes the
NetBeans plug-in architecture, which allows the ability to easily add components,
add plug-ins, or extend VisualVM’s existing components or plug-ins to performance
monitor or profile any application.

VisualVM requires a Java 6 version to run, but it can monitor Java 1.4.2, Java
5, or Java 6 applications locally or remotely. However, there are some limitations to
VisualVM’s capabilities depending on the Java version used by the Java application
being monitored and whether the Java application is running locally or remotely to
VisualVM. Table 4-1 illustrates the VisualVM features available for a given Java
application running with a given version of a JDK.


http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

Garbage Collection 131

Table 4.1 VisualVM Feature Table

Feature JDK 1.4.2 Local JDK 5.0 Local JDK 6.0 JDK 6.0
and Remote and Remote (Remote) (Local)

Overview ° ° . .

System Properties o

(in Overview)

Monitor ° ° ° o

Threads o o o

Profiler °

Thread Dump °

Heap Dump .

Enable Heap Dump .

on OOME

MBean Browser °

(plug-in)

Wrapper for JConsole o o o

plug-ins (plug-in)

VisualGC (plug-in) o o o .

VisualVM also includes profiling capabilities. Although profiling is covered in
detail in Chapter 5, “Java Application Profiling,” VisualVM’s remote profiling capa-
bilities are covered in this chapter since VisualVM’s remote profiling is lightweight
and fits well with monitoring activities.

VisualVM can be launched from Windows, Linux, or Solaris using the following
command line. (Note the command name is jvisualvm, not just visualvm.)

<JDK dinstall dir>\bin\jvisualvm

<JDK install dir> is the path and directory where JDK 6 Update 6 or later
is installed.

If you have downloaded the standalone VisualVM from java.net, VisualVM can
be launched from Windows, Linux, or Solaris using the following command line.
(Note the open source version of VisualVM available on java.net is launched using

visualvm rather than jvisualvm as is done when VisualVM is launched from a
JDK distribution.)
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<VisualVM install dir>\bin\visualvm

<VisualVM install dir> is the path and directory where VisualVM is
installed.

Alternatively, you can launch VisualVM from a directory window display such as
Windows Explorer by traversing to the VisualVM installation directory and double-
clicking on the VisualVM executable icon.

The initial VisualVM display shows an Applications window on the left and an
empty monitoring window on the right, as shown in Figure 4-8.

The Applications panel of VisualVM has three major nodes in an expandable
tree. The first major node, Local, contains a list of local Java applications VisualVM
can monitor. The second node, Remote, contains a list of remote hosts and Java
applications on each remote host VisualVM can monitor. The third node, Snapshots,
contains a list of snapshot files. With VisualVM you can take a snapshot of a Java
application’s state. When a snapshot is taken, the Java application’s state is saved
to a file and listed under the Snapshots node. Snapshots can be useful when you
want to capture some important state about the application or to compare it against
a different snapshot.

Local Java applications are automatically identified by VisualVM at Java applica-
tion launch time and at VisualVM launch time. For example, as shown in Figure 4-8,
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Figure 4-8 VisualVM
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VisualVM automatically discovered the Java applications shown on the Local node.
As additional Java applications are launched, VisualVM automatically detects them
and adds them to the local node’s list. As Java applications are shut down, VisualVM
automatically removes them.

To monitor remote Java applications, configuration must be done on the remote
system where you want to monitor the Java application. The remote system must
be configured to run the jstatd daemon. The jstatd daemon is shipped in Java 5 and
Java 6 JDKs. It is not included with Java 5 or Java 6 JREs. You can find the jstatd
daemon in the same directory as jvisualvm and the java launcher.

The jstatd daemon launches a Java RMI server application that watches for the
creation and termination of HotSpot VMs and provides an interface to allow remote
monitoring tools such as VisualVM to attach and monitor Java applications remotely.
The jstatd daemon must be run with the same user credentials as those of the Java
applications to be monitored. Since jstatd can expose instrumentation of JVMs, it
must employ a security manager and requires a security policy file. Consideration
should be given to the level of access granted via the security policy so that the
monitored JVM’s security is not compromised. The policy file used by jstatd must
conform to Java’s security policy specification. The following is an example policy file
that can be used with jstatd:

grant codebase ”"file:${java.home}/../Tib/tools.jar” {
permission java.security.AlTPermission;
I

Tip

Note that the preceding example policy file allows jstatd to run without any security
exceptions. This policy is less liberal than granting all permissions to all codebases but is
more liberal than a policy that grants the minimal permissions to run the jstatd server.
More restrictive security than this example can be specified in a policy to further limit
access. However, if security concerns cannot be addressed with a policy file, the safest
approach is to not run jstatd and use the monitoring tools locally rather than connecting
remotely.

To use the preceding example policy and start the jstatd daemon, assuming the
preceding policy is saved in a file called jstatd.policy, at the command line you would
execute the following command:

jstatd -J-Djava.security.policy=<path to policy file>/jstatd.policy
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Tip
Additional details on how to configure jstatd can be found at http://java.sun.com/javase/6/
docs/technotes/tools/share/jstatd.html.

Once the jstatd daemon is running on the remote system, you can verify the local
system can attach to the remote jstatd daemon by running the jps command and
providing the hostname of the remote system. jps is a command that lists the Java
applications that can be monitored. When jps is supplied a hostname, it attempts
to connect to the remote system’s jstatd daemon to discover which Java applications
can be monitored remotely. When no optional hostname is supplied to jps, it returns
a list of Java applications that can be monitored locally.

Suppose the remote system where you have configured and have the jstatd dae-
mon running is called halas. On the local system, you would execute the following
jps command to verify the connectivity to the remote system.

$ Jjps halas
2622 Jstatd

If the jps command returns a Jstatd in its output, you have successfully config-
ured the remote system’s jstatd daemon. The number preceding the Jstatd in the
output is the process id of the jstatd daemon process. For the purposes of verifying
remote connectivity, the process id is not important.

To use VisualVM to monitor a remote Java application, it needs to be configured
with the remote host’s name or IP address. This is done by right-clicking on the
Remote node in VisualVM’s Applications panel and adding the remote host informa-
tion. If you want to monitor Java applications on multiple remote hosts, you must
configure each remote host with a jstatd daemon, using the procedure described
earlier. Then, add each remote host’s information in VisualVM. VisualVM automati-
cally discovers and provides a list of Java applications that can be monitored. Again,
recall that the remote Java applications must match the user credentials of the user
running VisualVM and jstatd along with those that meet the permissions specified
in the jstatd policy file. Figure 4-9 shows VisualVM with a remote system configured
and the Java applications it can monitor.

To monitor an application, you can either double-click on an application name
or icon under the Local or Remote node. You can also right-click on the application
name or icon and select Open. Any of these actions opens a window tab in the right
panel of VisualVM. Local applications running with Java 6 or later have additional
subtabs.


http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html
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Figure 4-9 VisualVM configured to monitor remote applications

The number of subtab windows displayed in the right panel of VisualVM depends
on the application’s Java version, whether it is running locally or remotely, and
whether any additional plug-ins have been added to VisualVM. The minimum set
of window subtabs in the right panel is the Overview and Monitor subtabs. The
Overview window provides a high level overview of the monitored application by
showing the process id, host name where the application is running, main Java
class name, any arguments passed to the application, the JVM name, the path to the
JVM, any JVM flags used, whether heap dump on out of memory error is enabled or
disabled, number of thread dumps or heap dumps have been taken, and, if available,
the monitored application’s system properties. The Monitor window displays heap
usage, permanent generation space usage, classes loaded information, and number
of threads. An example of the Monitor window monitoring an application running
remotely under Java 6 is shown in Figure 4-10.

If a JMX connection is configured for use with the remote application, you can also
request a garbage collection or heap dump from the Monitor window. To configure a
JMX on the remote application, it must be started with at least the following system
properties:

= com.sun.management . jmxremote.port=<port numbers>
" com.sun.management.jmxremote.ssl=<true | false>

" com.sun.management.jmxremote.authenticate=<true | false>



136 Chapter 4 = |VM Performance Monitoring

LR LLL) |
: Appli @ = |[|StartPage 2| & spec.jbb.BBman (id 2745) | L=
W toal B Monitor | £ sampler
47| Visualvi
& FleChooserDemo (pid 4052) < spec.jbb.JBBmain (pid 2745)
& Font2DTest (pid 3436) Morutor 10 [V]Memory [V] Classes [V] Threads
g Java2Demo (pid 2196) o v @
& Metaworks (pid 2109) Uptime: 5 min 07 sec [ PerfomGe | [ Heap Dump
() NetBeans 6.8 (pid 4472) .
& Notepad (pid 3064) l—[‘ 5 =
1 g SampleTree (pid 1444) Heep.
- Stylepad (pid 3336) Size: 536,870,912 8 Used: 390,203,776 8
& swingset2 (pid 2616) Max: 536,870,9128
s TableExample (pid 1556) .
500 ME 1= - - - -
£ 488 Remote | | | | |
= I hatas
& Jstatd (pid 2612) =
' éw.hm.mm{u-dzm
| @ i é alm!:?!l’M 223 PM 224 PM 225 PM 2:26 PM
[ Heap size [l Used heap
Classes X | | Threads x
Total loaded: 1,025  Shared loaded: 0 Live: 7 Daemon: 3
Total unloaded: 0 Shared unloaded: 0 Live peak: 7 Total started: 10
1,000 [
s l
500
2:22 PM 2:24 PM 2:26 PM 2:27 PM 2:24 PM 2126 PM
[H Total loaded dasses [l Shared loaded dasses B Live threads [l Daemon threads

Figure 4-10 VisualVM Monitor subtab

To configure VisualVM to connect to the remote application via JMX, use the File >
Add JMX Connection menu item. In the Add JMX Connection form, add the following
information for each of the fields:

= hostname:<port numbers> for the Connection field. For example, if the remote
application is running on a host named halas, and you configured the remote appli-
cation with com. sun . management . jmxremote . port=4433, you enter halas:4433
in the Connection field.

= Optionally enter a display name to be displayed in VisualVM to identify the
remote application via the JMX connection. By default, VisualVM uses what
you entered in the Connection field as the display name.

= If you set com.sun.management . jmxremote.authenticate=true, enter
the username and password in the Username and Password fields who are
authenticated to connect remotely.
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Figure 4-11 Remote monitoring via J]MX

See VisualVM JMX connection documentation for additional information on con-
figuring JMX for remote monitoring with VisualVM, http://download.oracle.com/
javase/6/docs/technotes/guides/visualvm/jmx_connections.html.

After a JMX connection is configured, an additional icon is displayed in VisualVM’s
Application’s panel representing that a remote JMX connection has been configured
to the remote application. Configuring a JMX connection for remote applications in
VisualVM increases the monitoring capabilities. For example, the Monitor window
also shows CPU usage by the application and the ability to induce a full garbage
collection or heap dump, as shown in Figure 4-11.

In addition to more capabilities in the Monitor window, an additional Threads
window is also available. The Threads window shows a view of threads in the applica-
tion along with a color indicating whether the thread is currently running, sleeping,
blocked, waiting, or contending on a monitor lock. The Threads window is available
as a view for all locally monitored applications.

The Threads window offers insight into which threads are most active, those that
are involved in acquiring and releasing locks. The Threads window can be useful
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to observing specific thread behavior in an application, especially when operating
system monitoring suggests the application may be experiencing lock contention.

An additional option available in the Threads window is the ability to create a
thread dump by clicking the Thread Dump button. When a thread dump is requested,
VisualVM adds a window tab displaying the thread dump and also appends a thread
dump entry to the monitored application entry in the Application’s window below
the application being monitored. It is important to note that thread dumps are
not persisted or available once VisualVM has been closed unless they are saved.
Thread dumps can be saved by right-clicking on the thread dump icon or label below
the application listed in the Applications panel. Thread dumps can be reloaded in
VisualVM at a later time by selecting the File > Load menu item and traversing to
the directory where the thread dump was saved.

VisualVM also offers profiling capabilities to both local and remote applications.
Local profiling capabilities include both CPU and memory profiling for Java 6 appli-
cations. For monitoring purposes, the feature of monitoring CPU utilization or moni-
toring memory utilization as the application is running can be useful. However, care
should be taken when invoking either of these features on a production system as
they may heavily tax the running application. Being able to monitor CPU utiliza-
tion while an application is running can provide information as to which methods
are the busiest during times when specific events are occurring. For example, a GUI
application may exhibit performance issues only in a specific view. Hence, being able
to monitor the GUI application when it is in that view can be helpful in isolating
the root cause.

Remote profiling requires a JMX connection to be configured and is limited to CPU
profiling. It does not include memory profiling. But heap dumps can be generated
from the Sampler window. They can also be generated from the Threads window.
Heap dumps can be loaded into VisualVM to analyze memory usage.

To initiate remote profiling in VisualVM, first select and open a remote application
from the Application panel that is configured with a JMX connection. Then select the
Sampler window in the right panel. In the Sampler window click the CPU button
to initiate remote profiling. Figure 4-12 shows the Sampler window after clicking
the CPU button. The view of CPU utilization is presented with the method name
consuming the most time at the top. The second column, Self Time %, provides a his-
togram view of the method time spent per method relative to the time spent in other
methods. The Self Time column represents the amount of wall clock time the method
has consumed. The remaining column, Self Time (CPU), reports the amount of CPU
time the method has consumed. Any of the columns can be sorted in ascending or
descending order by clicking on the column name. A second click on a column causes
the ordering to toggle back and forth between ascending or descending.

Profiling can be stopped and resumed by clicking the Pause button. And a snap-
shot can be captured by clicking the Snapshot button. After a taking a snapshot,
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Figure 4-12 Remote CPU profiling

VisualVM displays the snapshot. The snapshot can be saved to disk. To save the
snapshot to share it with another developer, to be able to load the snapshot at a later
time or to compare it with another snapshot, you can export the snapshot to a file as
shown in Figure 4-13. A saved snapshot can be loaded by VisualVM or the NetBeans
Profiler. To load a saved snapshot with VisualVM, you select the File > Load from
the main menu; filter the files by Profiler Snapshots (*.nps) to find the saved profile
and have it loaded.

In the snapshot window, the call tree showing the call stacks for all threads in the
captured snapshot are displayed. Each call tree can be expanded to observe the call
stack and method consuming the most time and CPU. At the bottom of the snapshot
window you can also view Hot Spots, which is a listing of methods with the method
consuming the most Self Time at the top of the table. A combined view of the Call
Tree and Hot Spots is also available. In the combined view, as you click on a call stack
in the Call Tree, the table of Hot Spot methods is updated to show only the methods
in the selected call stack.

Additional details on profiling Java applications can be found in Chapter 5.
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Figure 4-13 Saving a snapshot

VisualVM also has the capability to load binary heap dumps generated using
jmap, JConsole, or upon reaching an OutOfMemoryError and using the -XX: +Heap
DumpOnOutOfMemoryError HotSpot VM command line option. A binary heap dump
is a snapshot of all the objects in the JVM heap at the time when the heap dump is
taken. To generate a binary heap dump using the Java 6 jmap command, you use
jmap -dump:format=b,file=<filename> <jvm pid> where <filename> is
the path and filename of the binary heap dump file and <jvm pids> is the process
id of the JVM running the application. For Java 5, you use jmap -heap:format=b
<jvm pid> where <jvm pids> is the process id of the Java application. Java 5’s
jmap command places the heap dump in a file named heap.bin in the directory
where the jmap command was executed. Java 6’s JConsole can also generate a heap
dump using its HotSpotDiagnostics MBean. Once a binary heap dump has been
generated, it can be loaded in VisualVM using the File > Load menu where analysis
can be performed.
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VisualGC

VisualGC is a plug-in for Visual VM. VisualGC can monitor garbage collection, class
loader, and JIT compilation activities. It was originally developed as a standalone
GUI program. It can be used as both a standalone GUI or as a plug-in for VisualVM
to monitor 1.4.2, Java 5, and Java 6 JVMs. When Visual GC was ported to a VisualVM
plug-in some additional enhancements were made to make it easier to discover and
connect to JVMs. The advantage of using the Visual GC plug-in over the standalone
GUI is JVMs that are monitor-able are automatically discovered and displayed in
VisualVM. With the standalone GUI, you have to identify the process id of the Java
application you want to monitor and pass that as an argument to program launcher.
The process id can be found using the jps command. An example use of the jps com-
mand is described in the previous section as part of the jstatd daemon configuration
setup.

The VisualGC plug-in for VisualVM can be found in VisualVM’s Plug-in Center.
The Plug-in Center is accessed in VisualVM via the Tools > Plugins menu. The Visu-
alGC plug-in can be found on the Available Plug-ins tab.

The standalone VisualGC GUI can be downloaded from http://java.sun.com/
performance/jvmstat/#Download.

Regardless of whether you are using the VisualGC plug-in for VisualVM or the
standalone VisualGC program, to monitor an application locally, both VisualGC and
the application to be monitored must share the same user credentials. When moni-
toring a remote application, the jstatd daemon must be configured and running with
the same user credentials as the Java application to be monitored. How to configure
and run the jstatd daemon is described in the previous section.

Using the VisualGC plug-in for VisualVM is covered in this section since it is
easier to use than the standalone GUI and VisualVM also offers other integrated
monitoring capabilities.

After the VisualGC plug-in has been added to VisualVM, when you monitor an
application listed in the Applications panel, an additional window tab is displayed
in the right panel labeled VisualGC (see Figure 4-14).

VisualGC displays two or three panels depending on the garbage collector being
used. When the throughput garbage collector is used, VisualGC shows two panels:
the Spaces and Graphs panels. When the concurrent or serial garbage collector is

;é{atpage_wlégspec.hanesslamm{pidmll) ®|
[ [ overview | [ Monitor | (] Threads [ 3 Sampler | =] visual 6

< spec.harness.Launch (pid 3011)
Visual GC

Figure 4-14 Additional VisualGC window tab
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Figure 4-15 VisualGC

used a third panel is shown below the Spaces and Graphs panels called Histogram.
Figure 4-15 shows VisualGC with all panel spaces.

Any of the three panels can be added or removed from the VisualGC window by
selecting the appropriate check boxes in the upper-right corner.

The Spaces panel provides a graphical view of the garbage collection spaces and
their space utilization. This panel is divided into three vertical sections, one for
each of the garbage collection spaces: Perm (Permanent) space, Old (or Tenured)
space, and the young generation space consisting of eden, and two survivor spaces,
S0 and S1. The screen areas representing these garbage collection spaces are sized
proportionately to the maximum capacities of the spaces as they are allocated by
the JVM. Each space is filled with a unique color indicating the current utilization
of the space relative to its maximum capacity. The unique color is also consistently
used for each of the garbage collection spaces where they exist in both the Graphs
and Histogram panels.
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The memory management system within the HotSpot VM is capable of expand-
ing and shrinking the garbage collected heap if the values set for -Xmx and -Xms
differ. This is accomplished by reserving memory for the requested maximum Java
heap size but committing real memory to only the amount currently needed. The
relationship between committed and reserved memory is represented by the color of
the background grid in each space. Uncommitted memory is represented by a lighter
gray colored portion of the grid, whereas committed memory is represented by a
darker gray colored portion. In many cases, the utilization of a space may be nearly
identical to the committed amount of memory making it difficult to determine the
exact transition point between committed and uncommitted space in the grid.

The relationship between the sizes of the eden and survivor spaces in the young
generation portion of the Spaces panel is usually fixed in size. The two survivor
spaces are usually identical in size and its memory space fully committed. The eden
space may be only partially committed, especially earlier in an application’s life cycle.

When the throughput garbage collector, enabled via -XX:+UseParallelGC or
-XX:+UseParallelO1dGcC,is used along with the adaptive size policy feature, which
is enabled by default, the relationship or ratio between the sizes of the young gen-
eration spaces can vary over time. When adaptive size policy is enabled, the sizes of
the survivor spaces may not be identical and the space in young generation can be
dynamically redistributed among the three spaces. In this configuration, the screen
areas representing the survivor spaces and the colored region representing the uti-
lization of the space are sized relative to the current size of the space, not the maxi-
mum size of the space. When the JVM adaptively resizes the young generation space,
the screen area associated with the young generation spaces updates accordingly.

There are several things to watch for in the Spaces panel. For example, you should
watch how quickly the eden space fills. Every fill and drop in the eden space repre-
sents a minor garbage collection. The rate of the fill and drop represents the minor
garbage collection frequency. By watching the survivor spaces you can see how on
each minor garbage collection one of the survivor spaces is occupied and the other is
empty. This observation provides an understanding of how the garbage collector cop-
ies live objects from one survivor space to another at each minor garbage collection.
More importantly, though, you should watch for survivor spaces overflowing. Survivor
spaces overflowing can be identified by observing their occupancies at minor garbage
collections. If you observe full or nearly full survivor spaces after each minor garbage
collection and a growth in the space utilization in the Old generation space, survivor
spaces may be overflowing. Generally, though, this observation is an indication that
objects are being promoted from the young generation space to the old generation
space. If they are promoted too early, or too quickly, it may result in an eventual
full garbage collection. When a full garbage collection occurs, you observe the old
generation space utilization drop. The frequency at which you observe a drop in the
old generation space utilization is an indication of full garbage collection frequency.
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The Graphs panel, shown previously in Figure 4-15, is the right panel of the Visu-
alGC window. It plots performance statistics as a function of time for a historical
view. This panel displays garbage collection statistics along with JIT compiler and
class loader statistics. The latter two statistics are discussed later in this chapter. The
resolution of the horizontal axis in each display is determined by the selected Refresh
Rate, found just above the Spaces panel. Each sample in the Graphs panel historical
view occupies 2 pixels of screen real estate. The height of each display depends on
the statistic being plotted.

The Graphs panel has the following displays:

= Compile Time. Discussed later in this chapter.
= Class Loader Time. Discussed later in this chapter.

= GC Time. Displays the amount of time spent in garbage collection activities.
The height of this display is not scaled to any particular value. A nonzero value
in this graph indicates that garbage collection activity occurred during the last
interval. A narrow pulse indicates a relatively short duration, and a wide pulse
indicates a long duration. The title bar indicates the total number of garbage
collections and the accumulated garbage collection time since the start of the
application. If the monitored JVM maintains the garbage collection cause and
the last cause statistics, the cause of the most recent garbage collection is also
displayed in the title bar.

= Eden Space. Displays the utilization of the eden space over time. The height
of this display is fixed, and by default the data is scaled according to the current
capacity of the space. The current capacity of the space can change depending
on the garbage collector being used as the space shrinks and grows over time.
The title bar displays the name of the space and its maximum and current
capacity in parentheses followed by the current utilization of the space. In addi-
tion, the title also contains the number and accumulated time of minor garbage
collections.

* Survivor 0 and Survivor 1. Displays the utilization of the two survivor
spaces over time. The height of each of these two displays is fixed, and by default
the data is scaled according to the current capacity of the corresponding space.
The current capacity of these spaces can change over time depending on the
garbage collector. The title bar displays the name of the space and its maximum
and current capacity in parentheses followed by the current utilization of the
space.

= Old Gen. Displays the utilization of the old generation space over time. The
height of the display is fixed, and by default the data is scaled according to the
current capacity of the space. The current capacity of this space can change
depending on the garbage collector. The title bar displays the name of the space
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and its maximum and current capacity in parentheses followed by the current
utilization of the space. In addition, the title also contains the number and
accumulated time of full garbage collections.

= Perm Gen. Displays the utilization of the permanent generation space over
time. The height of the display is fixed, and by default the data is scaled accord-
ing to the current capacity of the space. The current capacity of this space can
change depending on the garbage collector. The title bar displays the name of
the space and its maximum and current capacity in parentheses followed by
the current utilization of the space.

The Histogram panel, shown previously in Figure 4-15, is displayed below the
Spaces and Graphs panels when the concurrent or serial garbage collector is used.
The throughput garbage collector does not maintain a survivor age since it uses a
different mechanism for maintaining objects in the survivor spaces. As a result, the
Histogram panel is not displayed when monitoring a JVM that is using the through-
put collector.

The Histogram panel displays surviving object and object aging statistics. The
Histogram panel contains a Parameters subpanel and a Histogram subpanel. The
Parameters subpanel displays the current size of the survivor spaces and the param-
eters that control the promotion of objects from young to old generation space. After
each minor garbage collection, if an object is still live, its age is incremented. If its
age exceeds a tenuring threshold age, which is calculated by the JVM at each minor
garbage collection, it is promoted to the old generation space. The tenuring threshold
calculated by the JVM is displayed as the Tenuring Threshold in the Parameters
panel. The maximum tenuring threshold displayed in the Parameters panel is the
maximum age at which an object is held in survivor spaces. An object is promoted
from young to old generation based on the tenuring threshold, not the maximum
tenuring threshold.

Observing a frequent tenuring threshold less than maximum tenuring threshold
is an indication objects are being promoted from young to old generation space too
quickly. This is usually caused by survivor spaces overflowing. If a survivor space
overflows, then objects with the highest ages are promoted to the old generation
space until the utilization of the survivor space does not exceed the value displayed
as the Desired Survivor Size in the Parameters panel. As mentioned earlier, survi-
vor space overflow can cause old generation space to fill and result in a full garbage
collection.

The Histogram subpanel displays a snapshot of the age distribution of objects in
the active survivor space after the last minor garbage collection. If the monitored
JVM is Java 5 Update 6 or later, this panel contains 16 identically sized regions,
one for each possible object age. If the monitored JVM is earlier than Java 5 Update
6, there are 32 identically sized regions. Each region represents 100% of the active
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survivor space and is filled with a colored area that indicates the percentage of the
survivor space occupied by objects of a given age.

As an application runs, you can observe long-lived objects traverse through each
of the age regions. The larger the space occupied by long-lived objects, the larger the
blip you will observe migrate through the age regions. When the tenuring threshold
is less than the maximum tenuring threshold you see no utilization in the regions
representing ages greater than the tenuring threshold since those objects have been
promoted to the old generation space.

JIT Compiler

There are several ways to monitor HotSpot JIT compilation activity. Although the
result of JIT compilation results in a faster running application, JIT compilation
requires computing resources such as CPU cycles and memory to do its work. Hence,
it is useful to observe JIT compiler behavior. Monitoring JIT compilation is also useful
when you want to identify methods that are being optimized or in some cases deopti-
mized and reoptimized. A method can be deoptimized and reoptimized when the JIT
compiler has made some initial assumptions in an optimization that later turned out
to be incorrect. To address this scenario, the JIT compiler discards the previous opti-
mization and reoptimizes the method based on the new information it has obtained.

To monitor the HotSpot JIT compiler, you can use the command line option
-XX:+PrintCompilation. The -XX:+PrintCompilation command line
option generates a line of output for every compilation performed. An example of this
output is shown here:

7 java.lang.String: :indexO0f (151 bytes)

8% | sun.awt.image.PNGImageDecoder: :produceImage @ 960 (1920 bytes)
9 | sun.awt.image.PNGImageDecoder: :produceImage (1920 bytes)
10 java.lang.AbstractStringBuilder: :append (40 bytes)
11 n java.lang.System::arraycopy (static)
12 s java.util.Hashtable::get (69 bytes)

13 b  java.util.HashMap::indexFor (6 bytes)
14 made zombie java.awt.geom.Path2D$Iterator::isDone (20 bytes)

See Appendix A, “HotSpot VM Command Line Options of Interest,” for a detailed
description of the output from -XX:+PrintCompilation.

There are graphical tools that can monitor JIT compilation activity. However,
they do not provide as much detail as the -XX:+PrintCompilation. At the time
of this writing, JConsole, VisualVM, or the VisualGC plug-in for VisualVM do not
provide information on which methods are being compiled by the JIT compiler. They
only provide information that JIT compilation is taking place. Of the graphical tools,
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Figure 4-16 VisualGC'’s Graph window’s compile time panel

VisualGC’s Graph window’s Compile Time panel, an example shown in Figure 4-16,
may be the most useful since it shows pulses as JIT compilation activity occurs. It is
easy to spot JIT compilation activity in VisualGC’s Graphs panel.

The Compile Time display of VisualGC’s Graphs panel shows the amount of time
spent compiling. The height of the panel is not scaled to any particular value. A pulse
in the display indicates JIT compilation activity. A narrow pulse implies a relatively
short duration of activity, and a wide pulse implies a long duration of activity. Areas
of the display where no pulse exists indicates no JIT compilation activity. The title
bar of the display shows the total number of JIT compilation tasks and the accumu-
lated amount of time spent performing compilation activity.

Class Loading

Many applications utilize user-defined class loaders, sometimes called custom class
loaders. A JVM loads classes from class loaders and may also decide to unload classes.
When classes are loaded or unloaded depends on the JVM runtime environment
and the usage of class loaders. Monitoring class loading activity can be useful, espe-
cially with applications that utilize user-defined class loaders. As of this writing,
the HotSpot VM loads all class metadata information in the permanent generation
space. The permanent generation space is subject to garbage collection as its space
becomes full. Hence, monitoring both class loading activity and permanent genera-
tion space utilization can be important to an application realizing its performance
requirements. Garbage collection statistics indicate when classes are unloaded from
the permanent generation space.

Unused classes are unloaded from the permanent generation space when addi-
tional space is required as a result of other classes needing to be loaded. To unload
classes from permanent generation, a full garbage collection is required. Therefore,
an application may suffer performance issues as a result of full garbage collections
trying to make space available for additional classes to be loaded. The following out-
put shows a full garbage collection where classes are unloaded.

[Full GC[Unloading class sun.reflect.GeneratedConstructorAccessors3]
[UnToading class sun.reflect.GeneratedConstructorAccessor8]
[Unloading class sun.reflect.GeneratedConstructorAccessorll]
[UnToading class sun.reflect.GeneratedConstructorAccessor6]
8566K->5871K(193856K), 0.0989123 secs]
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The garbage collection output indicates four classes were unloaded; sun.
reflect.GeneratedConstructorAccessor3, sun.reflect.Generated
ConstructorAccessor8, sun.reflect.GeneratedConstructorAccessorll,
and sun.reflect.GeneratedConstructorAccessoré6. The reporting of classes
being unloaded during the full garbage collection provides evidence the permanent
generation space may need to be sized larger, or its initial size may need to be larger.
If you observe classes being unloaded during full garbage collections, you should use
-XX:PermSize and -XX:MaxPermSize command line options to size the perma-
nent generation space. To avoid full garbage collections that may expand or shrink
the committed size of the permanent generation space, set -XX:PermSize and
-XX:MaxPermSize to the same value. Note that if concurrent garbage collection
of the permanent generation space is enabled, you may see classes being unloaded
during a concurrent permanent generation garbage collection cycle. Since a concur-
rent permanent generation garbage collection cycle is not a stop-the-world garbage
collection, the application does not realize the impact of a garbage collection induced
pause. Concurrent permanent generation garbage collection can only be used with
the mostly concurrent garbage collector, CMS.

Tip
Additional guidelines and tips for tuning the permanent generation space including how

to enable concurrent garbage collection of the permanent generation space can be found
in Chapter 7.

The graphical tools JConsole, VisualVM, and the VisualGC plug-in for VisualVM
can monitor class loading. However, at the time of this writing, none of them display
the class names of the classes being loaded or unloaded. The JConsole Classes tab,
as shown in Figure 4-17, shows the number of classes currently loaded, number of
classes unloaded, and total number of classes that have been loaded.

VisualVM can also monitor class loading activity in the Monitor tab via the Classes
display. It shows total number of classes loaded and the number of shared classes
loaded. Observing whether class data sharing is enabled on a monitored JVM can be
confirmed by looking at this view. Class data sharing is a feature where classes are
shared across JVMs running on the same system to reduce their memory footprint.
If class sharing is being utilized by the monitored JVM, there will be a horizontal
line in the graph showing the number of shared classes loaded in addition to a hori-
zontal line showing the total number of classes loaded similar to what is shown in
Figure 4-18.

You can also monitor class loading activity in the VisualGC Graph window by
observing the Class Loader panel, as shown in Figure 4-19.
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Figure 4-18 Observing class sharing in VisualVM
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Figure 4-19 Observing class loading activity in VisualGC
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In the Visual GC Graphs window, a pulse in the Class Loader panel indicates class
loading or unloading activity. A narrow pulse indicates a short duration of class load-
ing activity, and a wide pulse indicates a long duration of class loading activity. No
pulse indicates no class loading activity. The title bar of the Class Loader panel shows
the number of classes loaded, the number of classes unloaded, and the accumulated
class loading time since the start of the application. Observing pulses in the class
loader panel and directly vertically below in the GC Time panel can be an indication
the garbage collection activity that is occurring at the same time could be the result
of the JVM’s permanent generation space being garbage collected.

Java Application Monitoring

Monitoring at the application level usually involves observing application logs that
contain events of interest or instrumentation that provides some level of informa-
tion about the application’s performance. Some applications also build-in monitoring
and management capabilities using MBeans via Java SE’s monitoring and manage-
ment APIs. These MBeans can be viewed and monitored using JMX compliant tools
such as JConsole or using the VisualVM-MBeans plug-in within VisualVM. The
VisualVM-MBeans plug-in can be found in the VisualVM plug-in center, via the
Tools > Plugins menu.

The GlassFish Server Open Source Edition (also referred to as GlassFish here-
after) has a large number of attributes that can be monitored via MBeans. Using
JConsole or VisualVM to monitor a GlassFish application server instance allows you
to view the MBeans including their attributes and operations. Figure 4-20 shows a
portion of the many GlassFish MBeans in the MBeans window in VisualVM using
the VisualVM-MBeans plug-in.

You can see on the left the expanded list of GlassFish MBeans in the com.sun.
appserv folder.

VisualVM can also be extended to monitor Java applications since it is built
on the NetBeans Platform plug-in architecture. Plug-ins for VisualVM can be
created as if they are NetBeans plug-ins. For example, a custom VisualVM plug-
in to monitor a Java application can take advantage of the many rich features
of NetBeans including its Visual Graph Library. Java applications that want to
make available performance monitoring information can do so by developing a
VisualVM plug-in. Several existing VisualVM plug-ins are available in Visual-
VM’s plug-in center.

Applications that have built JConsole plug-ins can use the VisualVM-
JConsole plug-in to automatically integrate their custom JConsole plug-ins
into VisualVM.
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Figure 4-20 GlassFish MBeans

Quick Lock Contention Monitoring

A trick often used by the authors to get a quick sense of where lock contention
is occurring in a Java application is to capture several thread dumps using the
JDK’s jstack command. This approach works well when operating in more of a
monitoring role where the objective is to quickly capture some data rather than
spending time to set up and configure a profiler where a more detailed analysis
can be done.

The following jstack output is from an application that has a set of reader
threads and writer threads that share a single queue. Work is placed on the queue
by writer threads, and reader threads pull work from the queue.

Only the relevant stack traces are included to illustrate the usefulness of using
jstack to rapidly find contended locks. In the jstack output the thread, Read
Thread-33, has successfully acquired the shared queue lock, which is identified as
a Queue object at address 0x22e88b10. This is highlighted in the output in bold as
locked <0x22e88bl0> (a Queue).
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All the other thread stack traces shown are waiting to lock the same lock held by
the thread, Read Thread-33. This is highlighted in the other stack traces in bold
aswaiting to lock <0x22e88bl0> (a Queue).

”"Read Thread-33”" prio=6 tid=0x02b1d400 nid=0x5c0 runnable
[0x0424f000. .0x0424fd94]
java.lang.Thread.State: RUNNABLE
at Queue.dequeue(Queue.java:69)
- locked <0x22e88b10> (a Queue)
at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
at ReadThread.run(ReadThread.java:23)

"Writer Thread-29” prio=6 tid=0x02b13c00 nid=0x3cc waiting for monitor
entry [0x03f7f000..0x03f7fd94]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.enqueue(Queue.java:31)
- waiting to Tock <0x22e88b10> (a Queue)
at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
at WriteThread.run(WriteThread.java:47)

"Writer Thread-26" prio=6 tid=0x02b0d400 nid=0x194 waiting for monitor
entry [0x03d9f000..0x03d9fc94]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.enqueue(Queue.java:31)
- waiting to Tock <0x22e88b10> (a Queue)
at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
at WriteThread.run(WriteThread.java:47)

”"Read Thread-23” prio=6 tid=0x02b08000 nid=0xbf0 waiting for monitor entry
[0x03c0f000. .0x03c0fb14]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.dequeue(Queue.java:55)
- waiting to Tock <0x22e88b10> (a Queue)
at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
at ReadThread.run(ReadThread.java:23)

"Writer Thread-24" prio=6 tid=0x02b09000 nid=0xef8 waiting for monitor
entry [0x03c5f000..0x03c5fa9%4]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.enqueue(Queue.java:31)
- waiting to Tock <0x22e88b10> (a Queue)
at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
at WriteThread.run(WriteThread.java:47)

"Writer Thread-20" prio=6 tid=0x02b00400 nid=0x19c waiting for monitor
entry [0x039df000..0x039dfal4]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.enqueue(Queue.java:31)
- waiting to Tock <0x22e88b10> (a Queue)
at WriteThread.putWorkItemOnQueue(WriteThread.java:54)
at WriteThread.run(WriteThread.java:47)

”"Read Thread-13” prio=6 tid=0x02af2400 nid=0x9ac waiting for monitor entry
[0x035cf000. .0x035cfd14]
java.lang.Thread.State: BLOCKED (on object monitor)
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at Queue.dequeue(Queue.java:55)

- waiting to lock <0x22e88b10> (a Queue)

at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
at ReadThread.run(ReadThread.java:23)

”Read Thread-96" prio=6 tid=0x047c4400 nid=0xaa4 waiting for monitor
entry [0x06baf000..0x06bafta9%4]
java.lang.Thread.State: BLOCKED (on object monitor)
at Queue.dequeue(Queue.java:55)
- waiting to lock <0x22e88b10> (a Queue)
at ReadThread.getWorkItemFromQueue(ReadThread.java:32)
at ReadThread.run(ReadThread.java:23)

It is important to note the lock addresses, the hex number surrounded by < and
>, are the same address. This is how locks are uniquely identified in jstack output.
If lock addresses in the stack traces are different, they represent different locks. In
other words, thread stack traces that have different lock addresses are threads that
are not contending on the same lock.

The key to finding contended locks in jstack output is searching for the same lock
address across multiple stack traces and finding threads that are waiting to acquire
the same lock address. Observing multiple thread stack traces trying to lock the same
lock address is an indication the application is experiencing lock contention. If captur-
ing multiple jstack outputs yields similar results of observing lock contention on
the same lock, it is stronger evidence of a highly contended lock in the application.
Also notice that the stack trace provides the source code location of the contended
lock. Being able to find the location in the source code of a highly contended lock in a
Java application has historically been a difficult task. Using jstack in the manner
described here can help significantly in tracking down contended locks in applications.
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Java Application
Profiling

Chapter 2, “Operating System Performance Monitoring,” made a clear distinction
between the activities of performance monitoring, performance profiling, and per-
formance tuning. Before jumping into the details of what is involved in performance
profiling a Java application, it is worthy to revisit the performance profiling defini-
tion. Performance profiling is an activity of collecting performance data from an
operating or running application that may be intrusive on application performance
responsiveness or throughput. Performance profiling tends to be a reactive type of
activity, or an activity in response to a stakeholder reporting a performance issue,
and usually has a narrower focus than performance monitoring. Profiling is rarely
done in production environments. Rather it is typically done in qualification, testing,
or development environments and is often an act that follows a monitoring activity
that indicates some kind of performance issue.

As suggested in Chapter 1, “Strategies, Approaches, and Methodologies,” perfor-
mance testing, including profiling, should be an integral part of the software devel-
opment process. When performance testing is not an integral part of the software
development process, profiling activities are usually performed as the result of a
stakeholder complaining that performance of the application is not as he or she
desires. For applications having a strong emphasis on meeting performance and
scalability requirements, constructing prototypes of areas identified as being at per-
formance risk and profiling them are ideally done early in the software development
process to mitigate risk. This activity offers the opportunity to entertain alternative
architectures, designs, or implementations at a stage where it is much less costly to
make changes than later in the software development process.

155
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In this chapter, the basic concepts of how to profile a Java application using a
modern profiler are presented. Both method profiling and memory profiling, also
known as heap profiling, are presented. Method profiling provides information about
the execution time for Java methods in a Java application. The Oracle Solaris Studio
Performance Analyzer (formerly known as the Sun Studio Performance Analyzer) is
one of two method profilers presented in this chapter that can provide both Java and
native method profile information. The Oracle Solaris Studio Performance Analyzer,
often called the Performance Analyzer can also provide execution information about
the internals of the Java Virtual Machine, which can help isolate potential issues
observed in a Java Virtual Machine.

In contrast to method profiling, memory profiling provides information about a
Java application’s memory usage, that is, the number of object allocations, the size of
object allocations, and which object allocations live, along with stack traces showing
the method where the object allocation occurred.

Many capable profilers are available, both free and commercial, that can perform
method profiling or memory profiling. This chapter shows how to use the free Oracle
Solaris Studio Performance Analyzer and the free NetBeans Profiler.

Performance Analyzer offers several advanced capabilities. For example it profiles
at the native level, which means it has the capability to collect accurate profiles. It
also has the capability to distinguish the difference between a running thread and
a paused or blocked thread. For example, it can tell the difference between when
a thread is blocking on a read () system call versus blocking in a system call to
wait ().As aresult, Performance Analyzer reports read () operations as the amount
of time actually spent doing a read operation and reports separately the amount time
it spends blocking on a read (), in a call to wait (), waiting for more data to arrive. If
it could not differentiate between those two operations and lumped both the blocked
and waiting time together with the time spent in a read () operation it could lead to
misleading information about how much time is really spent in a read () operation
and how much time is spent blocking and waiting for more data to arrive.

The Performance Analyzer also has the capability to collect and report on Java
monitor, or lock information. Monitor contention, or lock contention, is a scalability
blocker for Java applications. Traditionally, tracking down and isolating hot Java
monitor contention has been a difficult problem. As shown later in this chapter, the
Performance Analyzer makes this task much easier. There is also an example use
case shown in Chapter 6, “Java Application Profiling Tips and Tricks.”

The Performance Analyzer is also easy to set up and use, as described in the
next section, and can provide an enormous level of detailed information. How-
ever, one of the challenges with the Performance Analyzer is it is available on the
Oracle Solaris (also referred to as Solaris hereafter) and Linux platforms only.
It is not available on the Windows platform. Tools such as AMD’s CodeAnalyst
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Performance Analyzer and Intel’s VTune could be used as alternatives on the
Windows platform. They are similar tools with similar functionality as Perfor-
mance Analyzer. The concepts with using a profiler such as Performance Analyzer
apply to AMD’s CodeAnalyst and Intel’s VTune. Another good alternative to use
on Windows is the NetBeans Profiler. NetBeans Profiler is also available for
Solaris, Linux, and Mac OS X platforms. The NetBeans Profiler’s method profiling
capabilities are also covered in this chapter. In addition, memory profiling with
the NetBeans Profiler is covered. Also included in this chapter is how to use the
NetBeans Profiler to identify memory leaks in a Java application.

This chapter begins by presenting some profiling terminology, which should make
the understanding of the tasks involved in profiling easier. The profiling terminology
is followed by two major sections. The first major section describes how to use the
Performance Analyzer for method profiling and isolating monitor or lock contention
profiling. The second major section is followed by how to use the NetBeans Profiler
for both method profiling and memory profiling along with how to use it to identify
memory leaks. Chapter 6 illustrates some of the more commonly observed perfor-
mance issues the book’s authors have seen in Java applications.

Terminology

This section describes terms that are used throughout this chapter. Terms that are
common to both the Performance Analyzer and NetBeans Profiler are described first,
followed by terms specific to the Performance Analyzer and then terms specific to
the NetBeans Profiler.

Common Profiling Terms

Common profiling terms include the following:

= Profiler. A tool that shows its users the behavior of an application as it exe-
cutes. It may include both the behavior of the Java Virtual Machine and the
application including both Java code and any native code.

= Profile. A file that contains information collected by a profiler while execut-
ing an application.

= Overhead. The amount of time spent by the profiler collecting the profile
information instead of executing the application.

= Call Tree. A listing of methods in a call stack form illustrating the dynamic call
stack of the program as it was run. When method profiling, looking at a call tree
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can be useful when determining the hot use cases. When memory profiling, looking
at a call tree can be useful to understand context of a Java object allocation.

= Filter. An artifact that can be applied to either the collected profile or to the
collecting of a profile that narrows the scope of information collected and/or
presented.

Oracle Solaris Studio Performance Analyzer Terms

Oracle Solaris Studio Performance Analyzer terms include the following:

= Experiment. An experiment or experiment file is the artifact produced by
collecting a profile of an application using the Performance Analyzer. The Per-
formance Analyzer uses the term experiment where many other profilers use
the term profile.

= collect. A command line tool used to collect an experiment or profile by profil-
ing and tracing function usage. The data collected can include call stack infor-
mation, microstate accounting information, Java monitor information, and
hardware counter information.

= Analyzer. A GUI used to view a collected experiment or experiment file.

= er_print. A command line utility that can be used to view the collected experi-
ment or experiment file. It can also be scripted to automate the processing of a
collected experiment or experiment file.

= Inclusive time. The amount of time taken to execute a method and all the
methods it calls.

= Exclusive time. The amount of time taken to execute a specific method. It
does not include any time consumed by methods called by the specific method.

= Attributed time. The amount of time attributed to a given method by a
method that calls it or is a callee of.

= Caller-Callee. A relationship of a method either being called by some
method (a caller), or a method being called by some other method (a callee).
The Analyzer GUI has a view that shows the Caller-Callee relationship of a
given method.

= System CPU. The amount of time, or percentage of elapsed time, a method
listed in a collected experiment spends executing within the operating system
kernel.

= User CPU. The amount of time, or percentage of experiment elapsed time, a
method listed in a collected experiment spends executing outside the operating
system kernel.
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NetBeans Profiler Terms

NetBeans Profiler terms include the following:

= Instrumentation. The insertion of counters, timers, and so on into the Java
bytecode of an application to be profiled. The insertion of these counters, timers,
and so on do not change the logic of an application and are removed once the
profiling is terminated.

= Heap. The memory pool used by the Java Virtual Machine for all objects
allocated in a Java application using the Java keyword new.

= Garbage collection. The operation responsible for the removal or cleaning
of Java objects from the Heap that are no longer in use by the Java application.
The Java Virtual Machine is responsible for the scheduling and executing of
garbage collection.

* Memory leak. An object that is no longer in use by an application but cannot
be garbage collected due to one or more Java objects holding a reference to it.

= Selftime. The amount of time needed to execute the instructions in a method.
This does not include the time spent in any other methods called by the method.
Self time is analogous to the exclusive time in Oracle Solaris Studio Perfor-
mance Analyzer terminology.

= Hot spot. A method that has a relatively large Self Time.

* Root method. A method selected for performance profiling.

Oracle Solaris Studio Performance Analyzer

This section covers how to use the Performance Analyzer to profile a Java application, in
particular how to do method profiling and monitor profiling. The Performance Analyzer
is a powerful tool. Its capabilities go well beyond profiling Java applications. It can also
be used to profile C, C++, and Fortran based applications too. As mentioned earlier in
this chapter, the Performance Analyzer can profile both Java code and native code. In
addition, since it profiles at the native level, it can collect more accurate profiles. As a
Java profiler, it is most useful as a method profiler and Java monitor/lock profiler.

Tip
The features of the Performance Analyzer that are most useful for method profiling
Java applications are covered in this chapter. Additional features and capabilities of the

Performance Analyzer can be found at the Performance Analyzer’s product Web page: http://
www.oracle.com/us/products/tools/050872.html.


http://www.oracle.com/us/products/tools/050872.html
http://www.oracle.com/us/products/tools/050872.html
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As a method profiler, the Performance Analyzer can show the amount of time spent
in user CPU, system CPU, contending for locks, and several others. However, the
three categories of user CPU, system CPU, and lock contention are usually of most
interest to Java applications. In addition, within each of those major categories, the
collected data can be presented in either inclusive time or exclusive time. Inclusive
time says that all the time reported includes not only the time the application spent
in the selected method, but also all the methods it calls. In other words, inclusive time
includes all the methods a selected method calls. In contrast, exclusive time includes
only the amount of time it takes to execute the selected method. In other words, it
excludes the time spent in any methods that the selected method calls.

The steps to profile a Java application with the Performance Analyzer are a little
different from traditional Java profilers. When using the Performance Analyzer, there
are two distinct steps to profiling. The first is collecting an experiment using the
Performance Analyzer’s collect command and executing the Java application. The
second step, analysis, is viewing the collected experiment and analyzing its results
with either the Performance Analyzer’s Analyzer GUI tool, or using the Performance
Analyzer’s command line tool er print.

Supported Platforms

The Performance Analyzer can profile Java applications running a Java Virtual
Machine that supports the JVMTI (JVM Tool Interface). Java 5 Update 4 and later,
including all Java 6 updates, support JVMTI.

Tip
Java 6 Update 18 and later |DKs include enhancements that provide additional information
to the Performance Analyzer, which further enhances the view of the collected data.

Since the Performance Analyzer contains native code and can also profile native
code, it is platform specific. The supported platforms are

= Solaris SPARC. Performance Analyzer 12.2 version is supported on Solaris
10 1/06 and later updates of Solaris 10 along with Solaris 11 Express. It also
supports all UltraSPARC based systems and Fujitsu SPARC 64 based systems.

= Solaris x86/x64. Performance Analyzer 12.2 version is supported on Solaris
10 1/06 and later updates of Solaris 10 along with Solaris 11 Express.

* Linux x86/x64. Performance Analyzer 12.2 version is supported on SuSE
Linux Enterprise Server 11, Red Hat Enterprise Linux 5, and Oracle Enterprise
Linux 5.
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Before using the Performance Analyzer, you should also check the Performance
Analyzer documentation system requirements for the operating system versions
supported and required patches. These may vary depending on the version of the
Performance Analyzer. Running the Performance Analyzer’s collect command with
no arguments checks whether the platform you are running on is supported and has
the required patches. Any missing required patches are reported in the output. In
addition, if a valid JDK distribution is not found on the system, it too is reported.

If the Java application you want to method profile runs on a platform not listed
as supported for the Performance Analyzer, you may consider running the Java
application on one of the supported operating systems platforms as an alternative.
Another alternative is using the NetBeans Profiler as a method profiler. One of the
advantages of using the Performance Analyzer is that its intrusiveness on the Java
application’s performance tends be less than other Java profilers.

Downloading and Installing Oracle Solaris
Studio Performance Analyzer

There are several ways to download and install the Performance Analyzer. As of
this writing, the home page for the Performance Analyzer is http://www.oracle.com/
technetwork/server-storage/solarisstudio/overview/index.html.

At the preceding URL, the latest version of the Performance Analyzer can be
downloaded and installed for any of the supported platforms. The Performance Ana-
lyzer is a free download.

There are two different types of installation bundles for the Performance Analyzer:
a package installer or tar file installer. The package installer installs the Performance
Analyzer as either Solaris or Linux packages. This type of installation requires root
access to the system where the Performance Analyzer is to be installed. The package
installer also provides the ability for the installation to be patched. There is also a
support contract option available with this type of installer. In contrast, the tar file
installer does not require root access to install the Performance Analyzer. However,
it is not eligible for patches or a support contract. But there is community support
available through the Performance Analyzer forums, which at the time of this writ-
ing can be found at http:/www.oracle.com/technetwork/server-storage/solarisstudio/
community/index.html.

Tip
A large amount of detailed information is available at the Oracle Solaris Studio home page

(http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html),
including many demos, tutorials, screencasts, detailed documentation, and FAQs.


http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/community/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/community/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
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The version of the Performance Analyzer covered in this chapter is Oracle
Solaris Studio Performance Analyzer 12.2 (also known as Oracle Solaris Studio
12.2). Earlier versions may have slightly different screenshots and menus than
those illustrated in this chapter. Many of these differences are identified. In addi-
tion, many of the general concepts of how to use the Performance Analyzer apply
to other profilers.

Capturing a Profile Experiment with Oracle
Solaris Studio Performance Analyzer

As mentioned earlier, profiling with the Performance Analyzer is a two-step process.
The first step is collecting the experiment, which is described in this section. The
second step is viewing and analyzing the collected experiment, which is described in
the following section.

One of the advantages of using the Performance Analyzer is the ease at which it
can collect an experiment profile. In its simplest form, collecting an experiment pro-
file is as easy as prefixing collect -7j on to the java command line used to launch
a Java application. The collect command is the Performance Analyzer command
that collects the experiment profile.

Here are the general steps to collect a profile experiment.

1. Update the PATH environment variable to include the Performance Analyzer
tools, that is, include the bin subdirectory of the directory where the Performance
Analyzer is installed.

2. Prefix the text collect -j on to the Java command line used to launch the
Java application you want to profile. If the Java application is launched from a
script, you can update or modify the script.

3. Run the Java application and allow the Performance Analyzer collect
command to profile the application and produce an experiment profile.
By default, the experiment profile is placed in a file called test.1l.er in the
directory where the Java application is launched. The number in test.l.er
name is incremented with each subsequent invocation of the collect
command. Hence, if the collect command finds a test.l.er experiment file
already exists, the collect command creates a new experiment file with
the name test.2.er.

Collect Command Line Options

Many additional options may be of interest to pass to the Performance Analyzer collect
command. Here are some that may be of particular interest when profiling Java applications:
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" -0 <experiment file name>
When used, this option creates an experiment file name with the name specified after the -o.

" -d <experiment directory path>
When used, this option puts the experiment file in the directory specified as experi-
ment directory path. If -d <experiment directory paths is not used, the direc-
tory where the collect command is launched is the default directory used as the
location where the experiment file is placed. Note, in a networked file system environ-
ment, it is advantageous to use a local directory/file system as the location to place
the experiment to avoid unnecessary high network file system activity.

" -p <option>
By default, when profiling Java applications, clock-based profiling is used with a profiling
interval of approximately 10 milliseconds. This is equivalent to specifying -p on. In situations
where it is desirable to reduce the size of the collected experiment file, using -p 1o reduces
the profiling interval to approximately 100 milliseconds. A -p hi can be used in situations
where the profiling window of interest is small and more frequent profiling data collection is
desired. Realize though, the more frequent the profiling data is collected, the larger the experi-
ment file. This not only consumes additional file system space, it can also increase the time it
takes to view the experiment file with the Analyzer GUI or command line er_print. A -p
<value>, where <value> is a positive integer, can also be used to specify the profiling inter-
val. The default setting for -p, -p on, tends to work well for most Java applications. There is
no need to tweak the profiling interval using the -p option unless there is a need for a smaller
experiment file, or a higher frequency of profiling data collection is needed.

" -A <option>
When used, this option controls whether artifacts used by the target Java application and
Java Virtual Machine should be archived or copied into the recorded experiment. The
default value for <options is on, which means the artifacts are archived into the experi-
ment file. Other options include of £, which means the artifacts are not archived into the
experiment file. The other option, copy, means to both copy and archive the artifacts
into the experiment file. If you plan to copy or read a collected experiment on a different
machine than the one where the experiment was collected, you should use -A copy. How-
ever, keep in mind that the system where you copy or read the experiment is expected
to have any source files or objects files used by the Java application to be accessible when
you read and analyze the experiment.

" -y <signals>
When used, this option provides the ability to control the recording of data with a <signals.
Whenever the signal is delivered to the collect process, the collecting of data is toggled, either
from paused (no data collected) to recording, or recording to paused. When this option is
used, the Java application is launched in a paused (no data collected) state and the first send-
ing of the <signals to the collect process toggles on the collecting of data. A collect -j
on -y SIGUSR2 ... allows you the ability to send the collect process a SIGUSR2 signal (i.e.,
kill -USR2 <collect process id>)to toggle on the collecting of experiment data and
likewise toggle it off on a subsequent SIGUSR2 signal being sent to the collect process.

" -h <cpu counter>
This option is an advanced option that may not be useful for all Java application develop-
ers. But it deserves mentioning since it can be useful for computing bound Java applications
whose stakeholders are looking for every bit of performance they can get. The -h option
allows for the ability to collect CPU counters and associate them with the source code being
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executed by the application. Having this ability can help isolate methods that incur costly
operations, such as Java object field accesses that incur the most CPU cache misses. When a
CPU cache miss occurs, there is an access to some data, possibly an access to a Java object’s
field, in the application that does not currently reside in the CPU cache. As a result, that data
has been fetched from memory and placed in the CPU cache. It generally takes hundreds of
CPU clock cycles to satisfy CPU cache misses. In addition, CPU utilization reported by modern
operating systems report a CPU as being busy even when a CPU cache miss occurs. Realize
that no work is actually being done in the application until the CPU cache miss is satisfied even
though the operating system is reporting the CPU as being busy. Hence, for Java applications
that are compute bound and are seeking additional performance, collecting CPU cache miss
data with a profiler and being able to observe a Java object field or variable access that is con-
tributing the most CPU cache misses can be crucial to improving performance of the applica-
tion. There are times when alternative implementations of a Java object field access producing
the most CPU cache misses can reduce CPU cache misses and improve the Java application’s
performance. However, it is wise to not use this command line option unless you have an
application that is compute bound. In other words, it is wise to focus first on strategies such as
improving application algorithms, implementations of Java application methods and reducing
the amount of system CPU utilization as much as possible prior to venturing down the path
of reducing CPU cache misses. This option also tends to be used by advanced Java users and
a performance specialist. The -h option is also not limited to associating CPU cache misses to
Java object field accesses. It can also be used with other CPU counters such as TLB (translation
look-aside buffer) misses and instruction count. A full list of CPU counters that can be speci-
fied with the -h option on a platform running the application can be obtained by running
the collect command with no arguments. Whatever the CPU counter specified with the -h
option, so long as it is supported on the hardware platform where the Performance Analyzer
is being used, the Performance Analyzer will associate the CPU counter events with the source
code, Java or native, that generated the CPU counter event.

To use the -h <cpu counter> option, you specify the CPU hardware counter name
after the -h. Multiple CPU counters can be profiled at the same time by comma separat-
ing the list of CPU counters. Depending on the processor, the number of CPU counters
that can be specified may vary from as few as two to as many as five. As an example, to
collect profile information on data loads that miss both the L1 and L2 cache on a Sun
SPARC Enterprise T5120, you would specify -h DC_miss/0,L2 dmiss 1d/1,10003
as an option to the collect command. As mentioned earlier, identifying the syntax of
what to specify with the -h option for a CPU counter can be shown by running the col-
lect command with no options and looking at the Raw HW counters available for
profiling section of the output.

To illustrate how to use the Performance Analyzer to collect an experiment, sup-
pose the task at hand is to capture a method profile of the SPECjbb2005 benchmark.
For simplicity, suppose the SPECjbb2005 benchmark is launched by executing the
following command line:

$ java -Xmxlg -cp SPECjbb2005.jar spec.jbb.Main
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Collecting a Performance Analyzer experiment is as simple as prefixing collect -j
on to the preceding command line (assuming you have updated your PATH environ-
ment variable to include the Performance Analyzer bin subdirectory):

$ collect -j on java -Xmxlg -cp SPECjbb2005.jar spec.jbb.Main
Creating experiment database test.l.er ...

The result of executing the preceding command, as the output suggests, since there is
no explicit -d or -o Performance Analyzer command line option specified, an experi-
ment file called test.ler is created in the directory where the preceding command is
launched. If the -o and/or -d command line options are specified, the output from
executing the command is updated to reflect the name of the experiment and the
directory where the experiment is stored. Consider the following command line:

$ collect -j on -d /tmp -o specjbb2005.er \
java -Xmx1lg -cp SPECjbb2005.jar spec.jbb.Main
Creating experiment database /tmp/specjbb2005.er ...

Notice the output from the command communicates the directory where the experi-
ment is stored and the name given to the experiment.

For some profiling tasks it is advantageous to direct the Performance Analyzer’s
collect command to not gather profiling information until a desired moment in
time. This is often the case when an application has a lengthy startup or initialization
phase and later has a load test run against it. In this scenario, you want to enable the
collecting of profiling information at the time when the load test commences so the
resulting experiment profile does not include data from the startup or initialization
phase. This is accomplished using the collect command’s -y option and specifying
a signal for the collect command to listen to that toggles on and off the collecting
of profile data. The -y option requires an operating system signal name as an argu-
ment. A commonly used operating system signal name for this purpose is SIGUSR2.
Hence, in the scenario described here you use the -y option using STGUSR2 as the
signal to toggle on and off profiling collection. For example, the collect command
line would look like this:

$ collect -j on -y SIGUSR2 \
java -Xmx1lg -cp SPEC]jbb2005.jar spec.jbb.Main
Creating experiment database test.l.er ...

In this usage of the collect command, the Java application is launched in a
paused (no data collected but application executing) state. In a separate command
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line window, the process id of the Java process running with collect must be gath-
ered. Then the Java process running with collect, upon receiving a SIGUSR2 sig-
nal, toggles on the collecting of profile data. Java process id running with collect is
accomplished using the ps -ef | grep Xruncollector command on Solaris or
Linux, or alternatively using the ps aux | grep Xruncollector.The collect
command does some initial work including adding the -Xruncollector command
line option to the set of JVM command line options used to run the application and
then the collect process exits. But the Java process continues to run with the addi-
tional -Xruncollector command line option. Hence, the reason for finding the Java
process with a -Xruncollector command line option in the ps command output.

Sending a SIGUSR2 signal to the Java process id running with -Xrun
collector is done on Solaris by issuing a kill -USR2 <Java process id>
command, or on Linux by issuing a kill -SIGUSR2 <Java process ids.A sub-
sequent issuing of the ki1l -USR2 <Java process id>command on Solaris or a
kill -SIGUSR2 <Java process id> on Linux toggles off profile data collection.
If this sounds too complex for your liking, you can collect the profile experiment
without using the collect — y command line option and use the filtering capability in
the Performance Analyzer GUI to narrow the time period of interest in the collected
profile data. Filtering is also available using the command line er printutility. Both
the Performance Analyzer GUI and command line er print utility are covered in
the next several sections of this chapter.

Viewing the Collected Profile Experiment

As mentioned earlier, there are two distinct steps involved in doing method profiling
using the Performance Analyzer. The first is collecting the experiment profile, which
is described in the previous section, and the second is viewing the data collected in
the experiment file, presented in this section.

There are two ways to view the collected data in the experiment file. One way is using
the GUI, called the Analyzer, and the second way is using a command line tool called
er print. The Analyzer GUI approach is described first and then er print. Many
of the concepts presented in the Analyzer approach apply to the er print approach.

Loading an experiment in the Analyzer is as simple as updating the PATH envi-
ronment variable to include the Performance Analyzer bin directory and executing
the following command:

$ analyzer

The Analyzer can also be launched with the name of the experiment to load. Assum-
ing an experiment named test.1.er, the Analyzer loads the test.1.er experiment auto-
matically by executing the following command:
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$ analyzer test.l.er

If the Analyzer is launched without an optional experiment name, the Analyzer GUI
opens a window prompting the user to select an experiment to load as shown in
Figure 5-1.

The default view of the Analyzer once it has loaded a profile experiment file is
shown in Figure 5-2. The Analyzer by default reports both exclusive and inclusive
user CPU utilization metrics. User CPU utilization is a measure of CPU time spent
executing outside system or kernel calls. The Analyzer can be configured to display
many additional performance metrics. How to display additional metrics is presented
later in this chapter in the “Data Presentation” section.

(7] |_-| Open Experiment =83

Look In: ||j experiments |'|

ﬁ test_l.ed Experiment Preview;

& test2.er Experiment: /export/home/huntch/experinents,/test. 1. er

& test3.er | Error message: No errors

& testd.er

(5 test.5.er

File Name: \lest ler |
Files of Type: ‘Analyzer Experiment (*.er, *.erg) |v|

Figure 5-1 Analyzer Open Experiment
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Figure 5-2 Analyzer default view
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Icon

Table 5-1 Analyzer Toolbar

Description

Open an experiment file.

Combine an experiment’s data to an existing experiment already
loaded. Seldom used for Java application profiling or analysis.

Drop an experiment’s results from the experiments already
loaded. Seldom used for Java application profiling or analysis.

Collect an experiment. It tends to be easier to collect an experiment
using the collect-j on command line than this route.

| & ¢ | &

Print the listing of data currently displayed in the Analyzer to
either a file or printer. Useful when wanting a printout of the
information displayed in the Analyzer.

i

Create a new Analyzer window with the same experiment

file loaded in both windows. If no experiment file is currently
loaded, a new Analyzer window is displayed with no experiment
loaded.

Close and exit the Analyzer GUI program.

Modify the category of information to display. Very commonly
used functionality to also show System CPU and lock contention
columns.

Filter the data presented. Commonly used when wanting to
focus on a particular phase or time period of the application
being profiled. It can also be used to look at a subset of threads
in the experiment or to look at a subtree in the call graph.

@

Show and/or hide APIs or methods from logical areas. Can be
useful when wanting to ignore core Java SE classes, Java HotSpot
VM methods, etc.

View Mode | User -

Switches to alternative viewing modes: User, Expert, and
Machine.

The Analyzer does not save any state information about the current view prior

to exit.

See Table 5-1 for an explanation of the shortcuts available on the Analyzer’s

toolbar.

There are two tabs on the right panel of the default Analyzer GUI view, shown
previously in Figure 5-2, a Summary tab and Event tab. Information found on the
Summary and Event tabs on the right panel are described in Table 5-2.
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Table 5-2 Summary and Event Tab Information

Tab Name Description

Summary Shows all the recorded metrics for the selected object, both as values and
percentages, and information on the selected object. The selected object
could be a Java method, a line of source code, or a program counter. The
information in the Summary tab is updated any time a new Java method,
line of source code, or program counter is selected.

Event Shows the available data for the selected Java method, source code line, or
program counter, including the event type, method name, LWP Id, thread
Id, and CPU Id.
fFum:tions rCaIIers-Callees rCaII Tree r50urce rf" by rT' i rExper'

Figure 5-3 Analyzer left panel tabs

There are several tabs in the left panel of the default view in the Analyzer GUI.
The Functions tab, as shown in Figure 5-3, is considered the “home” tab where most
of your analysis work commences. The default view for the Functions tab lists inclu-
sive and exclusive User CPU columns for Java methods in the Java application
and orders the list of methods in decreasing order of exclusive User CPU time. The
definitions of “exclusive” and “inclusive” terms are provided in the “Oracle Solaris
Studio Performance Analyzer Terms” section earlier in the chapter. The additional
tabs, shown in Figure 5-3, are described in Table 5-3.

Of the tabs in the left panel, the ones expected to be the most useful and get the
most use while analyzing Java method profile experiments are Functions, Call Tree,
Callers-Callees, Source, and Disassembly.

Usually the best place to start with the analysis of the experiment is using the
Call Tree tab. The Call Tree tab shows the hierarchy of calls where an application
spends its time. This view offers the ability to quickly recognize at a high level and
in what use case(s) an application spends most of its time. Modifications made at the
highest level, often a change in an algorithm, offers the biggest return in performance
improvement. Although focusing on those methods that the profiles reports take the
most amount of time and making implementation changes to those methods makes a
certain amount of sense, stepping back at a higher level and changing the algorithm,
data structures, or design will generally offer a greater performance improvement.
Hence, it is useful to gain an understanding of the general operations taking the most
time before focusing on the amount of time a method consumes.

The time and percent shown at each node in the Call Tree is the cumulative
time spent both in the method represented by the node and everything it calls. For
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Table 5-3 Tab Names

Tab Name Description

Functions Shows a list of methods, or functions, and their metrics, i.e., CPU utilization,

lock contention, etc., that have been selected to be shown via the Metrics
tab using the View > Set Data Presentation menu. The Functions tab can
display inclusive metrics and exclusive metrics.

Callers-Callees

Shows the selected method, or function, from the Functions tab, in a pane
in the center, with callers of that selected method or function in a pane
above it, and the callees of that method or function in a pane below it.

Call Tree*

Shows the dynamic call graph of the program as a tree. Each node in the
tree can be expanded or contracted.

Source

Shows the source file that contains the selected method or function, from
the Functions tab, source line, or instruction. Each line in the source file for
which instructions have been generated is annotated with performance
metrics.

Disassembly

Shows a disassembly listing for the Java class file in either bytecode form or
machine level assembly language that contains the selected method, source
line, or instruction.

Timeline

Shows a chart of events as a function of time.

Experiments

The Experiments tab is divided into two panels. The top panel contains

a tree that includes nodes for the artifacts in all the loaded experiments,
and for each experiment loaded. The Load Objects node, a list of all load
objects, is displayed with various messages about their processing. Load
objects are any artifact such as Java classes, native libraries, etc., for which
there is collected profile data in the experiment. The Notes area displays
the contents of any notes file in the experiment. The Info area contains
information about the experiments collected and the load objects accessed
by the collection target, including any error messages or warning messages
generated during the processing of the experiment or the load objects.

* This tab is new in Oracle Solaris Studio version 12.2.

example, in Figure 5-4, the top node, <Total>, represents the total time and percent
consumed, that is, 100%. As each node underneath the <Total> node is expanded, the
amount of time and percent of time reported at each node represents the cumulative
time spent in that method and the methods it calls.

Expanding the nodes in the Call Tree that have the highest reported time and walking
down the call traces is a good approach to identify where an application spends most of
its time. For example, Figure 5-4 has nodes expanded to show 93% of the application’s
time is spent in a method called spec . jbb.TransactionManager . runTxn (). Not too
surprising, it appears this application spends most of its time executing transactions.
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Figure 5-4 Call Tree

It also provides a good sense of the transactions or the operations of a transaction it
spends the most time executing.

This call tree suggests the biggest gains in performance can be realized by improv-
ing the performance of the use case executed by DeliveryTransaction.process ()
and the use case of what appears to be a new order transaction, the logic executed
by NewOrderTransaction.process () and NewOrderTransaction.pro-
cessTransactionLog (). The logic in NewOrderTransaction.process () and
NewOrderTransaction.processTransactionLog () account for 29% of the
application time, and DeliveryTransaction.process () accounts for 28%. There-
fore, changes to the algorithms or data structures in the use cases implemented by
those three methods have the biggest impact on improving the performance of this
application.

It’s worth pointing out that the Call Tree view is synchronized with the Functions
tab, Callers-Callees tab, Source tab, and Disassembly tab. When a node is selected
in the Call Tree, a switch to any of the other tabs results in an updated view with
the selected method shown. For example, if the spec. jbb.TransactionManager.
runTxn () node is selected in the Call-Tree and the view is switched to the Callers-
Callees tab, the Callers-Callee view is shown with focus on the spec.jbb.Trans-
actionManager.runTxn () method. Maintaining the selected method across the
different views allows you to remain focused on a particular method of interest.

Another approach, and also complementary to using the Call Tree, is to analyze the
experiment using the Functions tab and identifying the hottest methods in the applica-
tion. This approach focuses more on improving the implementation of a specific method.
Hence, its focus tends to be more narrow than the approach of using the Call Tree.
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[ Functions | Callers-Callees | Call Tree | Source | Disassembly | Timeline | Experiments

{8 user | Name
CPU
W (sec.)

45.462 spec.jbb.NewOrderTransaction.processTransactionLog()
B 6.735 spec.ibb.PaymentTransaction.procassTransactionlog()
5.114 spec.jbb.CustomerReportTransaction.processTransactionlog()
1.221 spec.jbb.0rderStatusTransaction.processTransactionlogl)

| | || | | Add || Remove | | Set Head || Set Center H Set Tail |

‘ 10.557 spec.jbb.infra.Util.TransactionLogBuffer.putDollars(java.math.Bigbecimal, int, int, int)

29.861 Jjava.math.BigDecimal.toStrina()

12.449 spec.jbb.infra.Util.TransactionLogBuffer.putText(java.lang.5tring, int, int, int, short)
3.232 java.math.BigDecimal.layoutChars(boolean)

1.961 java.math.BigDecimal.sianum({)

0,470 java.lang.String.Tength()

Figure 5-5 Callers-Callee

The Functions tab shows a list of methods and their metrics (refer to Figure 5-2
for an example showing the Functions tab). As mentioned earlier, by default, the
Analyzer shows the inclusive and exclusive user CPU utilization metrics. Exclusive
metrics report the amount of time spent in a method and do not include any time
consumed by methods it calls. In contrast, inclusive metrics report the time taken to
execute a method and all the methods it calls. The displayed metrics can be changed
through the View > Set Data Presentation menu. Changing the displayed metrics
is described in the next section. The data displayed in the Functions tab can also
be sorted by a metric column. By default, the data is sorted by exclusive user CPU
utilization in descending order. When the Analyzer is configured to show multiple
metrics, clicking on a different metric column changes the sort order. Methods at the
top are the hottest methods for the sorted metric.

When a method is selected in the Functions list and the Callers-Callees tab is
clicked on, a listing of the methods that call the selected method, “Callers,” and a
listing of methods that are called by the selected method, “Callees,” are shown. An
example view of the Callers-Callees tab is shown in Figure 5-5.

The Callers-Callees tab shows the selected method in the center panel, with call-
ers of that method in a panel above it, and callees of that method in a panel below it.
You can add callers and callees to the center panel to construct a call stack fragment
as the center function. Metrics will be computed for the entire fragment. You can
also set a function as the head, center, or tail of the call stack. The center panel also
includes navigation buttons that let you go forward and backward in the call stack
history. These are the arrow icons on the left part of the center panel.

Attributed metrics are shown in each panel. For the selected method, the attrib-
uted metric represents the exclusive metric for that method. In other words, the time
spent to execute the selected method. It does not include any time spent in methods
it calls. For the callees, the attributed metric represents the portion of the callee’s
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inclusive metric that is attributable to calls from the center method. In other words,
the callee’s attributed metric is the amount of time the center method spent calling
the callee including all the methods the callee invokes. Notice that the sum of attrib-
uted metrics for the callees and the selected method add up to the inclusive metric
for the center method (not to be confused with the selected method’s exclusive metric,
which is shown in the center panel).

For the callers, the attributed metrics represent the portion of the selected meth-
od’s inclusive metric that is attributable to calls from the callers. In other words, the
attributed metric represents the time spent calling the center method including all
the methods it invokes. Again, notice the sum of the attributed metrics for all callers
also adds up to the inclusive metric for the selected method (again, not be confused
with the selected method’s exclusive metric, which is shown in the center panel).

The callers list and the callees list are sorted by a metric. If more than one column
is displayed in the Callers-Callees tab, you can select the sort column by clicking on
the column header. The sort column header is always displayed in bold. Also note
that changing the sort metric in the Callers-Callees view changes the sort metric in
the Functions tab.

The way to interpret the information shown in Figure 5-5 is as follows:

* TransactionLogBuffer.putDollars () and its callees contribute 45.462
User CPU seconds to the execution of the calling method NewOrderTransac-
tion.processTransactionLog ().

" TransactionLogBuffer.putDollars () and its callees contribute
6.735 User CPU seconds to the execution of PaymentTransaction.
processTransactionLog ().

* TransactionLogBuffer.putDollars () and its callees contribute 5.114
User CPU seconds to the execution of CustomerReportTransaction.
processTransactionLog ().

" TransactionLogBuffer.putDollars () and its callees contribute
1.221 User CPU seconds to the execution of OrderStatusTransaction.
processTransactionLog ().

= 10.557 User CPU seconds were spent invoking only the TransactionLogBuf -
fer.putDollars () method, not including any of the methods it calls.

* BigDecimal.toString () and the methods it invokes contribute 29.861 User
CPU seconds to TransactionLogBuffer.putDollars () inclusive metric.

= Similarly for TransactionLogBuffer.putText (), BigDecimal.lay-
outChars (), BigDecimal.signum(), and String.length().

The Functions tab and the Callers-Callees tab can be used together by navigat-
ing through a collected experiment in the Functions tab, searching for high metric
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values such as User CPU, and then selecting a method of interest and clicking on
the Callers-Callees tab to find out how much time is attributed to the method that
has been selected.

A new feature added to the Callers-Callee tab in Performance Analyzer 12.2 allows
you to build a call stack around a method of interest and see the attributed time
spent in that call stack. In previous versions of Performance Analyzer, when you
moved up and down the call stack, the amount of attributed time adjusted based on
the method in the center of the Callers-Callees view.

To illustrate the usefulness of this new feature, consider System.array-
copy () as being a hot method in an experiment with a value of 100 for both its
inclusive and exclusive metric. Since both inclusive and exclusive metrics have
the same value, it is a leaf method call, that is, no other method is called by Sys-
tem.arraycopy (). Suppose you analyze the callers of System.arraycopy ()
and observe all its use came from the String (char[] value) constructor.
If you move String(char[] value) to the center to evaluate its callers, you
will be analyzing String (char[] value)’s inclusive time. Suppose its inclu-
sive time is 200. That 200 also includes time spent calling System.array-
copy (), which is 100. Now, you analyze the callers of String (char [] value)
and find there are many callers of it. As you put each of those methods that call
String (char [] value) in the center, you find it hard to determine how much
of the inclusive time from that method is actually spent in System.array-
copy (). With Oracle Solaris Studio 12.2 you can view how much time is spent in
System.arraycopy () for each of the call stacks that eventually call System.
arraycopy ().

To find the amount of time a call stack spends in a given method within a call
stack, you can use the Set Center button to focus on that method. Then by selecting
one of the Callers and clicking the Add button, you can see in the center panel how
much time is attributed to that call stack for those methods. You can similarly add
Callees to the center panel too. Adding more Callers or Callees to the center panel
gives you the ability to easily move up and down a call stack and easily correlate the
amount of time spent in a particular method in the call stack.

To put this feature to work using the example in Figure 5-5, suppose you wanted to
isolate the call stack of PaymentTransaction.processTransactionLog () from
other callers for TransactionLogBuffer.putDollars (). To do this, you select and
add the PaymentTransactionlLog.processTransactionLog () to the center. The
resulting view is shown in Figure 5-6.

You can see attributed metrics for TransactionLogBuffer.putDollars () and
its callers have all been updated to reflect their attributed metrics for the call stack
that isolates the Payment Transaction.processTransactionLog () method from
the other callers for TransactionlLogBuffer.putDollars ().Also updated is the
caller of the PaymentTransaction.processTransactionLog ().
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Figure 5-6 Call stack fragment

In short, this new capability allows you to build a call stack fragment and compute
attributed time for its callers and callees quickly and easily. This allows you to focus
on specific call stacks that call a specific hot method and isolate specific uses of that
hot method.

As mentioned earlier in this section, additional metrics can be presented by the
Analyzer such as System CPU and User Lock. A description of how to display addi-
tional metrics is presented in the next section.

Data Presentation

Recall from the previous section “exclusive” is defined as the amount of time taken
to execute a specific method. It does not include any time consumed by methods
called by the specific method. Also recall that User CPU time is the amount of time
a method has spent executing outside the operating system kernel. Inclusive time,
the data shown in the second column in the default Functions view, is the amount of
time taken to execute a method and all the methods it calls.

Additional metrics can be added or removed from the Functions view, such as
System CPU and User Lock. The way to add additional metrics is by selecting either
the View > Set Data Presentation from the main menu or clicking on the Set Data
Presentation shortcut in the toolbar.

See Figure 5-7 for a screenshot of the Performance Analyzer’s Set Data Presenta-
tion user interface illustrating metrics that can be shown for a clock-profiling experi-
ment. Clock-profiling is the default profiling type for Java. The metrics available in
the Set Data Presentation Metric’s view change depending on the type of profiling
and metrics collected in the experiment.

The Metrics tab allows you to choose the metrics to display and the form in which
to display them. There are three possible forms: time, value, and percentage. The list
contains all metrics that are available in the loaded experiment. For each metric,
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Figure 5-7 Clock-profiling’s Set Data Presentation metrics

check boxes are provided for the metric forms available. Alternatively, instead of
setting individual metrics, you can set all metrics at once by selecting or deselecting
the check boxes in the bottom row and then clicking the Apply to all metrics” button.

You can only choose to display exclusive and inclusive metrics. Attributed metrics
are always displayed in the Callers-Callees view if either the exclusive metric or the
inclusive metric is displayed in the Functions view.

The metrics of most interest for Java applications are User CPU, System CPU, and
User Lock. User CPU is the amount of CPU consumed executing a method outside
the operating system kernel. In contrast, System CPU is the amount of CPU executed
in the operating system on behalf of the method.

In addition to using the Call Tree tab for analyzing the experiment, another strat-
egy to employ is to focus on reducing the amount of System CPU consumption since
CPU time used executing system calls in the operating system is CPU time that
could be used executing your program. The benefit realized from using such a strat-
egy depends on the amount of time spent in System CPU relative to the amount
of time spent in User CPU. Focusing on reducing System CPU consumption on an
experiment with small amounts of System CPU consumption relative to User CPU
consumption will not offer much return on investment. An example focusing on Sys-
tem CPU consumption is provided in Chapter 6.

The User Lock metric provides the method names that have locks and may expe-
rience lock contention in your Java application. A Java application under load with
high lock contention will not scale on systems with a large number of CPUs. Hence,
to improve application scaling, you need to focus on reducing lock contention. The
User Lock metric tells you which locks are the most highly contended. An example
is presented Chapter 6.
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Figure 5-8 Functions tab with User CPU, System CPU, and User Lock

To add System CPU as a metric to display in the Functions view and Callers-
Callees view, you simply select the check boxes of interest, Exclusive Time, Exclusive
%, Inclusive Time, and Inclusive % corresponding to System CPU. In most cases, it is
useful to display Exclusive metrics since you likely are most interested in the amount
of time or percentage of time spent exclusively in a given method for some metric
rather than the amount of time or percentage of time spent associated with a given
method and all methods it calls.

To display monitor or lock contention information, simply select the check boxes
of interest for User Lock.

Figure 5-8 shows the Functions view after selecting Exclusive % metrics for User
CPU, System CPU, and User Lock.

Notice in Figure 5-8 that the list is ordered by Sys CPU %. The sorted column is
identified by the bold font of the column name.

Also notice in this example, the functions list shows the vast majority of the Sys-
tem CPU is consumed by an entry labeled <JVM-Systems>. <JVM-System> is a gen-
eral placeholder for time spent within the internals of the JVM performing tasks
such as garbage collection, JIT compilation, class loading, and other various JVM
housekeeping activities.

There are multiple format modes in which profiled experiment data can be shown
in the Performance Analyzer: User mode, Expert mode, or Machine mode.

In User mode, both JIT compiled and interpreted Java methods are displayed by
their method name. In addition, native method names are shown in their natural
form. During execution of a Java application several instances may be available of a
Java method being executed, that is, an interpreted version and possibly one or more
JIT compiled versions. However, if more than one version of a Java method exists in
the collected data, their information is aggregated together and reported as a single
Java method. In User mode, data collected that represents internal JVM threads
such as JIT compiler threads or garbage collection threads is reported under a special
entry titled <JVM-Systems>. An example of this is found in Figure 5-8.

In User mode, the methods list in the Function’s panel shows metrics against the
Java methods and any native methods called. The Callers-Callees panel shows the
calling relationships between Java methods and/or native methods. The Source panel



178 Chapter 5 = Java Application Profiling

shows the Java source code for Java methods with metrics on each source line. The
Disassembly panel shows the bytecode generated for the Java methods with metrics
on each line of bytecode. It also interleaves the Java source code if it is found by the
Performance Analyzer.

Expert mode is similar to User mode except that some of the details of the JVM
internals are exposed. Method and function names from JVM internal threads
such as JIT compiler threads and garbage collection threads are shown in the
Functions panel and Callers-Callees panel. In addition, Java methods that have
spent time in the JVM Interpreter are not aggregated together with its corre-
sponding JIT compiled information as it is in User mode. Instead, time spent in
the JVM Interpreter is listed as a separate distinct item in any of the method
lists. The Sources panel shows the Java source of a selected method name from
the Functions panel or Callers-Callees panel. The Disassembly panel shows the
bytecode generated from a selected Java method with metrics reported against
each bytecode. It also may interleave Java source code if the source code is found
by the Performance Analyzer.

Machine mode shows method and function names from the JVM along with any
JIT compiled method names and native method names. Some of the JVM method or
function names represent transition code between interpreted Java code, JIT com-
piled Java code, and native code. In Machine mode, multiple HotSpot JIT compila-
tions for a given Java method may be shown as completely independent method
names in the method lists even though the method names will have the same name.
The Sources panel shows the Java source if the selected method in the Functions
panel or Callers-Callees panel is a Java method. If the selected method is a native
method, the source code will be displayed if it is available. The Disassembly panel in
Machine mode shows the generated machine code, not the Java bytecode seen in User
or Expert modes. Also in Machine mode, Java monitors, which delegate to operating
system locking primitives are listed in the method lists as calls to operating system
lock primitives such as lwp mutex on Solaris. Traversing up the call stack from
an operating system locking primitive such as an 1wp mutex entry in the Callers-
Callees panel eventually shows the origination of the Java monitor in the form of a
Java method name.

To change from User mode, choose View > Set Data Presentation from the main
menu, or click on the Set Data Presentation icon in the toolbar. Then select the For-
mats tab where a radio button can be selected for the desired mode, User, Expert, or
Machine mode. In the lower half of Figure 5-9 you can see where you can select the
view mode from the Formats tab of the Set Data Presentation form.

Java developers tend to use User mode the most since they are usually not inter-
ested in viewing data that includes internal methods of the JVM. Java performance
specialists tend to use all three modes, especially Expert and Machine modes, since
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Figure 5-9 Format modes

performance specialists possess specific knowledge about the internals of the JVM
and can identify if there happens to be reason for concern about the performance or
scalability of the JVM.

Filtering Profile Data

Often there are time periods of an application’s execution that you want to ignore
when viewing a profile. For example, most of the time you are not interested in the
startup or initialization phase of an application and want to ignore that informa-
tion. Or there is a particular time span where performance is of concern and you
want to focus on that particular time span. The Performance Analyzer has a con-
cept called filtering that allows you to focus on specific time spans of interest. The
Performance Analyzer allows you to select the range of profile samples collected.
By default the Performance Analyzer displays all samples. Since the collect
command of Performance Analyzer by default collects a sample once every second,
it is easy to identify a time period of interest. For example, suppose an applica-
tion runs for 30 minutes (1800 seconds), it takes 45 seconds to initialize, and you
are not interested in viewing any performance data from the initialization phase.
To exclude the first 45 seconds of profile data, you specify a filter so the first 45
samples are ignored with a range of 46—-1800 as the samples to include the presen-
tation of the profile data.

Specifying a filter in the Performance Analyzer is done through the Filter Data
form, which can be accessed by selecting the View > Filter Data from the main menu
or by selecting the Filter Data icon from the toolbar. Figure 5-10 illustrates a filter
for limiting the data to be presented to samples 301-1720, which suggests the first
300 seconds (5 minutes) of the application profile data is to be ignored.
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Figure 5-10 Filter Data

Command Line er print Utility

In addition to the Analyzer GUI, there is also a command line utility called er print
that can be used to process a collected experiment profile. The er print command line
utility prints an ASCII text version of the various displays found in the Performance Ana-
lyzer GUI such as method lists and callers-callees of User CPU, System CPU, and User
Lock consumers. The output from er print is written to standard output unless it is
redirected to a file. The er print utility requires at least one argument, the name of one
or more experiments generated with the Performance Analyzer’s collect command.

One of the powerful capabilities of er print is that it can be scripted, which
makes it useful for automated performance analysis. For instance, er print can
be scripted to automatically process a collected experiment and output the top ten
methods using the most User CPU, System CPU, and User Locks. But before talking
about how to create scripts for er print, it makes sense to talk about its command
syntax and more generally how to use it interactively. Once these topics are covered,
the task of creating scripts for er print is straightforward.

The command syntax for er print is

$ er_print [ -script <script name> | -command <er_print command> | - | -V ]
<profile experiment name>
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The text between [ and ] means the arguments are optional. Text demarcated by |
means any of the options can be used between the | characters. And text between
< and > means a name of a script or file that you have created is required, or an
er print command is required. When the -script option is not used, er print
reads commands from the command line.

" -script <script names says to execute the er print script called <script
name>, a script you have created that contains a list of er print commands.

* -command says to execute the er print command where command is one of
the er print commands, that is, - func will print a functions (methods) list.

= - says toread er print commands entered from the keyboard. er print
prompts and waits for er print commands to be entered. Using - is useful
when used in combination with - command to execute a command and then wait
for keyboard input for the next command. In other words, it is useful when using
er print for interactive command line analysis where you may not know the
next command to execute until after viewing the previous command’s output. A
tip to keep in mind when in interactive mode: A help command will list avail-
able er print commands.

= -Vtells er print to display version information and exit.

Multiple options can appear on the er print command line. They are processed
in the order they appear. You can mix scripts, hyphens, and explicit commands in
any order. The default action if you do not supply any commands or scripts is to enter
interactive mode, where commands are entered from the keyboard. To exit interactive
mode type quit or press Ctrl+D.

After each command is processed, any error messages or warning messages arising
from the processing are printed.

The commands accepted by the er print utility are listed in the following sections.

You can abbreviate any command with a shorter string as long as the command is
unambiguous. You can split a command into multiple lines by terminating a line with
a \ character. Any line that ends in \ will have the \ character removed, and the con-
tent of the next line appended before the line is parsed. There is no limit, other than
available memory, on the number of lines you can use for an er print command.

You must enclose arguments that contain embedded blanks in double quotes. You
can split the text inside the quotes across lines.

Many of the er print commands use a list of metric keywords. The syntax of
the list is

metric-keyword-1[:metric-keyword-2 ...]
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In other words, multiple metric keywords can be specified. They need to be delim-
ited by a : (colon) character. Metric keywords can be a combination of a metric name,
metric type, donated by a metric type character, and a metric visibility character.
Metric names are shown in Table 5-4. Metric type characters are shown in Table 5-5.
Metric visibility characters are shown in Table 5-6.

Table 5-4 Metric Names

Metric Name  Description

user Shows User CPU time, i.e., the amount of time spent consuming user land
CPU cycles
system Shows System CPU time, i.e., the amount of time spent consuming CPU

cycles executing in operating system calls

lock Shows User Lock time, i.e., the amount of time spent blocked, waiting to get
access to a shared lock

Table 5-5 Metric Type Characters

Metric Type

Character Description

e Shows exclusive metric value. Remember exclusive metric values represent
values for only a method and not any additional value from methods it calls.

i Shows inclusive metric value. Remember inclusive metric values represent not
only the values for a method, but also includes values for methods it calls.

a Shows attributed metric value. This is applicable only to Callers-Callees metrics.

Table 5-6 Metric Visibility Characters
Metric Visibility
Character Description
Shows the metric as time. This applies to timing metric metrics and

hardware counters that measure cycle counts. For other metrics, it is
interpreted the same as the “+” character.

% Shows metric as a percentage of the total program metric. For attributed
metrics in the Callers-Callees list, shows the metric as a percentage of the
inclusive metric for the selected function.

+ Shows metric as an absolute value. For hardware counters, this value is an
event count. If the hardware counter measures cycle counts, the metric is
reported as time.

! Does not show any metric value. This option cannot be used in
combination with other visibility characters listed in this table.




Oracle Solaris Studio Performance Analyzer 183

Note, there are other metric names, but those listed in Table 5-4 are the ones most
commonly used with Java applications. A full listing of all metric names available in
an experiment being evaluated can be obtained using the er print metric list
command.

With this information you specify which metrics you want to have selected and
printed. For example, if you are interested in reporting the percentage of total time
on exclusive metrics for User CPU, System CPU, and User Lock, you would enter an
er print command as

metrics e.%user:e.%system:eX%lock

If you enter the preceding metrics command at an er print command line, er
print will respond by saying:

Current metrics: e.%user:e.%system:e%lock:name
Current Sort Metric: Exclusive User CPU Time ( e.%user )

Notice that er print is also saying that the current sort metric will be exclusive
User CPU time. You can change the sort order by using the sort command followed
by the metric name to sort by. For example, if instead of wanting to sort by exclusive
User CPU time, you want to sort by exclusive User CPU time after entering the pre-
vious metrics command, you would use the following sort command:

sort e.%system

After entering the sort command, er print reports the result of the command. For
example, er print responds with the following message after entering the preced-
ing sort command:

Current Sort Metric: Exclusive System CPU Time ( e.%system )

To obtain a listing of the methods for a set of metrics, you use the functions com-
mand. However, the functions command, in the absence of a specified limit, prints
all methods collected in the experiment profile. To limit the number of methods
printed, you can use the 1imit command. The 1imit command tells er print to
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limit the number of methods printed with the functions command to the number
of methods given as an argument to the 1imit command. For example, to limit the
number of methods printed with a functions command to 25 methods, you would
use the following 1imit command:

Timit 25

The 1imit command is one of the few er print commands when entered that does
not respond back the fact that the number of methods printed with the functions
command now has a capped limit.

At this point you have enough information to use er print to print out the top
25 methods consuming the most System CPU, User CPU, and User Lock time. How-
ever, you are probably also interested in knowing how to print out Callers-Callees
information with er print.

The er print command callers-callees prints a Callers-Callees table for each of
the methods printed by the functions command. The number of Callers-Callees table
entries that are printed are constrained by the 1imit command in the same way that
the 1imit command limits the number of methods printed by the functions command.
For example, if the 1imit command limits the number of methods printed by 25, then
only 25 table entries will be printed by the callers-callees command. For each table
entry printed by the callers-callees command, the center method name is the name
of the method from the functions list and it is marked with an asterisk. Here is example
output from a callers-callees command:

Attr. Excl. Incl. Name
User CPU User CPU User CPU
sec. sec. sec.
4.440 0. 42.910 com.mydomain.MyProject.doWork()
0. 0. 4.440 *com.mydomain.MyProject.work()
4.080 0. 4.080 com.mydomain.MyProject.preProcessItem()
0.360 0 0.360 com.mydomain.MyProject.processItem()

In this example, com.mydomain.MyProject .work () is the selected method from
the methods list, the center method name, which is reportable from the functions
command. The com.mydomain.MyProject.work () method is called by com.
mydomain.MyProject.doWork (), and the com.mydomain.MyProject .work ()
method calls both com.mydomain.MyProject.preProcessItem() and com.
mydomain.MyProject.processItem() methods. Also notice in this example the
Attributed User CPU metric is also reported.
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Another er print command, csingle, can also print callers-callees information.
In contrast to the callers-callees command, csingle prints the callers-callees of
the method name passed as an argument to the csingle command. The callers-
callees command prints a list of callers-callees. The length of the list of caller-callee
pairs from the callers-callees command is constrained by the 1imit command.
The csingle command is useful when wanting to look exclusively at callers-callees
of a specific method. A common work flow when viewing profiles with er print is
to output the top ten methods having the highest usage of exclusive User CPU, and
then print the callers-callees of the top method. This could be done interactively
with er print with the following sequence of er print commands (er print
commands are shown in bold):

$ er_print test.er.1l
(er_print) 1limit 10
(er_print) functions
Functions sorted by metric: Exclusive User CPU Time

Excl. Incl. Name

User CPU User CPU
sec. sec.

3226.047 3226.047 <Total>

372.591 521.395 com.mydomain.MyProject.work()

314.230 314.230 com.mydomain.MyProject.doWork ()

177.134  455.639 java.lang.Integer.valueOf(int)

169.118 169.118 java.lang. StringBuilder.toString()
(er_print) csingle com.mydomain.myproject.work
Callers and callees sorted by metric: Attributed User CPU Time

Attr. Name
User CPU
sec.
521.365 com.mydomain.MyProject.doWork()
372.591 *com.mydomain.MyProject.work()
66.907 java.lang.Integer.valueOf(int)
17.342 java.lang.StringBuilder.toString()

Since modern JVMs include JIT compilers to compile Java bytecode into machine
code for the underlying hardware platform and Performance Analyzer differentiates
between interpreted methods and those that have been JIT compiled, the csingle
command may ask for a specific version of the selected method. One of the choices
will be a version of the method that had been executing in the JVM in interpreted
mode, and there may be additional choices of method versions after JIT compila-
tion. The reason there may be multiple choices after JIT compilation is the JVM’s
JIT compiler may have deoptimized and reoptimized the method. Having these dis-
tinct versions can be useful for JVM and JIT compiler engineers with improving
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JIT compilation techniques. The following example illustrates the prompting of the
csingle command asking for a version of a method.

(er_print) csingle java.lang.Integer.valueOf (int)
Available name list:

0) Cancel
1) java.lang.Integer.valueOf(int) JAVA_CLASSES:0x0 (Integer.java)
2) java.lang.Integer.valueOf(int) JAVA_COMPILED_METHODS:0x52f70
(Integer.java)
Enter selection:

In the previous output, the JIT compiled version of the java.lang.Integer.
valueOf (int) method is identified by the JAVA COMPILED METHODS text. The
interpreted version is identified by the JAVA CLASSES text. In the presence of mul-
tiple choices of a method using the csingle command, it is best to look at perfor-
mance metrics for each version since you may not know how long a given version had
been executing as interpreted code, or as JIT compiled code.

The metrics reported by the callers-callees and csingle commands can be
controlled using the cmetrics command. Using cmetrics with no arguments tells
er print tosetthe callers-callees and csingle metrics to the same metrics as
those specified for printing methods using the functions command. The cmetrics
command can also take a list of metric keywords if you want to expand or contract the
metrics reported with the callers-callees or csingle commands. For example,
if you are interested in reporting only exclusive percentage System CPU time and
attributed percentage System CPU time in the Callers-Callees output, you would
specify the following cmetrics command:

cmetrics e.%system:a.%system

To limit the scope of information printed; in other words, in situations where you
are interested in a particular time period of the collected experiment profile, you can
specify a filter for er print to use in the same way you can specify a filter in the
Analyzer GUI. To limit the scope of the samples included in the printed information
reported by er print, you use the filters command. The filters command
takes an argument that can be a list of one or more sample ranges with each range
of samples delimited by a , (comma) character. For example, suppose you wanted
to limit the scope of the information reported by er print to be samples 61-120
and 301-360 (this suggests the data collected between 61 seconds and 120 seconds
into the experiment and between 301 seconds and 360 seconds are of interest since
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the collect command samples at once per second), you would specify the following
filters command:

filters 61-120,301-360

To direct the output produced by er print to an output file you specify the
outfile command followed by a file name you want to capture the output in. For
example, to capture the output from an er print sequence of commands to a file
named my-output-file.txt, you would specify the following out file command:

outfile my-output-file.txt

An additional er print command worth mentioning is the selecting of a view
mode. Recall that three view modes are available: User, Expert, and Machine.
These three view modes were described earlier in the Oracle Solaris Studio Per-
formance Analyzer Data Presentation section. As mentioned in that section, most
Java developers use the User view mode. But if you want to see er print output
data in either Expert mode or Machine mode, the viewmode command can be
used. The default view mode is User. To set a view mode to use with er print,
you append one of the view modes of User, Expert, or Machine to the viewmode
command. For example, to set the view mode to Expert mode you specify the fol-
lowing viewmode command:

viewmode expert

At this point you have seen the basic set of er print commands that allow you
to make effective use of er print.The next step in using er print is to automate
the processing of an experiment with an er print script. Following are a couple of
example er print scripts for various tasks. Any of the following er print scripts
can be saved to a file and run against a collected experiment using er print with
the -script option followed by the name of the file the commands were saved as.

Example 1

Print the top 10 methods using the most percentage of exclusive System CPU time
and include percentage of exclusive User CPU time and percentage of exclusive User
Lock time too.
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metrics e.%system:e.%user:e.%lock
sort e.%system

Timit 10

functions

quit

If the preceding commands are saved in a file named, top-10-system-cpu.script,
this script could be executed using er print as

er_print -script top-10-system-cpu.script <experiment name>

Note that <experiment name> is the name of an experiment that has been collected
with the Performance Analyzer collect command.

Example 2

Print the top 25 methods using the most exclusive User CPU time, reported as time
rather than percentage. Then print the top 10 methods using the most exclusive
System CPU time, reported as time rather than percentage. And then report the top
5 methods experiencing the most exclusive percentage of User Lock time. This script
could be a general purpose script to report a high level view of the top consumers
of CPU time, including both User CPU and System CPU along with reporting any
potential lock contention issues.

metrics e.user
sort e.user
Timit 25
functions
metrics e.system:e.%user:e.%lock
sort e.system
Timit 10
functions
metrics e.%lock
sort e.%lock
Timit 5
functions

quit

These two example scripts illustrate the power of being able to create er print
scripts. Many more scripts can be created and can be useful. The preceding two
examples illustrate how quickly er print scripts can be developed and how use-
ful they can be as general purpose scripts that could be run against a collected
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experiment to give a quick overview of an application’s performance. In an era of
automated build and test environments, even the simple examples shown previ-
ously could be useful in an automated performance testing system to do an initial
high level performance analysis. The resulting output from the preceding scripts
could be further integrated into an e-mail reporting system to report the findings
to interested stakeholders.

This section on er print has only provided an introduction to the capabilities
you can achieve utilizing er print. Getting a list of er print commands and their
usage at any time is as simple as executing er print with no arguments, that is,
er print.

As you use the Performance Analyzer and er print,you will become more versed
in its capabilities and its power.

NetBeans Profiler

Since some readers may not have the ability to do method profiling on one of the
Oracle Solaris Studio Performance Analyzer’s supported platforms, method pro-
filing using the NetBeans Profiler is covered in this section. In addition, memory
profiling and memory leak detection with the NetBeans Profiler are also pre-
sented. To get the most from this section, it may be useful to revisit the Common
Profiling Terms and NetBeans Profiler Terms sections at the beginning of this
chapter.

The NetBeans Profiler is a powerful tool that can help you identify performance
problems in your application. The NetBeans Profiler is included in the NetBeans
IDE and also included in a JVM monitoring tool called VisualVM. VisualVM is an
open source project found at http://visualvm.dev.java.net and is also packaged with
the Java HotSpot JDK beginning with Java 6 Update 7. Regardless whether you
use NetBeans Profiler with NetBeans IDE or with VisualVM, it allows you to profile
your Java application, determine the time used by specific methods, and examine
how your application uses memory.

Tip

At the time of this writing, there are few differences in the functionality between the
NetBeans Profiler available in NetBeans IDE and VisualVM. Both rely on the same underlying
technology. One of the features absent from VisualVM is the ability to go to a specific
line of source code in the NetBeans IDE editor when double-clicking on a method name
while examining a profile. A feature absent in NetBeans Profiler is the profiling sampler, a
lightweight profiler that’s included with VisualVM 1.3.1 version (and available as a plug-in
in version 1.2).
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The NetBeans Profiler uses advanced technology that reduces profiling overhead,
making it easier to learn about the performance of an application. The following are
some of the features of the NetBeans Profiler:

= Low overhead profiling. You can control the profiler’s performance impact
on your application. Based on your selections, the performance impact ranges
from extensive to none.

= CPU performance profiling. Time spent in every method of your applica-
tion or just in selected methods can be reported.

= Memory profiling. You can check for excessive object allocations.

= Memory leak detection. The profiler’s statistical reports make it easy to
detect object instances that are leaking.

The act of profiling with the NetBeans Profiler presented are those followed when
using the NetBeans Profiler within NetBeans IDE. However, other than some of the
initial setup of selecting an application to profile, the concepts, flow of control, and so
on are similar if not the same as found in VisualVM. Once you have used the NetBeans
Profiler in either the NetBeans IDE or VisualVM you will find it easy to use in either tool.

Supported Platforms

The NetBeans Profiler can profile applications when they are run in a Java Virtual
Machine (JVM) that supports the JVM Tool Interface (JVMTI). Java 5 Update 4 (and
later) supports JVMTI. Because the NetBeans Profiler includes binary code, which is
needed to communicate with the JVMTI support in the JVM, the NetBeans Profiler
is platform specific. The supported platforms are as follows:

= Solaris (SPARC and x86/x64)
= Windows

* Linux

= MacOSX

Downloading and Installing the NetBeans Profiler

The standard NetBeans IDE download includes the NetBeans Profiler and can be
used directly within the NetBeans IDE. The NetBeans IDE can be downloaded from
the NetBeans Web site, http://www.netbeans.org. Downloading the NetBeans IDE is
as simple as selecting the download for your target platform. Once NetBeans IDE
has been downloaded, you use the installation wizard to install the NetBeans IDE.
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VisualVM, which also bundles the NetBeans Profiler, can be obtained by either
downloading the latest version of VisualVM from http://visualvm.dev.java.net, or by
downloading Oracle’s Java 6 Update 7 or later JDK distribution. Java 6 Update 7
and later bundle VisualVM in its distribution.

Tip
The only difference between the VisualVM version available at http://visualvm.dev.java.net

and what is bundled in a HotSpot JDK is the version from http://visualvm.dev.java.net may
be a slightly newer version having new or additional features available in it.

The VisualVM program that is bundled with Java 6 and later releases can be
found in the <install directory>/bin directory of a JDK installation. The name of the
program is called juisualvm. The VisualVM program in the downloaded VisualVM
package from http://visualvm.devjava.net is called visualvm and can be found in the
<install directory>/bin directory. Note that the open source VisualVM version does
not have a leading “j” character in front of the visualvm name.

The default JDK installation directory on Windows systems is C:\Program Files\
Java\<jdk release> where <jdk release> is the name of the JDK release such as
jdk1.6.0_21. So, if you installed Java 6 Update 21 on a Windows system, by default
the JDK installer places the juvisualvm program in the C:\Program Files\Java\
jdk1.6.0_21\bin directory.

The installation of NetBeans IDE on Windows systems places a launch icon on the
Windows desktop for easy launching.

Starting a Method Profiling Session

The steps described here assume you are using NetBeans IDE. NetBeans IDE was
chosen as the program for describing how to use NetBeans Profiler since it offers
remote profiling capabilities.

Tip
VisualVM has a lightweight remote profiling feature different from the NetBeans IDE remote
profiling feature. VisualVM'’s lightweight profiling feature was presented in Chapter 4.

Additionally, the steps illustrated here describe profiling remotely since usu-
ally it is most desirable to profile an application running on a target system
in a qualification type of environment, and most desktop systems do not have
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sufficient memory resources to run both a powerful profiler and a complex appli-
cation at the same time.
A remote profiling session requires the following steps:

NS o N

Identify the remote system where the application to profile resides.
Start NetBeans IDE.

Select a profiling task, method profiling or memory profiling.
Specify options for the selected task.

Generate the remote profiling pack.

Configure the remote system with the remote profiling pack.

Start the profiling; examine the data it displays and the data it collects.

The following sequence of steps illustrates what is required to remotely profile an
application using NetBeans Profiler in NetBeans IDE. In this example, the remote
system’s name is halas and the remote application is called SPECjvm2008’s compiler.
compiler workload. SPECjvm2008 can be freely downloaded at http:/www.spec.org/
download.html. The version of NetBeans IDE used in this example is NetBeans IDE
6.8. The JVM version used with both the NetBeans IDE and the remote application
is Java 6 Update 21.

1.

Identify the remote system where the application to profile resides.
As mentioned earlier, the remote system is halas, and the application is
SPECjvm2008’s compiler.compiler workload.

Start NetBeans IDE on your desktop system.

Select the profiling task and method profiling.

Select the Profile > Attach Profiler option from the main menu in NetBeans
IDE. From the Attach Profiler panel, select the CPU icon on the left to select
method profiling as shown in Figure 5-11. Note, if you want to perform memory
profiling, select the memory icon.

Specify options for the selected task.

On the right side of the Attach Profiler panel, you have several options to scope
method profiling such as profiling the entire application and an option to specify
a filter. A filter allows you to include or exclude specific Java classes from being
included in the profiling activity. There is also a measure of intrusiveness pro-
vided by the Overhead meter. Notice in Figure 5-11, with the options to profile
the entire application and a filter selected to exclude the Java core classes from
the profile there is a projected profiling overhead of about 50%. If you select a
filter to profile all classes, you will notice the profiling overhead jumps to 100%.
Generally you will find that method profiling an entire application can be rather
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Figure 5-11 Selecting method profiling

intrusive on the application’s performance. Hence, it is useful to use a filter or
define a filter to use with method profiling. In other words, if you happen to
have a good idea of the part or parts of the application that have performance
issues, it will greatly help the intrusiveness introduced by the profiling activity
if you can create and specify a filter to narrow the scope of what is profiled to
that part or parts of the application.

You can also reduce the intrusiveness of the profiling by reducing the sam-
pling rate at which profiling data is acquired from the running application. To
reduce the sampling rate, you must construct a custom configuration by select-
ing the Create Custom option in the CPU profiling icon on the Attach Profiler
panel and then clicking on the Advanced Settings option to the right of the
Overhead meter; refer to Figure 5-11. Once you have clicked on the Advanced
Settings option, you can specify a lower sampling interval than the 10 millisecond
default as shown in Figure 5-12.

If you have not specified an Attach Mode, you must do so. Specifying an Attach
Mode tells the profiler whether the JVM running the application you want to pro-
file is running locally or remotely on a different system. You specify the Attach
Mode by launching the Attach Wizard by selecting the Define Attach Mode option
at the bottom of the Attach Profiler panel, shown previously in Figure 5-12.

On the Attach Wizard you specify the target type: Application, Applet, or J2EE/
Web Application along with attach method, local or remote, and attach invocation,
direct or dynamic. Direct attach blocks the target application from launch until



194

Chapter 5 = Java Application Profiling

Attach to: | <External Application> -

Monitor Custom Configuration #1 (Advanced)

Settings

CPU Methods tracking:

(7 Exact call tree and timing

* Analyze Performance _ L -
(@ Exact call tree, sampled timing 10 = ms
* Custom Configuration #1

* Create Custom... Exdude time spent in Thread.sleep() and Object. wait()

[ Profile underlying framework startup

E Memory Profile new Threads /Runnables

Overhead:

Attach Mode: Mo attach settings defined, define...

[ -l Attach ] [ Cancel ] [ Help ]

Figure 5-12 Reducing method profiling sampling interval

the profiler has attached to it. Dynamic attach allows you to attach, detach, and
re-attach to the running application at any time. However, dynamic attach is not
available for remote profiling or for profiling applications running on Java 5 or older
JVMs.

For illustration purposes, as mentioned earlier, the example illustrated in
this section assumes the target application is running remotely on a system
called halas as a standalone application. Hence, on the Attach Wizard the fol-
lowing options are selected, also shown in Figure 5-13, Target Type is Applica-
tion, Attach method is Remote, and Attach invocation is Direct.

Once the attach type is specified, you can press the Next button to proceed
through the Attach Wizard.

On the next form of the Attach Wizard, you specify the hostname where the
remote target application will be executed and the operating system along with
specifying whether a 32-bit JVM or 64-bit JVM is being used on the target sys-
tem as shown in Figure 5-14.

Generate the remote profiling pack.

Notice in Figure 5-13 there is a reminder that a Profiler Remote Pack is
required to profile a remote application. If you have not profiled an applica-
tion remotely on the target system where the application resides, you need
to generate a Profiler Remote Pack. The Profiler Remote Pack makes the con-
figuration and setup needed for the profiler to attach remotely much simpler



NetBeans Profiler

195

Select Target Type

Select Target Type

Remote System Type of the attach target
Review Attach Settings

Manual Integration Target Type

Appication

Attach i

(@) Direct
Dynamic {Java SE 6.0/7.0)

Choose Local to profile local Application. Choose Remote
to profile remote Application. Nofe that the aopproprizie
Frofiler Remote pack is required for profifng remote target.

Steps Remote System

Select Target Type
Remote System Provide remote system configuration
Review Attach Settings ez

Manual Integration

|halas

Host OS5 & VM

iaris (Sparc), G4bit VM v]

-

Note that the aopropriate Profier
Remote padk is required for @
orofiing remote target. i

[ < Back ][ Next = ]| Finish |[ Cancel ][ Help ]

Figure 5-14 Remote host, operating system, and JVM




196

Chapter 5 = Java Application Profiling

E\ﬂach Wizard 25

Steps Manual ion

1. Select Target Type

2. Remote System Select the Java platform that will run your Java
3. Review Attach Settings Application

4. Manual Integration .

Java SE 5.0 (Update 4 and higher)

Fallow these instructions to manually integrate the
Profiler with Java Application

Step 1: If you have not done it before dick

"Generate Remote Pack ..." button to generate an
appropriate Remote pack. Once it is generated instal —
it on the remate machine. The Remote pack root
directory will be referred to as "<remote>",

Step 2: If you have not run profiing on this remote
machine, run the <remote>/bin/calibrate.sh

scriot first,
4 n +

Generate Remote Padk ...

Mext = [ Finish ][ Cancel ][ Help ]

Figure 5-15 Generating Profiler Remote Pack

than doing it manually. The Profiler Remote Pack is generated by the Net-
Beans Profilers on the Manual Integration form of the Attach Wizard, which
is one of the next forms in the Attach Wizard. Click the Next button until
you reach the Manual Integration form. On the Manual Integration form,
you specify the Java SE version the target application is running. In this
example, the target application is running Java SE 6. Instructions on how to
generate the Profiler Remote Pack are also listed on the Manual Integration
form and also shown in Figure 5-15.

Review the instructions on the form and when you are ready to generate the
Profiler Remote Pack, click the Generate Remote Pack button. You are prompted
for a directory location in which to store the Profiler Remote Pack. Click the
Finish button to complete the Attach Wizard.

Configure the remote system with the Remote Profiling Pack.
Now you must configure the remote system using the Remote Profiling Pack. In
addition, if this is the first time you are profiling in the remote system with a
target JVM, then the target JVM will also perform some calibration of the tar-
get JVM. The calibration can be performed by a script included in the Remote
Profiling Pack called calibrate. sh.

The first task is to copy the Remote Profiling Pack to the remote target sys-
tem and unzip its contents to directory on the remote system. In the instructions
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given here, assume the directory that you have unzipped in the Remote Profil-
ing Pack on the remote system is called “remote.” The first task to execute on
the remote system, if it has not been done previously, is to run the calibration
script found in the <remote>/bin directory called calibrate. sh. Be sure to
edit and update the calibrate.sh script with the appropriate JAVA HOME,
or set the JAVA HOME environment variable externally to the calibrate.sh
script prior to attempting to execute the calibrate. sh script. The JAVA HOME
environment variable must point to the base directory of the JVM you plan to
use to run the remote application.

After executing the calibrate.sh script, you need to update the Java
command line options you use to launch the target application to tell the
JVM to block and wait until the Profiler has remotely connected to it. The
Remote Profiler Pack has convenience scripts you can update to launch your
Java application. These convenience scripts have the necessary HotSpot
JVM command line option, -agentpath, needed for remote profiling. If you
are using a Java 5 JVM you can update the <remote>/bin/profile-15
command file or script file. If you are using a Java 6 JVM, you can update
the <remote>/bin/profile-16 command file or script file. Alternatively,
you can add the appropriate -agentpath command line option for your plat-
form. The command line option to specify for a Java 5 JVM or Java 6 JVM
can be found in the Remote Profiling Pack’s <remote>/bin/profile-15
or <remote>/bin/profile-16 command file or script file, respectively.
When the -agentpath command line option is specified correctly, if you
attempt to launch the target Java application, a message prints saying that
the profiling agent is initializing and it is waiting for a connection from a
remote profiler.

7. Start profiling; examine the data it displays and the data it collects.
Everything necessary for remote profiling is set up and configured in the
previous steps. All that is left to do is launch the remote Java application
and connect the Profiler to it. Launch the remote Java application with
the command file or script file you updated in the -agentpath command
line in step 6. As mentioned in step 6, when the remote Java application
launches, it reports that it is waiting for the Profiler to attach. Go to your
desktop system and tell the NetBeans Profiler to attach to the remote
Java application. If you have forgotten how to get to the Attach Profiler
panel, select the Profile > Attach Profiler option from the main menu in
NetBeans IDE.

Once the NetBeans Profiler has successfully attached, the remote Java
application unblocks and continues to execute. The NetBeans Profiler opens
a Profiler Control Panel in NetBeans IDE with Controls, Status, Profiling
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Figure 5-16 Profiler control panel

Results, Save Snapshots, View, and Basic Telemetry subpanels as shown in
Figure 5-16.

Regardless of whether you are doing method profiling or memory profiling, the Profiler
Control Panel looks the same. Each section of the Profiler Control Panel can be expanded
or hidden by clicking the arrow icon next to the name of the section. Each of the Profiler
Control Panel’s subpanels is explained in more detail in the following subsections.

Controls

See Table 5-7 for an explanation of the buttons in the Profiler Control Panel Controls
section.

Status

See Table 5-8 for an explanation of the entries in the Profiler Control Panel Status
section.

Profiling Results

See Table 5-9 for an explanation of the entries in the Profiler Control Panel Profiling
Results section.



NetBeans Profiler

199

Component

bl

Table 5-7 Profiler Control Panel Controls

Description
ReRun Last Profiling

Run the last profiling command again.

(%]

Stop

Stops the current profiling command. Also stops the target application if
the application was started by the profiler.

Reset Collected Results

Discards the already accumulated profiling results.

D

Run GC

Runs garbage collection.

@"1

Modify Profiling

Opens the Modify Profiling Task dialog box and allows you to run a new
profiling command without stopping the target application.

]

VM Telemetry

Opens the VM Telemetry Overview in the Output window of the IDE,
displaying smaller versions of the telemetry graphs.

Component

Type

Table 5-8 Profiler Control Panel Status

Description

The type of profiling: Monitor, CPU, or Memory

Configuration

Indicates whether the profiler was started with one of its preset
configurations

On An identifier indicating the name of the system where application is

being profiled
Status Running or Inactive

Table 5-9 Profiler Control Panel Profiling Results
Component Description
== Take Snapshot
= Displays a static snapshot of the profiling results accumulated thus far
= Live Results
Displays the current results of the profiling task

8 Reset Collected Results

Discards the already accumulated profiling results
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Table 5-10 Profiler Control Panel View

Component Description
o VM Telemetry
-“‘_A"'I Opens the VM Telemetry tab. The VM Telemetry tab displays high-level data
on thread activity and memory heap and garbage collection in the VM.
— Threads

Opens the Threads tab. When Enable Threads Monitoring is selected in
the Select Profiling Task dialog box, application thread activity is displayed
in the Threads tab.

Table 5-11 Profiler Control Panel Basic Telemetry

Component Description

Instrumented When doing memory profiling, the number of classes with profiler
instrumentation; when doing CPU performance profiling, the
number of methods with profiler instrumentation

Filter Type of filter (if any) that was specified

Threads Number of active threads

Total Memory Allocated size of the heap

Used Memory Portion of the heap that is in use

Time Spent in GC Percentage of time spent performing garbage collection

Saved Snapshots

Enables you to manage the profile snapshots. When you save a snapshot, the saved
snapshot is displayed here. Double-clicking the name of the snapshot opens the snapshot.

View

See Table 5-10 for an explanation of the entries in the Profiler Control Panel View
section.

Basic Telemetry

See Table 5-11 for an explanation of the entries in the Profiler Control Panel Basic
Telemetry section. You can see the graphic presentation of some of this information
by clicking the VM Telemetry and Threads buttons in the View section.
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Figure 5-17 Live results while analyzing performance

Viewing Live Results

While your remote application is running you can watch the amount of time used by
individual methods by clicking the Live Results icon in the Profiler Control Panel to
display the Profiling Results window (shown in Figure 5-17).

This window displays all methods that have been invoked at least once. The
default sort order is by descending self time, so the methods in your application
that are using the most time are displayed at the top of the list. The amount of time
used is displayed in two columns, one with a graph to show the percentage of time
spent in each method and the other with text that displays the raw time value and
the percentage. The number of invocations is also shown. The profiler updates these
values as your application runs.

To change the sort order, click a column header. This sorts the table in descending
order using the values from the column. Click again to sort in ascending order. Click-
ing the Hot Spots—Method column sorts the table by package, class, and method
name. To find a specific method more quickly click on Method Name Filter at the
bottom of the table and then enter the method name.

Taking a Snapshot of Results

To see more detailed information, click the Take Snapshot icon in the Profiler Control
Panel. The CPU snapshot window is displayed, with the time of the snapshot as its
title (shown in Figure 5-18).

The CPU snapshot window initially displays its Call Tree tab, which shows
the call trees organized by thread. To switch to the Hot Spots view, just click
the Hot Spots tab at the bottom of the panel. It is usually helpful to see the
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Figure 5-18 Results snapshot while analyzing performance

execution path used by your application to get from one or more of the method
roots to the hot methods or hot spots in your application. To do that easily, click
the Combined tab. This tab shows both the Call Tree and the Hot Spots. Click-
ing a method in the Hot Spot list will find that method’s entry in the Call Tree,
making it easy to see the relationship between a method’s root and the hot spot
(shown in Figure 5-19).

The Info tab displays a summary of the snapshot information: date, time, filter
settings, and so on. The icons along the top of the snapshot window allow you to save
the snapshot, control the granularity of the snapshot (method, classes, or packages),
and search the snapshot.

The next several sections cover memory profiling.

Starting a Memory Profiling Session

The steps required to gather a memory profile with the NetBeans Profiler are
similar to the steps required to gather a method profile described earlier in this
chapter.

As is the case with the method profiling section, the steps presented in this section
illustrate remote profiling since usually it is more desirable to profile an application
running on a target system in a qualification type of environment and most desktop
systems do not have sufficient memory resources to run both a powerful memory
profiler and a complex application at the same time.
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Figure 5-19 Combined view while analyzing performance

The general steps for memory profiling are as follows:

Identify the remote system where the application to profile resides.
Start NetBeans IDE on your desktop system.
Select the profiling task and method profiling.

Select the Profile > Attach Profiler option from the main menu in NetBeans
IDE. From the Attach Profiler panel, select the Memory icon on the left to select
method profiling as shown in Figure 5-20.

Specify options for memory profiling.

When you memory profile with the NetBeans Profiler you have several options.
To get just a general feel for an application’s object allocation footprint, select
the Record object creation only since it imposes the least amount of overhead.
Collected profile statistics are displayed in the live results profiling panel that
suggest potential excessive object allocations in your application.

To get a sense of the long-lived objects in your application, select the Record
both object creation and garbage collection option. This option is also useful for
tracking down potential memory leaks.
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Figure 5-20 Analyze Memory options

By default, for each class used by your application, only every tenth allocation
actually is tracked by the profiler. For most applications, this statistical
approach dramatically lowers overhead without an impact on accuracy. You
can use the spin control to change the number of allocations that are tracked,
but keep in mind that lowering the value increases profiling overhead. In a
complex application that you intend to profile for an extended period of time,
consider increasing the value so the profiling activity is not as intrusive on
the application’s performance. If you find the profiling activity is too intrusive
on your application, increasing Track every object allocations value reduces
the profiling overhead. But increasing the Track every object allocations value,
may lose some profiling accuracy if not enough samples are collected. Hence,
when increasing the Track every object allocation, the application must execute
longer to gain enough information from the reduce sampling frequency.

Most important though is for the profiler to report the methods that performed
the object allocations, you must select the Record stack trace for Allocations option.

Generate the remote profiling pack.

Configure the remote system with the remote profiling pack; refer back to the
instructions in the previous section on remote method profiling if you need
assistance in how to perform these two steps.

Start profiling; examine the data it displays and the data it collects.
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Figure 5-21 Live Results while analyzing memory usage

Start the remote application. When it initializes, it blocks and waits until the Net-
Beans Profiler attaches to it. Once the NetBeans Profiler has successfully attached,
the remote Java application unblocks and continues to execute. The NetBeans Pro-
filer opens a Profiler Control Panel in NetBeans IDE with Controls, Status, Profiling
Results, Save Snapshots, View, and Basic Telemetry subpanels as shown previously
in Figure 5-16.

Viewing Live Results

Once profiling begins, you can use the Live Results button to open a dynamic display
of the heap contents (shown in Figure 5-21).
The columns displayed are

= Allocated Objects. The number of objects that the profiler is tracking.

= Live Objects. The number of the Allocated Objects that are currently on the
heap and are therefore taking up memory.

= Live Bytes. Shows the amount of heap memory being used by the Live
Objects. One column displays a graph; the other displays text.
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Avg.Age. Average age of the Live Objects. The age of each object is the num-
ber of garbage collections that it has survived. The sum of the ages divided by
the number of Live Objects is the Avg. Age.

Generations. Calculated using the Live Objects. The age of an object is the
number of garbage collections it has survived. The Generations value is the
number of different ages for the Live Objects. It is the same concept as the sur-
viving generations, only applied to a single class; see the “Surviving Generations
and Memory Leaks” sidebar.

To change the sort order, click a column header. This sorts the table in descend-
ing order using the values from the column. Click again to sort in ascending order.
Sorting the table by Generations can frequently help identify classes that are the
source of memory leaks. This is because an increasing value for Generations typically
indicates a memory leak.

Tip
Once you have the display sorted so that the classes of interest are at the top, if you chose

to track object creation and garbage collection, then you can right-click an entry and choose
Stop Profiling Classes below this Line to reduce profiling overhead.

Surviving Generations and Memory Leaks

To understand the Generations column in the memory profiling results view, you have to
think about the JVM’s Garbage Collection process. Every time the garbage collector runs
each object either survives and continues to occupy heap memory, or it is removed and its
memory is freed. If an object survives, then its age has increased by a value of 1. In other
words, the age of an object is simply the number of garbage collections that it has survived.
The value of Generations is the number of different object ages.

For example, assume several objects were all allocated when your application first started.
Further, another group of objects was allocated at the midpoint of your application’s run.
And finally, some objects have just been allocated and have only survived one garbage
collection. If the garbage collector has run 80 times, then all the objects in the first group
will have an age of 80, all the objects in the second group will have an age of 40, and
all of the objects in the third group will have an age of 1. In this example, the value of
Generations is 3, because there are three different ages among all the objects on the
heap: 80, 40, and 1.

In most Java applications the value for Generations eventually stabilizes. This is because the
application has reached a point where all long-lived objects have been allocated. Objects
that are intended to have a shorter life span do not impact the Generations count because
they will eventually be garbage collected.
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If the Generations value for your application continues to increase as the application
runs, it could be an indication of a memory leak. In other words, your application is
continuing to allocate objects over time, each of which has a different age because it has
survived a different number of garbage collections. If the objects were being properly
garbage collected, the number of different object ages would not be increasing.

Taking a Snapshot of Results

To see which methods in your application are allocating objects, you must take
a snapshot. Use the Take Snapshot button in the Profiler Control Panel. The
resulting window has a tab labeled Memory that contains the same information
as the Live Results window. Right-click a class in the list and then select the
Show Allocation Stack Traces option to switch to the Allocation Stack Traces
tab. Its display is similar, only the first column displays method names (shown
in Figure 5-22).

Tip
You can right-click an entry in the Live Results window and select Take Snapshot and Show
Allocation Stack Traces to quickly open a new Memory tab with the Allocation Stack Traces

displayed. This is useful when spotting object allocations that are of immediate interest while
observing Live Results.

The listed methods shown in the Allocation Stack Traces tab indicates which
methods allocated one or more instances of the selected class. If you focus on those
objects allocating the largest number of bytes and have a short average age, these
become good candidates to reduce object allocations. There are many different
approaches and strategies for reducing object allocations ranging from reducing
underlying containers from being resized, such as StringBuilder’s underlying
char[ ], to object pooling, which pools a number of objects to be reused rather
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Figure 5-22 Results snapshot while analyzing memory usage
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Figure 5-23 Execution paths for a method

than allocating a new one. However, it is generally not a good practice to pool
objects unless there is a high cost of allocation or collecting those objects. High

cost implies a lengthy duration of elapsed time to allocate or garbage collect those
objects.

Isolating Memory Leaks

You can use the displayed statistics in the Allocation Stack Traces view of the Mem-
ory panel to help narrow down which of the methods is allocating class instances
that are causing memory leaks. In the example shown previously in Figure 5-22,
the addEntry () and createEntry () methods are both allocating instances of
HashMap$Entry. Note that the Generations value for the allocations done by addEn-
try () is much higher than that for createEntry (). This indicates that addgn-
try () is where leaking instances of HashMap$Entry are being allocated. You can
click the icon next to a method’s name to see the different execution paths that called
that method (shown in Figure 5-23).

The addEntry () method was called by put (), which in turn was called by sev-
eral different methods. The calls from one of those methods, LeakThread.run (),
resulted in allocations with a high Generations value, indicating that it is a likely
source of a memory leak. It should be inspected to see whether perhaps it is adding
entries to a HashMap that are never being removed. In general, adding entries to
a Java Collection and never removing them are a common source of memory leaks.
Memory profiling with NetBeans Profiler in addition to observing sources of potential
unnecessary object allocations can be useful.
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Analyzing Heap Dumps

In addition to memory profiling a running application, the NetBeans Profiler can also
load a binary heap dump generated by the Java HotSpot VM. A binary heap dump
is a snapshot of all the objects in the Java HotSpot VM at the time the heap dump is
taken. One of features introduced in Java 6 HotSpot VMs is the capability to generate
heap dumps on OutOfMemoryErrors. This is a useful feature when troubleshooting
the root case that led to an OutOfMemoryError. Java 5 and Java 6 can both produce
binary heap dumps using the jmap command. Binary heap dumps can also be gener-
ated using Java 6’s JConsole using its HotSpotDiagnostics MBean. VisualVM can
also be used to generate a binary heap of an application. How to configure the
Java HotSpot VM to produce heap dumps on OutOfMemoryErrors, and how to
use jmap, JConsole, or VisualVM for generating binary heap dumps are described
in Chapter 4, “JVM Performance Monitoring.”

Binary heap dumps can be loaded in the NetBeans Profiler by selecting Profile >
Load Heap Dump from the main menu in the NetBeans IDE.

Tip
Since VisualVM contains a subset of the NetBeans Profiler capabilities, a common practice

for VisualVM users is to generate a binary heap dump using VisualVM and then immediately
analyzing it by loading the binary heap dump in VisualVM.

Once the binary heap dump has been loaded, you can analyze object allocations
for opportunities to reduce or avoid unnecessary object allocations. You can think of
looking at binary heap dumps as a means of doing offline memory profiling.
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Java Application
Profiling Tips and
Tricks

Chapter 5, “Java Application Profiling,” presented the basic concepts of using a mod-
ern Java profiler such as the Oracle Solaris Studio Performance Analyzer and Net-
Beans Profiler. It did not, however, show any specific tips and tricks in using the
tools to identify performance issues and approaches of how to resolve them. This is
the purpose of this chapter. Its intention is to show how to use the tools to identify
performance issues and take corrective actions to resolve them. This chapter looks at
several of the more common types of performance issues the authors have observed
through many years of working as Java performance engineers.

Performance Opportunities

Most Java performance opportunities fall into one or more of the following categories:

= Using a more efficient algorithm. The largest gains in the performance
of an application come from the use of a more efficient algorithm. The use of
a more efficient algorithm allows an application to execute with fewer CPU
instructions, also known as a shorter path length. An application that executes
with a shorter path length generally executes faster. Many different changes
can lead to a shorter path length. At the highest level of the application, using
a different data structure or modifying its implementation can lead to a shorter
path length. Many applications that suffer application performance issues
often use inappropriate data structures. There is no substitute for choosing the
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proper data structure and algorithm. As profiles are analyzed, take notice of
the data structures and the algorithms used. Optimal performance can be real-
ized when the best data structures and algorithms are utilized.

= Reduce lock contention. Contending for access to a shared resource inhibits
an application’s capability to scale to a large number of software threads and across
a large number of CPUs. Changes to an application that allow for less frequent lock
contention and less duration of locking allow an application to scale better.

= Generate more efficient code for a given algorithm. Clocks per CPU
instruction, usually referred to as CPI, for an application is a ratio of the
number of CPU clock ticks used per CPU instruction. CPI is a measure of the
efficiency of generated code that is produced by a compiler. A change in the
application, JVM, or operating system that reduces the CPI for an application
will realize an improvement in its performance since it takes advantage of
better and more optimized generated code.

There is a subtle difference between path length, which is closely tied to the algo-
rithm choice, and cycles per instruction, CPI, which is the notion of generating more
efficient code. In the former, the objective is to produce the shortest sequence of CPU
instructions based on the algorithm choice. The latter’s objective is to reduce the num-
ber of CPU clocks consumed per CPU instruction, that is, produce the most efficient
code from a compiler. To illustrate with an example, suppose a CPU instruction results
in a CPU cache miss, such as a load instruction. It may take several hundred CPU clock
cycles for that load instruction to complete as a result of the CPU cache miss having to
fetch data from memory rather than finding it in a CPU cache. However, if a prefetch
instruction was inserted upstream in the sequence of instructions generated by a com-
piler to prefetch from memory the data being loaded by the load instruction, it is likely
the number of clock cycles required to load the data will be less with the additional
prefetch instruction since the prefetch can be done in parallel with other CPU instruc-
tions ahead of the load instruction. When the load instruction occurs, it can then find
the data to be loaded in a CPU cache. However, the path length, the number of CPU
instructions executed is longer as a result of the additional prefetch instruction. There-
fore, it is possible to increase path length, yet make better use of available CPU cycles.

The following sections present several strategies to consider when analyzing a pro-
file and looking for optimization opportunities. Generally, optimization opportunities
for most applications fall into one of the general categories just described.

System or Kernel CPU Usage

Chapter 2, “Operating System Performance Monitoring,” suggests one of the statis-
tics to monitor is system or kernel CPU utilization. If CPU clock cycles are spent
executing operating system or kernel code, those are CPU clock cycles that cannot
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be used to execute your application. Hence, a strategy to improve the performance of
an application is to reduce the amount of time it spends consuming system or kernel
CPU clock cycles. However, this strategy is not applicable in applications that spend
little time executing system or kernel code. Monitoring the operating system for
system or kernel CPU utilization provides the data as to whether it makes sense to
employ this strategy.

The Oracle Solaris Performance Analyzer collects system or kernel CPU statis-
tics as part of an application profile. This is done by selecting the View > Set Data
Presentation menu in Performance Analyzer, choosing the Metrics tab, and setting
the options to present system CPU utilization statistics, both inclusive or exclusive.
Recall that inclusive metrics include not only the time spent in a given method, but
also the time spent in methods it calls. In contrast, exclusive metrics report only the
amount of time spent in a given method.

Tip
It can be useful to include both inclusive and exclusive metrics when first analyzing a profile.
Looking at the inclusive metrics provides a sense of the path the application executes. Looking

at the general path an application takes you may identify an opportunity for an alternative
algorithm or approach that may offer better performance.

Figure 6-1 shows the Performance Analyzer’s Set Data Presentation form with
options selected to present both inclusive and exclusive System CPU metrics. Also
notice the options selected report both the raw time value and the percentage of
System CPU time.

] || Set Data Presentation =83
Timeline rSearch Path r Pathmaps rTahs |
Metrics r Sort r Source/Disassembly r Formats |
E Exclusive ,% Inclusive
Time Value 3% Time Value %
UserCPU [ ™= (= =]
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System CPU
Waijt CPU ] ] ] ]
UserLock [] ™ ol ™=
Text Page Fault [ ] (| ™= =]
Data Page Fault [ ] ™= ™= =]
Other Wait [ ] o 0O O
Size ™=
PC Address =
0 0 @@ O
| OK || Apply || Save || Close || Help |

Figure 6-1 Set system CPU data presentation
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Figure 6-2 Exclusive system CPU

After clicking on the OK button, the Performance Analyzer displays the profile’s
System CPU inclusive and exclusive metrics in descending order. The arrow in the
metric column header indicates how the data is presented and sorted. In Figure 6-2,
the System CPU data is ordered by the exclusive metric (notice the arrow in the exclu-
sive metric header and the icon indicating an exclusive metric).

Figure 6-2 shows a profile from an application that exhibits high system or ker-
nel CPU utilization. You can see this application consumed about 33.5 seconds of
System CPU in the java.io.FileOutputStream.write (int) method and about
11.6 seconds in a method called _write (), or about 656% and 22.5%, respectively.
You can also get a sense of how significant the improvement can be realized by
reducing the System CPU utilization of this application. The ideal situation for an
application is to have 0% System CPU utilization. But for some applications that
goal is difficult to achieve, especially if there is I/O involved, since I/O operations
require a system call. In applications that require I/O, the goal is to reduce the
frequency of making a system call. One approach to reduce the call frequency of an
I/0 system call is buffer the data so that larger chunks of data are read or written
during I/O operations.

In the example shown in Figure 6-2, you can see the file write (output) oper-
ations are consuming a large amount of time as illustrated by the java.
io.FileOutputStream.write (int) and write () entries. To identify whether
the write operations are buffered, you can use the Callers-Callees tab to walk up the
call stack to see what methods are calling the FileOutputStream.write (int)
method and the  write method. You walk up the call stack by selecting one of the
callees from the upper panel and clicking the Set Center button. Figure 6-3 shows
the Callers-Callees of the FileOutputStream.write (int) method.

The callers of FileOutputStream.write (int) are ExtOutputStream.
write (int) and OutImpl.outc (int). 85.18% of the System CPU attributed
to FileOutputStream.write (int) comes from its use in ExtOutputStream.
write (int) and 14.82% of it from Out Impl.outc (int).A look at the implementa-
tion of ExtOutputStream.write (int) shows:
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Figure 6-3 FileOutputStream.write(int) callers and callees

pubTlic void write(int b) throws IOException {
super.write(b);
writer.write((byte)b);

A look at the implementation of super.write (b) shows it is not a call to FileOut -
putStream.write (int):

public void write(int b) throws IOException {
crc = crc * 33 + b;

But the writer field in ExtOutputStreamis declared as a FileOutputStream:

private FileOutputStream writer;

And it is initialized without any type of buffering:

writer = new FileOutputStream(currentFileName);

currentFileName is a field declared as a String:
private String currentFileName;

Hence, an optimization to be applied here is to buffer the data being written to
FileOutputStreamin ExtOutputStream using a Buf feredOutputStream. This
is done rather quickly and easily by chaining or wrapping the FileOutputStream
in a BufferedOutputStream in an ExtOutputStream. Here is a quick listing of
the changes required:
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// Change FileOutputStream writer to a BufferedOutputStream
// private FileOutputStream writer;
private BufferedOutputStream writer;

Then chain a BufferedOutputStream and FileOutputStream at initialization
time:

// Initialize BufferedOutputStream
// writer = new FileOutputStream(currentFileName);
writer = new BufferedOutputStream(

new FileOutputStream(currentFileName));

Writing to the Buf feredOutputStream, instead of the FileOutputStream, in
ExtOutputStream.write (int b) does not require any update since Buf ferout -
putStreamhas a write () method that buffers bytes written to it. This ExtOutput -
Stream.write (int b) method is shown here:

public void write(int b) throws IOException {
super.write(b);
// No update required here,
// automatically uses BufferedOutputStream.write()
writer.write((byte)b);

The other uses of the writer field must be inspected to ensure the use of
Buf feredOutputStream operates as expected. In Ext StreamOutput, there are two
additional uses of the writer field, one in a method called reset () and another in
checkResult (). These two methods are as follows:

public void reset() {
super.reset();
try {
if (diffOutputStream != null) {
diffOutputStream.flush();
diffOutputStream.close();
diffOutputStream = null;

}
if (writer != null) {
writer.close(Q);

b
} catch (IOException e) {
e.printStackTrace();
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3
public void checkResult(int loopNumber) {
try {

writer.flush(Q);
writer.close();

} catch (IOException e) {
e.printStackTrace();

}
check(validiationProperties.getProperty(propertyName));
outProperties.put(propertyName, ”” + getCRC(Q));
reset();

The uses of writer as a BufferedOutputStream works as expected. It should be
noted that the API specification for Buf feredOutputStream.close () indicates it
calls the Buf feredOutputStream.flush () method and then calls the close ()
method of its underlying output stream, in this case the FileOutputStream.close ()
method. As a result, the FileOutputStream is not required to be explicitly closed,
nor is the f1lush () method in ExtOutputStream.checkResult (int) required. A
couple of additional enhancements worth consideration are

1. A BufferedOutputStream can also be allocated with an optional buffered size.
The default buffer size, as of Java 6, is 8192. If the application you are profiling
is writing a large number of bytes, you might consider specifying an explicit size
larger than 8192. If you specify an explicit size, consider a size that is a multiple
of the operating systems page size since operating systems efficiently fetch
memory that are multiples of the operating system page size. On Oracle Solaris,
the pagesize command with no arguments reports the default page size. On
Linux, the default page size can be obtained using the getconf PAGESIZE
command. Windows on x86 and x64 platforms default to a 4K (4096) page size.

2. Change the ExtOutputStream.writer field from an explicit
BufferedOutputStream type to an OutputStream type, that is,
OutputStream writer = new BufferedOutputStream/(),instead of
BufferedOutputStream writer = new BufferedOutputStream().
This allows for additional flexibility in type of OutputStream, for example,
ByteArrayOutputStream, DataOutputStream, FilterOutputStream,
FileOutputStream, or BufferedOutputStream.

Looking back at Figure 6-3, a second method calls FileOutputStream.
write (int) called org.w3c.tidy.OutImpl.outc (int), which is a method from
a third-party library used in the profiled application. To reduce the amount of system
CPU utilization used in a third-party supplied method, the best approach is to file
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a bug or enhancement request with the third-party library provider and include the
information from the profile. If the source is accessible via an open source license and
has acceptable license terms, you may consider further investigating and including
additional information in the bug or enhancement request report.

After applying the changes identified in ExtOutputStream, using the
Buf feredOutputStream and its default constructor (not including the two addi-
tional enhancements just mentioned), and collecting a profile, the amount of system
CPU utilization drops substantially. Comparing the profiles in Figure 6-4 to those
in Figure 6-2, you can see the amount of inclusive system CPU time spent in
java.io.FileOutputStream has dropped from 45.182 seconds to 6.655 seconds
(exclusive system CPU time is the second column).

Executing this application workload outside the profiler in a performance testing
environment prior to making the modifications reports it took this application
427 seconds to run to completion. In constrast, the modified version of the applica-
tion workload that uses the Buf ferOutputStream in the same performance test-
ing environment reports it runs to completion in 383 seconds. In other words, this
application realized about a 10% improvement in its run to completion execution.

In addition, looking at the Callers-Callees tab for java.io.FileOutputStream.
write (int), only the call to org.w3c.tidy.OutImpl.outc (int) remains as a
significant consumer of the FileOutputStream.write (int) method. The Callers-
Callees of FileOutputStream.write (int) are shown in Figure 6-5.

l/Functiuns rCaIIers—CaIIees rCaII Tree rSource rDisassemny rTimeIine rExperiments |

E2 sys. CPU & Sys. CPU Name

W o(sec.) (%) (sec.) )

13.479 100, 00 13.479 100,00 <Totals

6.655 49,37 5.655 49,37 java.io.FiledutputStream.write(int)
3.052 22.64 3.052 22.64 <JVM-System>
2.412 17.89 2.412 17.89 java.io.Filelnputstream. read()

0,240 1.78 0, 260 1.93 java.io.FiledutputsStream.writeBytes(byted, int, int)
0. 060 0.45 0,060 0.45 __write

Figure 6-4 Reduced system CPU utilization

Functions Callers-Callees rCaIITree rSuurce |/Disassemhly |/Timeline |/Experiments

#E sys. | Name
CPU
W (sec)
18| 6.655 org.w3c.tidy.OutInpl.outc(int)

| || | | Add || Remove | | Set Head || Set Center || Set Tail

| 6.655 java.io.FileQutputStream.write(int)

Figure 6-5 Callers-Callees after changes
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Comparing the Callers-Callees in Figure 6-5, after the changes to ExtStream
output, with the Callers-Callees in Figure 6-3, prior to the changes, you can see
the amount of attributable time spent in org.w3c.tidy.OutImpl.outc (int)
stays close to the same. This should not be a surprise since the changes made
to ExtStreamOutput now use BufferedOutputStream. But recall that the
BufferedOutputStream invokes a FileOutputStream method when any
of the underlying buffer in the BufferedOutputStream becomes full, the
BufferedOutputStream.flush () method is called, or when the Buffered-
OutputSteam.close () method is called. If you look back at Figure 6-4 you
see a FileOutputStream.writeBytes (byte[],int, int) method. This is the
method that the BufferedOutputStream calls from ExtStreamOut-
put. Figure 6-6 shows the Callers-Callees tab for the FileOutputStream.
writeBytes (bytel[],int,int).

Selecting java.io.FileOutputStream.write (byte[], int,int) method from
the upper Callee panel and clicking the Set Center button illustrates that Buff -
eredOutputStream. flushBuffer () is its callee; see Figure 6-7.

Functions | Callers-Callees | Call Tree | Source | Disassembly | Timeline | Experiments

BEsys. | Name
CPU
W o(sec)

JL§ 0,220 java.io.FilelutputStream.writelbyted)
0,040 java.io.FilelutputStream.write(byte[], int, int)

| &l || | | Add || Remove | | Set Head || Set Center || Set Tail

| 0,240 java.io.FilelutputStream.writeBytesibyvte], int, int)

| 0.020 Java_java_io_FiledutputStream_writeBytes

Figure 6-6 Callers-Callees of FileOutputStream.writeBytes(byte[],int,int)

Functions | Callers-Callees rCaIITree rSuurce rDisassemth |/Timeline |/Experiments

8 sys. | Name
CPU
W (sec.)

0,020 java.io.PrintStream.writelhyted, int, int)
I8 0.010  java.io.BufferedOutputitream. flushBuffer()
0,010 sun.nio.cs.StreamEncoder.writeBytes()

| 4l || | | Add || Remove | | Set Head || Set Center || Set Tail

| 0. java.io.FileQutputStream.write(byted, int, int)

| 0,040 java.io.Filelutputstream.writeBytesibyted, int, int)

Figure 6-7 Callers-Callees of FileOutputStream.writeBytes(byte[], int, int)
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Functions | Callers-Callees |/Call Tree rSuurce rDisassemth |/Timeline |/Experimem.s

8 sys.
CPU
W (sec.)

18 0.010 java.io.BufferedOutputStream.write(int)

MName

‘ 0,010 java.io.FilelutputStream.writelbyted, int, intd)

Figure 6-8 Callers-Callees of BufferedOutputStream.flushBuffer()

Functions | Callers-Callees | Call Tree | Source | Disassembly | Timeline | Experiments

8 sys. | Name
CPU
WV (sec.)

k= 0.010 spec.benchmarks.xml.transtorm. ExtOutputstream.writelint)

| 0.010 java.io.BufferedOutputitream. TlushBufter()

Figure 6-9 Callers-Callees of BufferedOutputStream.write(int)

Selecting the BufferedOutputStream.flushBuffer () method in the
upper Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.flushBuffer () is BufferedOutputStream.
write (int). The Callers-Callees of Buf feredOutputStream.flushBuffer ()
are shown in Figure 6-8.

Selecting the Buf feredOutputStream.write (int) method in the upper
Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.write (int) is ExtOutputStream.write (int),
the method that has been modified. The Callers-Callees of Buf feredOutput -
Stream.write (int) are shown in Figure 6-9.

As mentioned earlier, the next step in reducing System CPU utilization for this
application requires a modification to a third-party library, a library that holds the
implementation of org.w3c.tidy.OutImpl.outc (int). It may be possible for
the maintainers of the third-party library to implement a similar modification to
OutImpl.outc (int) as just described and implemented for ExtOutputStream.
write (int). However, the performance improvement realized will likely not be as
significant since the profile suggests there is more System CPU utilization attributed
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to the call path of ExtOutputStream.write (int) than to OutImpl.outc (int);
refer to Figure 6-3 for attributable System CPU utilization on callers of FileInput-
Stream.write (int).In addition, looking at the amount of System CPU utilization
consumed in OutImpl.outc (int), about 6.6 seconds, compared to the total appli-
cation runtime of 383 seconds is rather small, about 1.5%. Hence, a modification to
reduce the amount of System CPU utilization spent in Out Impl.outc (int) would
likely not yield more than 1% to 2% improvement.

Tip
Applications that perform network I/O can employ a similar, general approach to reduce

system CPU utilization as that just described in this section. That is, buffer both the data in
the input and output stream used to write and read the data.

An additional strategy to reduce system CPU utilization for